化学学报 上一篇    下一篇

研究论文

界面修饰和偶极子实现高效碳基CsPbI2Br钙钛矿太阳能电池

高林#,a, 江东彬#,a, 徐源b, 姚青a, 刘冯立a, 孙伟海a, 杜振波a, 孙留学a,c, 吴季怀a,*, 兰章a,*   

  1. a华侨大学材料科学与工程学院,环境友好功能材料教育部工程研究中心,福建省光电功能材料重点实验室 厦门 361021;
    b河南工学院材料科学与工程学院 新乡 453003;
    c华侨大学分析测试中心 厦门 361021
  • 投稿日期:2025-09-12
  • 通讯作者: *E-mail: jhwu@hqu.edu.cn; lanzhang@hqu.edu.cn
  • 基金资助:
    受国家自然科学基金项目(51972123、52372190)、福建省自然科学基金项目(2023J01116)、环境友好功能材料教育部工程研究中心(51101、5032502)资助

Interface modification and dipole realization for efficient carbon-based CsPbI2Br perovskite solar cells

Gao Lin#,a, Jiang Dongbin#,a, Xu Yuanb, Yao Qinga, Liu Fenglia, Sun Weihaia, Du Zhenboa, Sun Liuxuea,c, Wu Jihuaia,*, Lan Zhanga,*   

  1. aSchool of Materials Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education. Fujian Key Laboratory of Photoelectric Functional Materials, Xiamen;
    bSchool of Materials Science and Engineering, Henan Institute of Technology, Xinxiang;
    cInstrumental Analysis Center, Huaqiao University, Xiamen
  • Received:2025-09-12
  • About author:<sup>#</sup>These authors contributed equally to this work
  • Supported by:
    Project supported by the National Natural Science Foundation of China (51972123, 52372190), the Natural Science Foundation of Fujian Province (2023J01116), and the Engineering Research Center of Environmentally Friendly Functional Materials of the Ministry of Education (51101, 5032502).

碳基无空穴传输层CsPbI2Br太阳能电池(C-PSCs)的制备工艺简单。然而,CsPbI2Br钙钛矿层与碳电极之间的界面存在大量缺陷,我们通过引入2-氨基苯并噻唑(BTA)作为界面修饰剂,改善界面质量,以提升器件的性能和稳定性。噻唑环的N和S原子以及BTA中的氨基通过路易斯酸碱配位有效降低了CsPbI2Br表面的缺陷态密度。这些相互作用有效抑制了电荷的非辐射复合,并改善了薄膜和碳电极之间的界面接触。此外,BTA分子的固有偶极矩在界面处起到电偶极层的作用,从而调节了CsPbI2Br表面的电子态和性质,优化了能级排列并促进了空穴的快速提取和传输。将C-PSCs的功率转换效率(PCE)提高到14.17%,远高于未修饰器件的12.40%。经过BTA处理的器件在空气环境中存放30天后,仍能保持初始PCE的80%,重复性和环境稳定性显著增强。

关键词: 全无机钙钛矿, CsPbI2Br, 缺陷钝化, 界面修饰, 偶极子

The preparation of carbon-based hole-free transport layer all-inorganic perovskite CsPbI2Br solar cells is straightforward, cost-effective, and currently one of the key research areas. However, the interface between the CsPbI2Br perovskite layer, fabricated via one-step solution spin-coating, and the carbon electrode is characterized by a high density of defects. These defects contribute to substantial non-radiative recombination, which severely limits the device’s photoconversion efficiency. To address this issue, we present an exceptionally simple interface modification strategy aimed at enhancing the interface quality between the CsPbI2Br perovskite layer and the carbon electrode. Specifically, we introduce 2-aminobenzothiazole (BTA) as an interface modifier. By spin-coating an isopropanol solution containing various concentrations of BTA onto the surface of the CsPbI2Br perovskite layer, we passivate the surface defects, thereby improving the interface quality and boosting both device performance and operational stability. The thiazole ring and amino group in BTA effectively reduce the defect density on the CsPbI2Br perovskite surface through Lewis acid-base coordination. This modification substantially improves both the surface morphology and the interface contact of the CsPbI2Br perovskite film, leading to an enhanced internal electric field and a reduction in non-radiative recombination. Furthermore, the inherent dipole moment of BTA molecules generates an electric dipole layer at the CsPbI2Br interface, which modulates the electronic states and work function at the interface, optimizing the energy level alignment between the perovskite layer and the carbon electrode. As a result, the interface characteristics between the CsPbI2Br perovskite film and the carbon electrode are effectively tuned, facilitating improved hole extraction and transport. Consequently, the device incorporating BTA treatment exhibits a photoelectric conversion efficiency (PCE) of 14.17%, an open-circuit voltage (VOC) of 1.25 V, a short-circuit current density (JSC) of 14.62 mA cm⁻2, and a fill factor (FF) of 77.61%. These values are significantly higher compared to those of devices without BTA treatment (PCE: 12.40%, VOC: 1.21 V, JSC: 14.19 mA cm⁻2, FF: 72.23%). Furthermore, after 30 days of exposure to air at 20% relative humidity, the BTA-treated device retains 80% of its initial efficiency, whereas the untreated device only maintains 50% of its initial efficiency. This demonstrates that the BTA-modified device offers remarkable reproducibility and environmental stability. The proposed BTA interface modification strategy provides valuable insights for the development of efficient and stable carbon-based hole-free transport layer all-inorganic CsPbI2Br perovskite solar cells.

Key words: all-inorganic perovskite, CsPbI2Br, defect passivation, interface modification, dipole molecule