Acta Chimica Sinica ›› 2012, Vol. 0 ›› Issue (05): 591-598 .DOI: 10.6023/A1104074 Previous Articles     Next Articles

Full Papers

交联聚合物P(MMA-MAh)-PEG1500 基凝胶电解质锂离子键合极性基团作用FTIR 研究

黄韵a,b, 马晓燕c, 林元华a,b, 王煦a   

  1. a 西南石油大学材料科学与工程学院 成都 610500;
    b 油气藏地质及开发工程国家重点实验室 成都 610500;
    c 西北工业大学理学院应用化学系 西安 710129
  • 投稿日期:2011-04-07 修回日期:2011-10-10 发布日期:2011-11-28
  • 通讯作者: 黄韵 E-mail:huangyun213@yahoo.com.cn
  • 基金资助:

    四川省教育厅青年基金项目(No. 10ZB112)、油气藏地质及开发工程国家重点实验室开放基金(No. PLN1111)、西南石油大学科技基金(No. 2010XJZ171)及高等学校博士学科点专项基金(No. 20115121120005)资助项目.

Study on the Interaction Between Lithium Ion and Polar Group in GPE Based on the Crosslinked Polymer of P(MMA-MAh)-PEG1500 with FTIR

Huang Yuna,b, Ma Xiaoyanc, Lin Yuanhuaa,b, Wang Xua   

  1. a School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500;
    b State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu 610500;
    c Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an 710129
  • Received:2011-04-07 Revised:2011-10-10 Published:2011-11-28
  • Supported by:

    Project supported by the Youth Fund of Educational Committee of Sichuan Province (No. 10ZB112), the Open Fund (No. PLN1111) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation of Southwest Petroleum University, the Science and Technology Fund of Southwest Petroleum University (No. 2010XJZ171) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20115121120005).

The crosslinked polymer of P(MMA-MAh)-PEG1500 was synthesized by reacting polyethylene glycol (PEG1500) with the copolymer of poly(methyl metacrylate-maleic anhydride) (P(MMA-MAh)) and endcapping the residual carboxylic acid with methanol. The properties of gel polymer electrolyte (GPE), consisted of P(MMA-MAh)-PEG1500 used as polymer matrix, propylene carbonate (PC) as a plasticizer and LiClO4 as lithium ion producer, was undoubtedly depended on the micro interaction existed in the components. Characterization of interaction of the polar group (C=O and C—O—C) in PC or crosslinked polymer with Li+ has been thoroughly examined using FTIR. The quantitative analysis of FTIR showed that the absorptivity coefficient (a) of PC/LiClO4 and polymer/LiClO4 was 0.113 and 0.267, respectively, which meant that the Li+ bonded polar group of C=O and C—O—C was more sensitive than free C=O and C—O—C in FTIR spectra. The limit value of bonded C=O and C—O—C equivalent fraction of PC/LiClO4 and polymer/LiClO4 was 94% and 45%, respectively, which implied that the interaction within the components was reversible and the intensity of interaction was ordered as PC/LiClO4 and polymer/LiClO4.

Key words: gel polymer electrolyte, crosslinked polymer, interaction, quantitative analysis, IR spectroscopy