Acta Chimica Sinica ›› 2024, Vol. 82 ›› Issue (10): 1050-1057.DOI: 10.6023/A24080234 Previous Articles Next Articles
Article
黄伊晨a,b, 聂长明a,*(), 王聪芝b,*(), 陈树森c, 宋艳c, 李昊c, 石伟群b,*()
投稿日期:
2024-08-07
发布日期:
2024-10-08
基金资助:
Yichen Huanga,b, Changming Niea(), Congzhi Wangb(), Shusen Chenc, Yan Songc, Hao Lic, Weiqun Shib()
Received:
2024-08-07
Published:
2024-10-08
Contact:
*E-mail: niecm196132@163.com; wangcongzhi@ihep.ac.cn; shiwq@ihep.ac.cn
Supported by:
Share
Yichen Huang, Changming Nie, Congzhi Wang, Shusen Chen, Yan Song, Hao Li, Weiqun Shi. Theoretical Study of Hydroxyl- and Amino-substituted Amidoxime Ligands for Extraction of Uranium from Seawater[J]. Acta Chimica Sinica, 2024, 82(10): 1050-1057.
铀酰配合物 | U=O (axial) | U—Oa (L−) | U—Ob (L−) | U—N (L−) | U—O (CO32−) |
---|---|---|---|---|---|
[UO2(CO3)2(L1)]3− | 0.181 | — | 0.238 | — | 0.242 |
[UO2(CO3)2(L2)]3− | 0.181 | — | 0.237 | — | 0.242 |
[UO2(CO3)2(L3)]3− | 0.181 | — | 0.241 | — | 0.243 |
[UO2(CO3)2(L4)]3− | 0.181 | — | 0.243 | — | 0.242 |
[UO2(CO3)(L1)2]2− | 0.180 | 0.240 | — | 0.250 | 0.240 |
[UO2(CO3)(L2)2]2− | 0.180 | 0.243 | 0.226 | 0.252 | 0.237 |
[UO2(CO3)(L3)2]2− | 0.180 | 0.237 | — | 0.261 | 0.242 |
[UO2(CO3)(L4)2]2− | 0.180 | — | 0.228 | — | 0.235 |
[UO2(L1)3]− | 0.182 | 0.233 | 0.246 | — | |
[UO2(L2)3]− | 0.181 | 0.234 | — | 0.243 | — |
[UO2(L3)3]− | 0.179 | 0.237 | — | 0.249 | — |
[UO2(L4)3]− | 0.180 | 0.241 | — | 0.242 | — |
铀酰配合物 | U=O (axial) | U—Oa (L−) | U—Ob (L−) | U—N (L−) | U—O (CO32−) |
---|---|---|---|---|---|
[UO2(CO3)2(L1)]3− | 0.181 | — | 0.238 | — | 0.242 |
[UO2(CO3)2(L2)]3− | 0.181 | — | 0.237 | — | 0.242 |
[UO2(CO3)2(L3)]3− | 0.181 | — | 0.241 | — | 0.243 |
[UO2(CO3)2(L4)]3− | 0.181 | — | 0.243 | — | 0.242 |
[UO2(CO3)(L1)2]2− | 0.180 | 0.240 | — | 0.250 | 0.240 |
[UO2(CO3)(L2)2]2− | 0.180 | 0.243 | 0.226 | 0.252 | 0.237 |
[UO2(CO3)(L3)2]2− | 0.180 | 0.237 | — | 0.261 | 0.242 |
[UO2(CO3)(L4)2]2− | 0.180 | — | 0.228 | — | 0.235 |
[UO2(L1)3]− | 0.182 | 0.233 | 0.246 | — | |
[UO2(L2)3]− | 0.181 | 0.234 | — | 0.243 | — |
[UO2(L3)3]− | 0.179 | 0.237 | — | 0.249 | — |
[UO2(L4)3]− | 0.180 | 0.241 | — | 0.242 | — |
铀酰配合物 | U=O (axial) | U—Oa (L−) | U—Ob (L−) | U—N (L−) | U—O (CO32−) |
---|---|---|---|---|---|
[UO2(CO3)2(L1)]3− | 1.980 | — | 0.559 | — | 0.492 |
[UO2(CO3)2(L2)]3− | 1.976 | — | 0.578 | — | 0.491 |
[UO2(CO3)2(L3)]3− | 1.973 | — | 0.523 | — | 0.483 |
[UO2(CO3)2(L4)]3− | 1.976 | — | 0.491 | — | 0.502 |
[UO2(CO3)(L1)2]2− | 2.042 | 0.498 | — | 0.338 | 0.463 |
[UO2(CO3)(L2)2]2− | 2.016 | 0.464 | 0.730 | 0.305 | 0.517 |
[UO2(CO3)(L3)2]2− | 2.015 | 0.579 | — | 0.250 | 0.464 |
[UO2(CO3)(L4)2]2− | 2.016 | — | 0.686 | — | 0.530 |
[UO2(L1)3]− | 1.980 | 0.587 | — | 0.370 | — |
[UO2(L2)3]− | 2.027 | 0.557 | — | 0.378 | — |
[UO2(L3)3]− | 2.039 | 0.554 | — | 0.336 | — |
[UO2(L4)3]− | 2.053 | 0.515 | — | 0.389 | — |
铀酰配合物 | U=O (axial) | U—Oa (L−) | U—Ob (L−) | U—N (L−) | U—O (CO32−) |
---|---|---|---|---|---|
[UO2(CO3)2(L1)]3− | 1.980 | — | 0.559 | — | 0.492 |
[UO2(CO3)2(L2)]3− | 1.976 | — | 0.578 | — | 0.491 |
[UO2(CO3)2(L3)]3− | 1.973 | — | 0.523 | — | 0.483 |
[UO2(CO3)2(L4)]3− | 1.976 | — | 0.491 | — | 0.502 |
[UO2(CO3)(L1)2]2− | 2.042 | 0.498 | — | 0.338 | 0.463 |
[UO2(CO3)(L2)2]2− | 2.016 | 0.464 | 0.730 | 0.305 | 0.517 |
[UO2(CO3)(L3)2]2− | 2.015 | 0.579 | — | 0.250 | 0.464 |
[UO2(CO3)(L4)2]2− | 2.016 | — | 0.686 | — | 0.530 |
[UO2(L1)3]− | 1.980 | 0.587 | — | 0.370 | — |
[UO2(L2)3]− | 2.027 | 0.557 | — | 0.378 | — |
[UO2(L3)3]− | 2.039 | 0.554 | — | 0.336 | — |
[UO2(L4)3]− | 2.053 | 0.515 | — | 0.389 | — |
铀酰配合物 | Q(U) | ΔQ(U) | ΔQ(L) | ΔQ(CO32−) |
---|---|---|---|---|
[UO2(CO3)2(L1)]3− | 1.662 | 0.804 | 0.296 | 0.635 |
[UO2(CO3)(L1)2]2− | 1.497 | 0.970 | 0.451 | 0.706 |
[UO2(L1)3]− | 1.387 | 1.079 | 0.593 | — |
[UO2(CO3)2(L2)]3− | 1.659 | 0.808 | 0.315 | 0.631 |
[UO2(CO3)(L2)2]2− | 1.578 | 0.889 | 0.443 | 0.689 |
[UO2(L2)3]− | 1.346 | 1.121 | 0.590 | — |
[UO2(CO3)2(L3)]3− | 1.701 | 0.766 | 0.252 | 0.640 |
[UO2(CO3)(L3)2]2− | 1.504 | 0.962 | 0.471 | 0.706 |
[UO2(L3)3]− | 1.347 | 1.119 | 0.584 | — |
[UO2(CO3)2(L4)]3− | 1.694 | 0.773 | 0.276 | 0.630 |
[UO2(CO3)(L4)2]2− | 1.632 | 0.835 | 0.416 | 0.689 |
[UO2(L4)3]− | 1.347 | 1.120 | 0.578 | — |
铀酰配合物 | Q(U) | ΔQ(U) | ΔQ(L) | ΔQ(CO32−) |
---|---|---|---|---|
[UO2(CO3)2(L1)]3− | 1.662 | 0.804 | 0.296 | 0.635 |
[UO2(CO3)(L1)2]2− | 1.497 | 0.970 | 0.451 | 0.706 |
[UO2(L1)3]− | 1.387 | 1.079 | 0.593 | — |
[UO2(CO3)2(L2)]3− | 1.659 | 0.808 | 0.315 | 0.631 |
[UO2(CO3)(L2)2]2− | 1.578 | 0.889 | 0.443 | 0.689 |
[UO2(L2)3]− | 1.346 | 1.121 | 0.590 | — |
[UO2(CO3)2(L3)]3− | 1.701 | 0.766 | 0.252 | 0.640 |
[UO2(CO3)(L3)2]2− | 1.504 | 0.962 | 0.471 | 0.706 |
[UO2(L3)3]− | 1.347 | 1.119 | 0.584 | — |
[UO2(CO3)2(L4)]3− | 1.694 | 0.773 | 0.276 | 0.630 |
[UO2(CO3)(L4)2]2− | 1.632 | 0.835 | 0.416 | 0.689 |
[UO2(L4)3]− | 1.347 | 1.120 | 0.578 | — |
[1] |
Ahmed, B.; Ahmad, Z.; Ihsan, A.; Khan, M. A.; Fazal, T. Sep. Purif. Technol. 2024, 338 126507.
|
[2] |
Xu, H.; Wang, C.-Z.; Liu, S.-R.; Shi, W.-Q. Acta Chim. Sinica 2024, 82 458 (in Chinese).
|
(徐晗, 王聪芝, 刘峙嵘, 石伟群, 化学学报, 2024, 82 458.)
doi: 10.6023/A24020041 |
|
[3] |
Zhang, X.; Zhang, L.; Bo, T.; Huang, S.; Huang, Z.; Shi, W. Chin. Chem. Lett. 2022, 33 3527.
|
[4] |
Zhu, Y.-J.; Xu, Y.; Jian, M.-P.; Li, H.-Y.; Wang, C.-C. Chem. Ind. Eng. Prog. 2023, 42 3029 (in Chinese).
|
(朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣, 化工进展, 2023, 42 3029.)
doi: 10.16085/j.issn.1000-6613.2022-1434 |
|
[5] |
Tian, G.-X.; Liu, T.-T.; Yang, S.-L. At. Energy Sci. Technol. 2023, 57 1 (in Chinese).
|
(田国新, 刘婷婷, 杨素亮, 原子能科学技术, 2023, 57 1.)
doi: 10.7538/yzk.2022.youxian.0885 |
|
[6] |
Tang, X.-R.; Huang, P.-L.; Ruan, H.-M.; Tang, L.; Gong, X.; Duan, T.; Chen, S.-S; He, R.; Zhu, W.-K. J. Nucl. Radiochem. 2023, 45 267 (in Chinese).
|
(唐兴睿, 黄鹏玲, 阮昊明, 唐丽, 龚翔, 段涛, 陈树森, 何嵘, 竹文坤, 核化学与放射化学, 2023, 45 267.)
doi: 10.7538/hhx.2023.YX.2021117 |
|
[7] |
Zhang, D.; Fang, L.; Liu, L. J.; Zhao, B.; Hu, B. W.; Yu, S. J.; Wang, X. K. Sep. Purif. Technol. 2023, 320 124204.
|
[8] |
Tang, N.; Liang, J.; Niu, C. G.; Wang, H.; Luo, Y.; Xing, W. L.; Ye, S. J.; Liang, C.; Guo, H.; Guo, J. Y.; Zhang, Y. F.; Zeng, G. M. J. Mater. Chem. A 2020, 8 7588.
|
[9] |
Feng, L.; Wang, H.; Feng, T.; Yan, B.; Yu, Q.; Zhang, J.; Guo, Z.; Yuan, Y.; Ma, C.; Liu, T.; Wang, N. Chin. J. Chem. 2022, 61, e202101015.
|
[10] |
Xie, Y.; Liu, Z.; Geng, Y.; Li, H.; Wang, N.; Song, Y.; Wang, X.; Chen, J.; Wang, J.; Ma, S.; Ye, G. Chem. Soc. Rev. 2023, 52 97.
|
[11] |
Li, Y.; Zheng, Y. J.; Ahamd, Z.; Zhu, L. X.; Yang, J. J.; Chen, J. P.; Zhang, Z. P. Coord. Chem. Rev. 2023, 491 215234.
|
[12] |
Li, L.-Y.; Wen, J.; Hu, S.; Wang, X.-L. J. Nucl. Radiochem. 2022, 44 15 (in Chinese).
|
(李璐琰, 文君, 胡胜, 汪小琳, 核化学与放射化学, 2022, 44 15.)
|
|
[13] |
Li, Z.-M.; Niu, Y.-Q.; Su, Y.-T.; Song, Y.; Wang, F.-J.; Gou, Y.-F.; Wang, H.-Z.; Chen, H.-S. J. Nucl. Radiochem. 2022, 44 233 (in Chinese).
|
(李子明, 牛玉清, 宿延涛, 宋艳, 王凤菊, 勾阳飞, 王海珍, 陈树森, 核化学与放射化学, 2022, 44 233.)
|
|
[14] |
Liu, Z.-Y.; Xie, Y.; Wang, Y.-F.; Hu, T.-Y.; Ye, G.; Chen, J. Tsinghua Univ. (Sci. & Technol.) 2021, 61 23 (in Chinese).
|
(刘泽宇, 谢忆, 王一凡, 胡铜洋, 叶钢, 陈靖, 清华大学学报(自然科学版), 2021, 61 23.)
|
|
[15] |
Sun, B.; Liu, Q.; Gao, Y.; Han, L.; Zhang, R.; Zhang, C.; Jia, X. Ind. Chem. Mater. 2024, 2 154.
|
[16] |
Yi, T.; Cen, Z.; Ji, Y.; Huang, J.; Liang, M.; Liu, S. -H Adv. Funct. Mater. 2024, 2404220.
|
[17] |
Wang, C. Z.; Lan, J. H.; Wu, Q. Y.; Luo, Q.; Zhao, Y. L.; Wang, X. K.; Chai, Z. F.; Shi, W. Q. Inorg. Chem. 2014, 53 9466.
|
[18] |
Qin, Z.; Ren, Y.; Shi, S.; Yang, C.; Yu, J.; Wang, S.; Jia, J.; Yu, H.; Wang, X. L. RSC Adv. 2017, 7 18639.
|
[19] |
Luan, X. F.; Wang, C. Z.; Wu, Q. Y.; Lan, J. H.; Chai, Z. F.; Xia, L. S.; Shi, W. Q. J. Phys. Chem. A 2022, 126 406.
|
[20] |
Feng, J.; He, G.-Q.; Wei, Y.-X.; Duan, T.; Zhou, J. New Chem. Mater. 2022, 50 7 (in Chinese).
|
(冯健, 何桂强, 魏艳霞, 段涛, 周建, 化工新型材料, 2022, 50 7.)
|
|
[21] |
Vukovic, S.; Watson, L. A.; Kang, S. O.; Custelcean, R.; Hay, B. P. Inorg. Chem. 2012, 51 3855.
doi: 10.1021/ic300062s pmid: 22376298 |
[22] |
Abney, C. W.; Mayes, R. T.; Piechowicz, M.; Lin, Z.; Bryantsev, V. S.; Veith, G. M.; Dai, S.; Lin, W. Energy Environ. Sci. 2016, 9 448.
|
[23] |
Chi, F.-T.; Li, P.; Xiong, J.; Hu, S.; Gao, T.; Xia, X.-L.; Wang, X.-L. Chinese Physics B 2012, 21 093102.
|
[24] |
Wang, Y.; Jiang, Y.; Zhang, Y.; Liu, X.; Sun, S.; Qin, S.; Huang, J.; Chen, B. Chemosphere 2023, 343 140257.
|
[25] |
Xia, X.; Liao, Z.; Deng, J.; Yang, G.; Nie, X.; Ma, C.; Cheng, W.; Pan, N.; Zhang, W.; Dong, F. Environ. Pollut. 2024, 344 123269.
|
[26] |
Yu, B.; Zhang, L.; Ye, G.; Liu, Q.; Li, J.; Wang, X.; Chen, J.; Xu, S.; Ma, S. Nano Res. 2020, 14 788.
|
[27] |
Sun, Q.; Aguila, B.; Perman, J.; Ivanov, A. S.; Bryantsev, V. S.; Earl, L. D.; Abney, C. W.; Wojtas, L.; Ma, S. Nat. Commun. 2018, 9 1644.
doi: 10.1038/s41467-018-04032-y pmid: 29691403 |
[28] |
Alexandratos, S. D.; Zhu, X.; Florent, M.; Sellin, R. Ind. Eng. Chem. Res. 2016, 55 4208.
|
[29] |
Li, B.; Liu, J.; Chen, S.; Song, Y.; Liu, Q.; Yu, J.; Chen, R.; Zhu, J.; Li, R.; Wang, J. Desalination 2024, 586 117894.
|
[30] |
Zhen, D.; Liu, C.; Deng, Q.; Li, L.; Grimes, C. A.; Yang, S.; Cai, Q.; Liu, Y. ACS Appl. Mater. Interfaces 2024, 16 27804.
|
[31] |
Zhang, J.; Glezakou, V.-A. Int. J. Quantum Chem. 2021, 121, e26553.
|
[32] |
Zhang, J.; Dolg, M. Phys. Chem. Chem. Phys. 2016, 18 3003.
doi: 10.1039/c5cp06313b pmid: 26738568 |
[33] |
Zhang, J.; Dolg, M. Phys. Chem. Chem. Phys. 2015, 17 24173.
doi: 10.1039/c5cp04060d pmid: 26327507 |
[34] |
Zhang, J. J. Chem. Phys. 2022, 156 204108.
|
[35] |
Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell Jr., A. D. J. Comput. Chem. 2010, 31 671.
doi: 10.1002/jcc.21367 pmid: 19575467 |
[36] |
Pomogaev, V.; Tiwari, S. P.; Rai, N.; Goff, G. S.; Runde, W.; Schneider, W. F.; Maginn, E. J. Phys. Chem. Chem. Phys. 2013, 15 15954.
|
[37] |
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision B. 01, Gaussian Inc., Wallingford, CT, 2016.
|
[38] |
Ustynyuk, Y. A.; Alyapyshev, M. Y.; Babain, V. A.; Ustynyuk, N. A. Russ. Chem. Rev. 2016, 85 917.
|
[39] |
Su, L.; Wu, Q.; Wang, C.; Lan, J.; Shi, W. Chin. Chem. Lett. 2024, 35 109402.
|
[40] |
Su, L.-L.; Wu, Q.-Y.; Wang, C.-Z.; Lan, J.-H.; Shi, W.-Q. Inorg. Chem. 2024, 63 9478.
|
[41] |
Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theor. Chim. Acta 1991, 78 247.
|
[42] |
Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86 866.
|
[43] |
Moellmann, J.; Grimme, S. J. Phys. Chem. C 2014, 118 7615.
|
[44] |
Andzelm, J.; Kölmel, C.; Klamt, A. J. Chem. Phys. 1995, 103 9312.
|
[45] |
Baldridge, K.; Klamt, A. J. Chem. Phys. 1997, 106 6622.
|
[46] |
Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102 1995.
|
[47] |
Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24 669.
|
[48] |
Luan, X.-F.; Wang, C.-Z.; Xia, L.-S.; Shi, W.-Q. Acta Chim. Sinica 2022, 80 708 (in Chinese).
|
(栾雪菲, 王聪芝, 夏良树, 石伟群, 化学学报, 2022, 80 708.)
doi: 10.6023/A22010054 |
|
[49] |
Luan, X.-F.; Wang, C.-Z.; Wu, Q.-Y.; Lan, J.-H.; Chai, Z.-F.; Xia, L.-S.; Shi, W.-Q. Dalton Trans. 2022, 51 11381.
|
[50] |
Camaioni, D. M.; Schwerdtfeger, C. A. J. Phys. Chem. A 2005, 109 10795.
pmid: 16863129 |
[51] |
Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 2002, 88 899.
|
[52] |
Lu, T. J. Chem. Phys. 2024, 161 082503.
|
[53] |
Lu, T.; Chen, F. J. Comput. Chem. 2012, 33 580.
|
[54] |
Politzer, P.; Murray, J. S. Reviews in Computational Chemistry, Vol. 2, Eds.: Kenny, B. L.; Donald, B. B., Wiley, New York, 1991, pp. 273-303.
|
[55] |
Bader, R. F. W.; Matta, C. F. Inorg. Chem. 2001, 40 5603.
pmid: 11599960 |
[56] |
Lu, T.; Chen, Q. J. Comput. Chem. 2022, 43 539.
|
[57] |
Xu, H.; Wang, C.-Z.; Wu, Q.-Y.; Lan, J.-H.; Chai, Z.-F.; Liu, Z.-R.; Shi, W.-Q. J. Mol. Liq. 2024, 399 124411.
|
[58] |
Clark, T.; Hennemann, M.; Murray, J. S.; Politzer, P. J. Mol. Model. 2007, 13 291.
|
[59] |
Wiberg, K. B. J. Am. Chem. Soc. 2002, 90 59.
|
[60] |
Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83 735.
|
[61] |
Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. J. Chem. Phys. 2002, 117 5529.
|
[62] |
Spencer, S.; Gagliardi, L.; Handy, N. C.; Ioannou, A. G.; Skylaris, C.-K.; Willetts, A.; Simper, A. M. J. Phys. Chem. A 1999, 103 1831.
|
[63] |
Neuefeind, J.; Soderholm, L.; Skanthakumar, S. J. Phys. Chem. A 2004, 108 2733.
|
[64] |
Cao, Z.; Balasubramanian, K. J. Chem. Phys. 2005, 123 114309.
|
[65] |
Grimme, S. J. Chem. Phys. 2006, 124 034108.
|
[66] |
Schwabe, T.; Grimme, S. Phys. Chem. Chem. Phys. 2007, 9 3397.
pmid: 17664963 |
[67] |
Biczysko, M.; Panek, P.; Scalmani, G.; Bloino, J.; Barone, V. J. Chem. Theory Comput. 2010, 6 2115.
|
[1] | Zhucheng Wang, Lei Liu, Mengyuan Zhu, Yue Sun, Qing Zhao, Yuyin Ding, Jixin Lu, Cunguo Wang, Qi Li, Aihua He, Fuchen Ye. Studies on the Properties of 1,5-Diaminoanthraquinone (AAQ) Composite Used as New Positive Electrode Material in Lithium Ion Batteries [J]. Acta Chimica Sinica, 2024, 82(6): 589-595. |
[2] | Haicheng Wang, Haiyan Ma. Ring-opening Copolymerization of Epoxides and Anhydride Mediated by Claw-type Aminophenolate Zinc Chlorides [J]. Acta Chimica Sinica, 2024, 82(6): 577-588. |
[3] | Yuqing Zhao, Dong Liang, Jihui Jia, Rongmin Yu, Can-Zhong Lu. Synthesis and Characterization of an Emissive Ag(I) Complex with a D-A Type Ligand Containing Two Electron-withdrawing Groups [J]. Acta Chimica Sinica, 2024, 82(5): 486-492. |
[4] | Yongkang Cui, Shoufei Cheng, Lin Ling, Yuxue Li, Long Lu. Theoretical Study on Energetic Materials Containing (Difluoramino)dinitromethyl Substituted Heteroaromatic Rings [J]. Acta Chimica Sinica, 2024, 82(4): 377-386. |
[5] | Yu-Qiang Zhao, Xia Zhang, Yunru Yang, Liping Zhu, Ying Zhou. Design and Synthesis of Aggregation-Induced Emission Photocage Molecules for In Situ Photoactivation Imaging Studies [J]. Acta Chimica Sinica, 2024, 82(3): 265-273. |
[6] | Guanglong Huang, Xiao-Song Xue. Computational Study on the Mechanism of Chen’s Reagent as Trifluoromethyl Source [J]. Acta Chimica Sinica, 2024, 82(2): 132-137. |
[7] | Jingyan Wang, Haiyan Ma. Syntheses of Sodium and Potassium Complexes Based on Pyridine-2,6-diyl-bis(methylene)-bridged Bis(aminophenolate) Ligands and Catalytic Ring-opening Polymerization of rac-Lactide [J]. Acta Chimica Sinica, 2024, 82(10): 1058-1068. |
[8] | Xuefeng Liang, Jian Jing, Xin Feng, Yongze Zhao, Xinyuan Tang, Yan He, Lisheng Zhang, Huifang Li. Electronic Structure of Covalent Organic Frameworks COF66 and COF366: from Monomers to Two-Dimensional Framework [J]. Acta Chimica Sinica, 2023, 81(7): 717-724. |
[9] | Lei Yang, Jiaoyang Ge, Fangli Wang, Wangyang Wu, Zongxiang Zheng, Hongtao Cao, Zhou Wang, Xueqin Ran, Linhai Xie. A Theoretical Study on the Effective Reduction of Internal Reorganization Energy Based on the Macrocyclic Structure of Fluorene [J]. Acta Chimica Sinica, 2023, 81(6): 613-619. |
[10] | Jie Yang, Lin Ling, Yuxue Li, Long Lu. Density Functional Theory Study on Thermal Decomposition Mechanisms of Ammonium Perchlorate [J]. Acta Chimica Sinica, 2023, 81(4): 328-337. |
[11] | Shaoqin Zhang, Meiqing Li, Zhongjun Zhou, Zexing Qu. Theoretical Study on the Multiple Resonance Thermally Activated Delayed Fluorescence Process [J]. Acta Chimica Sinica, 2023, 81(2): 124-130. |
[12] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Radical-Based Dehydroxylation of Hydroxyl Groups via Oxalates [J]. Acta Chimica Sinica, 2023, 81(11): 1609-1623. |
[13] | Jinjing Liu, Na Yang, Li Li, Zidong Wei. Theoretical Study on the Regulation of Oxygen Reduction Mechanism by Modulating the Spatial Structure of Active Sites on Platinum★ [J]. Acta Chimica Sinica, 2023, 81(11): 1478-1485. |
[14] | Hongdan Zhang, Xinyu Lan, Peng Cheng. Advances in Hydroxyl Free Radical Assisted Synthesis of Zeolite [J]. Acta Chimica Sinica, 2023, 81(1): 100-110. |
[15] | Wenchao Bi, Linfeng Zhang, Jian Chen, Ruixue Tian, Hao Huang, Man Yao. Lithiation Mechanism and Performance of Monoclinic ZnP2 Anode Materials [J]. Acta Chimica Sinica, 2022, 80(6): 756-764. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||