Acta Chimica Sinica ›› 2011, Vol. 69 ›› Issue (04): 483-491. Previous Articles     Next Articles

Full Papers

吡哌酸、左氧氟沙星及环丙沙星在0.5 mol/L H2SO4中对碳钢的缓蚀 性能与机理研究

庞雪辉*,1,张玉璇1,2,张洁1,解建东4侯保荣3   

  1. (1济南大学化学化工学院 济南 250022)
    (2北京林业大学环境科学与工程学院 北京 100083)
    (3中国科学院海洋研究所 青岛 266071)
    (4山东建筑大学 济南 250013)
  • 投稿日期:2010-02-01 修回日期:2010-07-29 发布日期:2010-10-08
  • 通讯作者: 庞雪辉 E-mail:pxh1118@yeah.net
  • 基金资助:

    中国博士后面上项目资助;山东省博士后自主创新项目;中国科学院海洋研究所海洋腐蚀与防护研究发展中心开放课题资助项目;济南大学博士基金;国家科技支撑计划

Corrosion Inhibition and Mechanisms Study on Pipemidic Acid, Levofloxacin and Ciprofloxacin for Mild Steel in 0.5 mol/L H2SO4

Pang Xuehui*,1 Zhang Yuxuan 1,2 Zhang Jie1 Xie Jiandong4 Hou Baorong3   

  1. (1 School of Chemistry and Engineering, University of Jinan, Jinan 250022)
    (2 School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083)
    (3 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071)
    (4 Institute of Design & Research, Shandong Jianzhu University, Jinan 250013)
  • Received:2010-02-01 Revised:2010-07-29 Published:2010-10-08

The corrosion inhibition and mechanisms of pipemidic acid (8-ethyl-5-oxo-5,8-dihydro-2-(1- piperazinyl)pyrido[2,3-d]pyrimidine-6-carboxylic acid), levofloxacin [(±)-9-fluoro-2,3-dihydro-3- methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7H-pyrido[1,2,3-de][1,4]benzoxazine-6-carboxylic acid] and ciprofloxacin [l-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid) for mild steel in 0.5 mol/L H2SO4 was studied using weight loss experiment, potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) at 303 K. The results obtained from weight loss experiment showed the inhibition efficiency was significantly increased with the inhibitor concentration increasing. Electrochemical corrosion experiment revealed the inhibition process was related to the inhibitor molecules covering on the metal surface, which mainly inhibited cathode hydrogen evolution reaction. The inhibitor molecules on the mild steel surface obeyed Langmuir isothermal model and involved physical adsorption and chemical adsorption at 303 K. Scanning electron microscopy observations showed the three inhibitors played a significant protective effect on metal corrosion. All the test results concluded that ciprofloxacin inhibition performance was best under the same conditions.

Key words: corrosion, weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), adsorption