Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (6): 613-619.DOI: 10.6023/A23030071 Previous Articles Next Articles
Article
杨磊a, 葛娇阳a, 王访丽a, 吴汪洋a, 郑宗祥a, 曹洪涛a, 王洲c, 冉雪芹b,*(), 解令海a,*()
投稿日期:
2023-03-06
发布日期:
2023-05-19
基金资助:
Lei Yanga, Jiaoyang Gea, Fangli Wanga, Wangyang Wua, Zongxiang Zhenga, Hongtao Caoa, Zhou Wangc, Xueqin Ranb(), Linhai Xiea()
Received:
2023-03-06
Published:
2023-05-19
Contact:
*E-mail: iamxqran@njtech.edu.cn; iamlhxie@njupt.edu.cn
Supported by:
Share
Lei Yang, Jiaoyang Ge, Fangli Wang, Wangyang Wu, Zongxiang Zheng, Hongtao Cao, Zhou Wang, Xueqin Ran, Linhai Xie. A Theoretical Study on the Effective Reduction of Internal Reorganization Energy Based on the Macrocyclic Structure of Fluorene[J]. Acta Chimica Sinica, 2023, 81(6): 613-619.
分子名称 | α | β |
---|---|---|
BF1 | -84.50 | |
BF2 | 37.33 | |
QF1 | -36.73, -36.98 | -84.77 |
QF2 | 37.10 | 86.13, -85.65 |
cis-OF | -40.58, 40.58, -34.85, 34.85 | -26.25, 26.25, 28.48, -28.48 |
trans-OF | 88.76, 88.38, -88.76, -88.38 | -35.60, 41.70, 35.60, -41.70 |
分子名称 | α | β |
---|---|---|
BF1 | -84.50 | |
BF2 | 37.33 | |
QF1 | -36.73, -36.98 | -84.77 |
QF2 | 37.10 | 86.13, -85.65 |
cis-OF | -40.58, 40.58, -34.85, 34.85 | -26.25, 26.25, 28.48, -28.48 |
trans-OF | 88.76, 88.38, -88.76, -88.38 | -35.60, 41.70, 35.60, -41.70 |
分子名称 | λ(h) | IPa | RMSD(VS+) | λ(e) | EAa | RMSD(VS-) |
---|---|---|---|---|---|---|
BF1 | 0.146 | 6.856 | 0.104 | 0.177 | -0.287 | 0.138 |
BF2 | 0.255 | 6.428 | 0.202 | 0.355 | 0.180 | 0.369 |
QF1 | 0.203 | 6.073 | 0.395 | 0.276 | 0.574 | 0.684 |
QF2 | 0.153 | 6.280 | 0.185 | 0.216 | 0.324 | 0.484 |
cis-OF | 0.128 | 5.829 | 0.140 | 0.148 | 0.708 | 0.121 |
trans-OF | 0.121 | 5.848 | 0.093 | 0.145 | 0.735 | 0.115 |
分子名称 | λ(h) | IPa | RMSD(VS+) | λ(e) | EAa | RMSD(VS-) |
---|---|---|---|---|---|---|
BF1 | 0.146 | 6.856 | 0.104 | 0.177 | -0.287 | 0.138 |
BF2 | 0.255 | 6.428 | 0.202 | 0.355 | 0.180 | 0.369 |
QF1 | 0.203 | 6.073 | 0.395 | 0.276 | 0.574 | 0.684 |
QF2 | 0.153 | 6.280 | 0.185 | 0.216 | 0.324 | 0.484 |
cis-OF | 0.128 | 5.829 | 0.140 | 0.148 | 0.708 | 0.121 |
trans-OF | 0.121 | 5.848 | 0.093 | 0.145 | 0.735 | 0.115 |
[1] |
Yan, C.; Qin, J.; Wang, Y.; Li, G.; Cheng, P. Adv. Energy Mater. 2022, 12, 2201087.
doi: 10.1002/aenm.v12.26 |
[2] |
Reissig, L.; Dalgleish, S.; Awaga, K. Sci. Rep. 2018, 8, 15415.
doi: 10.1038/s41598-018-33822-z pmid: 30337667 |
[3] |
Li, M.; Lv, A. F. Chin. J. Org. Chem. 2022, 42, 54. (in Chinese)
doi: 10.6023/cjoc202107016 |
(李敏, 吕爱风, 有机化学, 2022, 42, 54.)
doi: 10.6023/cjoc202107016 |
|
[4] |
Zhou, M.; Li, J.; Cheng, J.; Ge, C. W.; Cheng, T. Y.; Gao, X. K. Chin. J. Org. Chem. 2021, 41, 4400. (in Chinese)
doi: 10.6023/cjoc202105023 |
(周敏, 李晶, 程杰, 葛从伍, 程探宇, 高希珂, 有机化学, 2021, 41, 4400.)
doi: 10.6023/cjoc202105023 |
|
[5] |
Li, X.; Wang, Z.; Chen, K.; Zemlyanov, D.Y.; You, L.; Mei, J. ACS Appl. Mater. Interfaces 2021, 13, 5312.
doi: 10.1021/acsami.0c19685 |
[6] |
Cai, G.; Cui, P.; Shi, W.; Morris, S.; Lou, S. N.; Chen, J.; Ciou, J. H.; Paidi, V. K.; Lee, K. S.; Li, S.; Lee, P. S. Adv. Sci. 2020, 7, 1903109.
doi: 10.1002/advs.v7.20 |
[7] |
Liu, B.; Bao, Y.; Ling, H.-F.; Zhu, W.-S.; Gong, R.-J.; Lin, J.-Y.; Xie, L.-H.; Yi, M.-D.; Huang, W. Chinese J. Polym. Sci. 2016, 34, 1183.
doi: 10.1007/s10118-016-1826-0 |
[8] |
Li, T. F.; Zhan, X. W. Acta Chim. Sinica 2021, 79, 257. (in Chinese)
doi: 10.6023/A20110502 |
(李腾飞, 占肖卫, 化学学报, 2021, 79, 257.)
doi: 10.6023/A20110502 |
|
[9] |
Zhu, K.; Tang, D.; Zhang, K.; Wang, Z.; Ding, L.; Liu, Y.; Yuan, L.; Fan, J.; Song, B.; Zhou, Y.; Li, Y. Org. Electron. 2017, 48, 179
doi: 10.1016/j.orgel.2017.06.009 |
[10] |
Brebels, J.; Kesters, J.; Defour, M.; Pirotten, G.; Van Mele, B.; Manca, J.; Lutsen, L.; Vanderzande, D.; Maes, W. Polymer. 2018. 137, 303.
doi: 10.1016/j.polymer.2018.01.027 |
[11] |
Feng, Q.; Xie, S.; Tan, K.; Zheng, X.; Yu, Z.; Li, L.; Liu, B.; Li, B.; Yu, M.; Yu, Y.; Zhang, X.; Xie, L.; Huang, W. ACS Appl. Polym. Mater. 2019, 1, 2441.
doi: 10.1021/acsapm.9b00559 |
[12] |
Yang, S.; Streater, D.; Fiankor, C.; Zhang, J.; Huang, J. J. Am. Chem. Soc. 2021, 143, 1061.
doi: 10.1021/jacs.0c11719 |
[13] |
Schober, C.; Reuter, K.; Oberhofer, H. J. Phys. Chem. Lett. 2016, 7, 3973.
doi: 10.1021/acs.jpclett.6b01657 |
[14] |
Friederich, P.; Gómez, V.; Sprau, C.; Meded, V.; Strunk, T.; Jenne, M.; Magri, A.; Symalla, F.; Colsmann, A.; Ruben, M.; Wenzel, W. Adv. Mater. 2017, 29, 1703505.
doi: 10.1002/adma.201703505 |
[15] |
Chen, J.; Zhang, W.; Wang, L.; Yu, G. Adv. Mater. 2023, 35, 2210772.
doi: 10.1002/adma.v35.11 |
[16] |
Marcus, R. A. Annu. Rev. Phys. Chem. 2003, 15, 155.
doi: 10.1146/physchem.1964.15.issue-1 |
[17] |
Xie, X.; Wei, Y.; Lin, D.; Zhong, C.; Xie, L.; Huang, W. Chinese J. Chem. 2019, 38, 103.
doi: 10.1002/cjoc.v38.1 |
[18] |
Yang, L.; Mao, J.; Yin, C.-Z.; Akbar Ali, M.; Wu, X.-P.; Dong, C.-Y.; Liu, Y.-Y.; Wei, Y.; Xie, L.-H.; Ran, X.-Q.; Huang, W. New J. Chem. 2019, 43, 7790.
doi: 10.1039/c9nj00482c |
[19] |
Yang, L.; Yin, C. Z.; Ali, M. A.; Dong, C. Y.; Xie, X. M.; Wu, X. P.; Mao, J.; Wang, Y. X.; Yu, Y.; Xie, L. H.; Bian, L. Y.; Bao, J. M.; Ran, X. Q.; Huang, W. Chinese J. Chem. 2019, 37, 915.
doi: 10.1002/cjoc.201900229 |
[20] |
Yu, M.-N.; Ou, C.-J.; Liu, B.; Lin, D.-Q.; Liu, Y.-Y.; Xue, W.; Lin, Z.-Q.; Lin, J.-Y.; Qian, Y.; Wang, S.-S.; Cao, H.-T.; Bian, L.-Y.; Xie, L.-H.; Huang, W. J. Polym. Sci. B Polym. Phys. 2017, 35, 155.
|
[21] |
Sedghi, G.; Esdaile, L. J.; Anderson, H. L.; Martin, S.; Bethell, D.; Higgins, S. J.; Nichols, R. J., Adv. Mater. 2012, 24, 653.
doi: 10.1002/adma.201103109 |
[22] |
Lin, D.; Zhang, W.; Yin, H.; Hu, H.; Li, Y.; Zhang, H.; Wang, L.; Xie, X.; Hu, H.; Yan, Y.; Ling, H.; Liu, J.; Qian, Y.; Tang, L.; Wang, Y.; Dong, C.; Xie, L.; Zhang, H.; Wang, S.; Wei, Y.; Guo, X.; Lu, D.; Huang, W. Research 2022, 2022, 9820585.
|
[23] |
Chang, A. C.; Messikh, M. B.; Kaiser, M.; Carter, K. R. ACS Appl. Polym. Mater. 2021, 3, 3595.
doi: 10.1021/acsapm.1c00489 |
[24] |
Han, Y.; Bai, L.; Lin, J.; Ding, X.; Xie, L.; Huang, W. Adv. Funct. 2021, 31, 2105092.
|
[25] |
Liu, A.; Liu, Z.; Lin, H.; Tang, W.; Lin, Z.; Zhang, W.; Qi, Z.; Gu, X.; Mo, Y.; Hou, L. J. Mater. Chem. C 2020, 8, 9303.
doi: 10.1039/D0TC01952F |
[26] |
Nakahama, T.; Kitagawa, D.; Sotome, H.; Ito, S.; Miyasaka, H.; Kobatake, S. J. Phys. Chem. C 2017, 121, 6272.
doi: 10.1021/acs.jpcc.6b12819 |
[27] |
Liu, J.-F.; Wang, X.-Q.; Yu, Y.-J.; Zou, S.-N.; Yang, S.-Y.; Jiang, Z.-Q.; Liao, L.-S. Org. Electron. 2021, 91, 106088.
doi: 10.1016/j.orgel.2021.106088 |
[28] |
Wheeler, S. E.; Houk, K. N.; Schleyer, P. v. R.; Allen, W. D. J. Am. Chem. Soc. 2009, 131, 2547.
doi: 10.1021/ja805843n pmid: 19182999 |
[29] |
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. S., G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, C.1, Gaussian, Inc., Wallingford, CT, 2009.
|
[30] |
Li, Y.; Wang, Z.; Cai, X.; Liu, K.; Dong, J.; Chang, S.; Su, S.-J. Dyes Pigm. 2019, 163, 249.
doi: 10.1016/j.dyepig.2018.12.001 |
[31] |
Lu, T.; Chen, F. J. Comput. Chem. 2022, 43, 8.
|
[32] |
Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. 2010, 132, 6498.
doi: 10.1021/ja100936w pmid: 20394428 |
[33] |
Reimers, J. R. J. Chem. Phys. 2001, 115, 9103.
doi: 10.1063/1.1412875 |
[1] | Cheng-Qiang Wang, Chao Feng. Applications of Nucleophilic Fluorine Sources in the Selective Fluorofunctionalization of Unsaturated Carbon-Carbon Bonds [J]. Acta Chimica Sinica, 2024, 82(2): 160-170. |
[2] | Guanglong Huang, Xiao-Song Xue. Computational Study on the Mechanism of Chen’s Reagent as Trifluoromethyl Source [J]. Acta Chimica Sinica, 2024, 82(2): 132-137. |
[3] | Xuefeng Liang, Jian Jing, Xin Feng, Yongze Zhao, Xinyuan Tang, Yan He, Lisheng Zhang, Huifang Li. Electronic Structure of Covalent Organic Frameworks COF66 and COF366: from Monomers to Two-Dimensional Framework [J]. Acta Chimica Sinica, 2023, 81(7): 717-724. |
[4] | Pei Qin, Hai Ma, Fa-Guang Zhang, Jun-An Ma. Synthesis of 6-CF3-1,2,4-triazine-based Tyrosine Kinase Inhibitors and The Evaluation of Biological Activities★ [J]. Acta Chimica Sinica, 2023, 81(7): 697-702. |
[5] | Jie Yang, Lin Ling, Yuxue Li, Long Lu. Density Functional Theory Study on Thermal Decomposition Mechanisms of Ammonium Perchlorate [J]. Acta Chimica Sinica, 2023, 81(4): 328-337. |
[6] | Jiangmin Jiang, Xinran Zheng, Yating Meng, Wenjie He, Yaxin Chen, Quanchao Zhuang, Jiaren Yuan, Zhicheng Ju, Xiaogang Zhang. Research on the Preparation and Potassium Storage Performance of F, N Co-doped Porous Carbon Nanosheets [J]. Acta Chimica Sinica, 2023, 81(4): 319-327. |
[7] | Shaoqin Zhang, Meiqing Li, Zhongjun Zhou, Zexing Qu. Theoretical Study on the Multiple Resonance Thermally Activated Delayed Fluorescence Process [J]. Acta Chimica Sinica, 2023, 81(2): 124-130. |
[8] | Jinjing Liu, Na Yang, Li Li, Zidong Wei. Theoretical Study on the Regulation of Oxygen Reduction Mechanism by Modulating the Spatial Structure of Active Sites on Platinum★ [J]. Acta Chimica Sinica, 2023, 81(11): 1478-1485. |
[9] | Yuyin Wang, Xiaoqiang Hu, Hongliang Mu, Yan Xia, Yue Chi, Zhongbao Jian. Enhancement on Nickel-Mediated Ethylene Polymerization by Concerted Steric Hindrance and Fluorine Effect [J]. Acta Chimica Sinica, 2022, 80(6): 741-747. |
[10] | Wenchao Bi, Linfeng Zhang, Jian Chen, Ruixue Tian, Hao Huang, Man Yao. Lithiation Mechanism and Performance of Monoclinic ZnP2 Anode Materials [J]. Acta Chimica Sinica, 2022, 80(6): 756-764. |
[11] | Xuefei Luan, Congzhi Wang, Liangshu Xia, Weiqun Shi. Theoretical Studies on the Interaction of Uranyl with Carboxylic Acids and Oxime Ligands [J]. Acta Chimica Sinica, 2022, 80(6): 708-713. |
[12] | Luocong Wang, Zhewei Li, Caiwei Yue, Peihuan Zhang, Ming Lei, Min Pu. Theoretical Study on the Isomerization Mechanism of Azobenzene Derivatives under Electric Field [J]. Acta Chimica Sinica, 2022, 80(6): 781-787. |
[13] | Yinghui Wang, Simin Wei, Jinwei Duan, Kang Wang. Mechanism of Silyl Enol Ethers Hydrogenation Catalysed by Frustrated Lewis Pairs: A Theoretical Study [J]. Acta Chimica Sinica, 2021, 79(9): 1164-1172. |
[14] | Qingmin Man, Zunyun Fu, Tiantian Liu, Mingyue Zheng, Hualiang Jiang. DFT Mechanism of Cu Catalyzed Coupling Reaction to Alkyl Aryl Ethers [J]. Acta Chimica Sinica, 2021, 79(7): 948-952. |
[15] | Yan Wang, Yingqi Tian, Zhong Jin, Bingbing Suo. Hartree-Fock and Density Functional Calculations on Graphics Processing Unit [J]. Acta Chimica Sinica, 2021, 79(5): 653-657. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||