Acta Chimica Sinica ›› 2024, Vol. 82 ›› Issue (8): 879-886.DOI: 10.6023/A24030066 Previous Articles Next Articles
Article
投稿日期:
2024-03-01
发布日期:
2024-07-03
基金资助:
Yajing Peng*(), Yuxin Zhao, Jinhui Yang, Xinxin Zhang, Jialing Cheng
Received:
2024-03-01
Published:
2024-07-03
Contact:
* E-mail: Supported by:
Share
Yajing Peng, Yuxin Zhao, Jinhui Yang, Xinxin Zhang, Jialing Cheng. Study on the Influence of Component and Concentration of CsPbBrxI3-x All-inorganic Perovskite Quantum Dots on Electronic Structure and Fluorescence Properties[J]. Acta Chimica Sinica, 2024, 82(8): 879-886.
量子点 | 对称点 | ×b1 | ×b2 | ×b3 |
---|---|---|---|---|
CsPbBr3 CsPbI3 | Γ | 0 | 0 | 0 |
M | 1/2 | 1/2 | 0 | |
R | 1/2 | 1/2 | 1/2 | |
X | 0 | 1/2 | 0 | |
CsPbBr2I CsPbBrI2 | Γ | 0 | 0 | 0 |
A | 1/2 | 1/2 | 1/2 | |
M | 1/2 | 1/2 | 0 | |
R | 0 | 1/2 | 1/2 | |
X | 0 | 1/2 | 0 | |
Z | 0 | 0 | 1/2 |
量子点 | 对称点 | ×b1 | ×b2 | ×b3 |
---|---|---|---|---|
CsPbBr3 CsPbI3 | Γ | 0 | 0 | 0 |
M | 1/2 | 1/2 | 0 | |
R | 1/2 | 1/2 | 1/2 | |
X | 0 | 1/2 | 0 | |
CsPbBr2I CsPbBrI2 | Γ | 0 | 0 | 0 |
A | 1/2 | 1/2 | 1/2 | |
M | 1/2 | 1/2 | 0 | |
R | 0 | 1/2 | 1/2 | |
X | 0 | 1/2 | 0 | |
Z | 0 | 0 | 1/2 |
结构名称 | 晶格参数 | 体积 V/a.u. | 总能量 E/eV | ||
---|---|---|---|---|---|
a/nm | b/nm | c/nm | |||
CsPbBr3 | 0.598 | 0.598 | 0.598 | 428.34 | -15.93 |
CsPbBr2I(Ⅰ) | 0.599 | 0.641 | 0.641 | 491.32 | -15.30 |
CsPbBr2I(Ⅱ) | 0.597 | 0.641 | 0.641 | 490.56 | -14.69 |
CsPbBrI2(Ⅰ) | 0.603 | 0.638 | 0.638 | 490.95 | -15.77 |
CsPbBrI2(Ⅱ) | 0.641 | 0.599 | 0.599 | 459.47 | -15.29 |
CsPbI3 | 0.640 | 0.640 | 0.640 | 523.43 | -14.09 |
结构名称 | 晶格参数 | 体积 V/a.u. | 总能量 E/eV | ||
---|---|---|---|---|---|
a/nm | b/nm | c/nm | |||
CsPbBr3 | 0.598 | 0.598 | 0.598 | 428.34 | -15.93 |
CsPbBr2I(Ⅰ) | 0.599 | 0.641 | 0.641 | 491.32 | -15.30 |
CsPbBr2I(Ⅱ) | 0.597 | 0.641 | 0.641 | 490.56 | -14.69 |
CsPbBrI2(Ⅰ) | 0.603 | 0.638 | 0.638 | 490.95 | -15.77 |
CsPbBrI2(Ⅱ) | 0.641 | 0.599 | 0.599 | 459.47 | -15.29 |
CsPbI3 | 0.640 | 0.640 | 0.640 | 523.43 | -14.09 |
结构名称 | 价带顶 Ev/eV | 导带底 Ec/eV | 带隙值 Eg/eV | 文献带隙值 | |
---|---|---|---|---|---|
计算Eg/eV | 实验Eg/eV | ||||
CsPbBr3 | -0.21 | 1.54 | 1.75 | 1.78[ | 2.30[ |
CsPbBr2I(I) | -0.21 | 1.33 | 1.54 | 1.47[ | |
CsPbBr2I(Ⅱ) | -0.23 | 1.32 | 1.55 | ||
CsPbBrI2(I) | -0.21 | 1.32 | 1.53 | 1.47[ | |
CsPbBrI2(Ⅱ) | -0.24 | 1.29 | 1.53 | ||
CsPbI3 | -0.21 | 1.28 | 1.49 | 1.45[ | 1.7[ |
结构名称 | 价带顶 Ev/eV | 导带底 Ec/eV | 带隙值 Eg/eV | 文献带隙值 | |
---|---|---|---|---|---|
计算Eg/eV | 实验Eg/eV | ||||
CsPbBr3 | -0.21 | 1.54 | 1.75 | 1.78[ | 2.30[ |
CsPbBr2I(I) | -0.21 | 1.33 | 1.54 | 1.47[ | |
CsPbBr2I(Ⅱ) | -0.23 | 1.32 | 1.55 | ||
CsPbBrI2(I) | -0.21 | 1.32 | 1.53 | 1.47[ | |
CsPbBrI2(Ⅱ) | -0.24 | 1.29 | 1.53 | ||
CsPbI3 | -0.21 | 1.28 | 1.49 | 1.45[ | 1.7[ |
钙钛矿 | 浓度 C/(mg•mL−1) | 波长 λ/nm | 发射光谱曲线积分Intensity/ a.u. | 光强峰值Intensity/a.u. |
---|---|---|---|---|
CsPbBr3 | 0.1 | 505.82 | 18.43 | 0.69 |
0.5 | 508.23 | 19.97 | 0.75 | |
1.0 | 509.36 | 17.85 | 0.52 | |
2.5 | 512.24 | 11.09 | 0.43 | |
CsPbBr2I | 0.1 | 521.90 | 19.70 | 0.29 |
0.5 | 522.67 | 30.89 | 0.88 | |
1.0 | 525.80 | 29.25 | 0.82 | |
2.5 | 531.25 | 18.38 | 0.23 |
钙钛矿 | 浓度 C/(mg•mL−1) | 波长 λ/nm | 发射光谱曲线积分Intensity/ a.u. | 光强峰值Intensity/a.u. |
---|---|---|---|---|
CsPbBr3 | 0.1 | 505.82 | 18.43 | 0.69 |
0.5 | 508.23 | 19.97 | 0.75 | |
1.0 | 509.36 | 17.85 | 0.52 | |
2.5 | 512.24 | 11.09 | 0.43 | |
CsPbBr2I | 0.1 | 521.90 | 19.70 | 0.29 |
0.5 | 522.67 | 30.89 | 0.88 | |
1.0 | 525.80 | 29.25 | 0.82 | |
2.5 | 531.25 | 18.38 | 0.23 |
C/(mg•mL−1) | τ1/ns | A1/% | τ2/ps | A2/% | τave/ns | |
---|---|---|---|---|---|---|
CsPbBr3 | 0.1 | 1.489 | 0.501 | 8.003 | 0.499 | 6.978 |
0.5 | 2.015 | 0.412 | 10.931 | 0.588 | 9.911 | |
1.0 | 2.217 | 0.540 | 11.973 | 0.460 | 10.231 | |
2.5 | 1.491 | 0.477 | 14.256 | 0.523 | 13.144 | |
CsPbBr2I | 0.1 | 0.790 | 0.216 | 2.945 | 0.784 | 2.797 |
0.5 | 4.895 | 0.497 | 4.894 | 0.503 | 4.894 | |
1.0 | 6.060 | 0.933 | 0.282 | 0.067 | 6.041 | |
2.5 | 0.477 | 0.054 | 6.748 | 0.946 | 6.723 |
C/(mg•mL−1) | τ1/ns | A1/% | τ2/ps | A2/% | τave/ns | |
---|---|---|---|---|---|---|
CsPbBr3 | 0.1 | 1.489 | 0.501 | 8.003 | 0.499 | 6.978 |
0.5 | 2.015 | 0.412 | 10.931 | 0.588 | 9.911 | |
1.0 | 2.217 | 0.540 | 11.973 | 0.460 | 10.231 | |
2.5 | 1.491 | 0.477 | 14.256 | 0.523 | 13.144 | |
CsPbBr2I | 0.1 | 0.790 | 0.216 | 2.945 | 0.784 | 2.797 |
0.5 | 4.895 | 0.497 | 4.894 | 0.503 | 4.894 | |
1.0 | 6.060 | 0.933 | 0.282 | 0.067 | 6.041 | |
2.5 | 0.477 | 0.054 | 6.748 | 0.946 | 6.723 |
[1] |
Manser, J. S.; Christians, J. A.; Kamat, P. V. Chem. Rev. 2016, 116, 12956.
|
[2] |
Zhang, Y. P.; Liu, J. Y.; Wang, Z. Y.; Xue, Y. Z.; Ou, Q. D.; Polavarapu, L.; Zheng, J. L.; Qi, X.; Bao, Q. L. Chem. Commun. 2016, 52, 13637.
|
[3] |
Chen, W. W.; Xin, X.; Zang, Z. G.; Tang, X. S.; Li, C. L.; Hu, W.; Zhou, M.; Du, J. J. Solid State Chem. 2017, 255, 115.
|
[4] |
Liu, F.; Zhang, Y. H.; Ding, C.; Kobayashi, S.; Izuishi, T; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T.; Yoshino, K.; Dai, S. Y.; Shen, Q. ACS Nano 2017, 11, 10373.
|
[5] |
Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
|
[6] |
Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Nature 2015, 517, 476.
|
[7] |
Zhang, L.; Lin, S. Sol. Energ. Mat. Sol. C. 2020, 204, 110237.
|
[8] |
Wang, J.; Wang, N.; Jin, Y.; Si, J.; Tan, Z. K.; Du, H.; Cheng, L.; Dai, X.; Bai, S.; He, H.; Ye, Z.; Lai, M. L.; Friend, R. H.; Huang, W. Adv. Mater. 2015, 27, 2311.
|
[9] |
Chen, H.; Guo, A.; Zhu, J.; Cheng, L.; Wang, Q. Appl. Surf. Sci. 2019, 465, 656.
|
[10] |
Xu, Z.; Wang, S.; Hu, X.; Jiang, J.; Wang, L. Solar RRL 2018, 2, 1800204.
|
[11] |
Nikl, M.; Nitsch, K.; Polak, K.; Pazzi, G.; Fabeni, P.; Citrin, D.; Gurioli, M. J. Lumin. 1997, 72, 377.
|
[12] |
Liang, J.; Wang, C. X.; Wang, Y. R.; Xu, Z. R.; Lu, Z. P.; Ma, Y.; Zhu, H. F.; Hu, Y.; Xiao, C. C.; Yi, X.; Zhu, G. Y.; Lv, H. L.; Ma, L. B.; Chen, T.; Tie, Z. X.; Jin, Z.; Liu, J. J. Am. Chem. Soc. 2016, 138, 15829.
pmid: 27960305 |
[13] |
Hu, Z.; Lin, Z.; Su, J.; Zhang, J.; Hao, Y. Solar RRL 2019, 3, 1900304.
|
[14] |
Zhang, H.; Jin, Z. J. Semicond. 2021, 42, 4.
|
[15] |
Li, M.; Zhang, X.; Du, Y. Y.; Yang, P. J. Lumin. 2017, 190, 397.
|
[16] |
Kang, J.; Wang, L. W. J. Phys. Chem. Lett. 2017, 8, 489.
doi: 10.1021/acs.jpclett.6b02800 pmid: 28071911 |
[17] |
Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P. J. Am. Chem. Soc. 2017, 139, 6566.
doi: 10.1021/jacs.7b02817 pmid: 28448140 |
[18] |
Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. J. Am. Chem. Soc. 2015, 137, 10276.
doi: 10.1021/jacs.5b05602 pmid: 26214734 |
[19] |
Parobek, D.; Dong, Y.; Qiao, T.; Rossi, D.; Son, D. H. J. Am. Chem. Soc. 2017, 139, 4358.
doi: 10.1021/jacs.7b01480 pmid: 28290681 |
[20] |
Liu, H.; Liu, Z.; Xu, W.; Yang, L.; Liu, Y.; Yao, D.; Zhang, D.; Zhang, H.; Yang, B. ACS Appl. Mater. Interfaces 2019, 11, 14256.
|
[21] |
Parobek, D.; Roman, B. J.; Dong, Y. T.; Jin, H.; Lee, E.; Sheldon, M.; Son, D. H. Nano Lett. 2016, 16, 7376.
pmid: 27797528 |
[22] |
Milstein, T. J.; Kroupa, D. M.; Gamelin, D. R. Nano Lett. 2018, 18, 3792.
doi: 10.1021/acs.nanolett.8b01066 pmid: 29746137 |
[23] |
Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643.
|
[24] |
Sun, Q. D.; Yin, W. J. J. Am. Chem. Soc. 2017, 139, 14905.
|
[25] |
Divitini, G.; Cacovich, S.; Matteocci, F.; Cinà, L.; Di Carlo, A.; Ducati, C. Nature Energy 2016, 1, 15012.
|
[26] |
Protesescu, L.; Nedelcu, G.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Nano Lett. 2015, 15, 3692.
doi: 10.1021/nl5048779 pmid: 25633588 |
[27] |
Choi, H.; Jeong, J.; Kim, H. B.; Kim, S.; Walker, B.; Kim, G. H.; Kim, J. Y. Nano Energy 2014, 7, 80.
|
[28] |
Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. J. Mat. Chem. A 2015, 3, 19688.
|
[29] |
Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. D. J. Phys. Chem. Lett. 2016, 7, 746.
|
[30] |
Zheng, Y. F.; Yang, X. Y.; Su, R.; Wu, P.; Gong, Q. H.; Zhu, R. Adv. Funct. Mater. 2020, 30, 2000457.
|
[31] |
Jaramillo-Quintero, O. A.; Sanchez, R. S.; Rincon, M.; Mora-Sero, I. J. Phys. Chem. Lett. 2015, 6, 1883.
doi: 10.1021/acs.jpclett.5b00732 pmid: 26263264 |
[32] |
Xu, Y, ; Chen, Q.; Zhang, C.; Wang, R.; Wu, H.; Zhang, X.; Xing, G.; Yu, W. W.; Wang, X.; Zhang, Y.; Xiao, M. J. Am. Chem. Soc. 2016, 138, 3761.
|
[33] |
Maleka, P. M.; Dima, R. S.; Ntwaeaborwa, O. M.; Maphanga, R. R. Phys. Scripta 2023, 98, 045505.
|
[34] |
Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.
|
[35] |
Perdew, J. P.; Burke, K.; Ernzerh, M. Phys. Rev. Lett. 1996, 77, 3865.
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328 |
[36] |
Murtaza, G.; Ahmad, I. Phys. B Condens. Matter 2011, 406, 3222.
|
[37] |
Woods-Robinson, R.; Horton, M. K.; Persson, K. A. Patterns 2023, 4, 100823.
|
[38] |
Chen, Y.; Shi, T.; Liu, P.; Xie, W.; Chen, K.; Xu, X.; Wang, X. J. Mater. Chem. A 2019, 7, 20201.
|
[39] |
Trots, D. M.; Myagkota, S. V. J. Phys. Chem. Solids 2008, 69, 2520.
|
[40] |
Maughan, A. E.; Ganose, A. M.; Scanlon, D. O.; Almaker, M. A. Chem. Mater. 2019, 31, 1184.
|
[41] |
Yang, Z.; Rajagopal, A.; Jen, A. K. Y. Adv. Mater. 2017, 29, 1704418.
|
[42] |
Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982.
|
[43] |
Rajeswarapalanichamy, R.; Amudhavalli, A.; Padmavathy, R.; Iyakutti, K. Mater. Sci. Eng. B 2020, 258, 114560.
|
[44] |
Xu, S.; Libanori, A.; Luo, G.; Chen, J. Iscience 2021, 24, 102235.
|
[45] |
Ahmad, M.; Rehman, G.; Ali, L.; Shafiq, M.; Iqbal, R.; Ahmad, R.; Khan, T.; Jalali-Asadabadi, S.; Maqbool, M.; Ahmad, I. J. Alloys Compd. 2017, 705, 828.
|
[46] |
Caicedo‐Dávila, S.; Caprioglio, P.; Lehmann, F.; Levcenco, S.; Stolterfoht, M.; Neher, D.; Kronik, L.; Abou‐Ras, D. Adv. Funct. Mater. 2023, 33, 2305240.
|
[47] |
Zhang, Y.; Li, Y.; Liu, Y.; Li, H.; Fan, J. Appl. Surf. Sci. 2019, 466, 119.
|
[48] |
Naghadeh, S. B.; Luo, B.; Pu, Y. C.; Schwartz, Z.; Hollingsworth, W. R.; Lindley, S. A.; Brewer, A. S.; Ayzner, A. L.; Zhang, J. Z. J. Phys. Chem. C 2019, 123, 4610.
doi: 10.1021/acs.jpcc.9b00711 |
[49] |
Zhong, M.; Zhao, Z.; Luo, Y.; Zhou, F.; Peng, Y.; Yin, Y.; Zhou, W.; Tang, D. RSC Adv. 2020, 10, 18368.
|
[50] |
Qiao, T.; Son, D. H. Acc. Chem. Res. 2021, 54, 1399.
|
[51] |
Wang, Y.; Yang, Y.; Wang, P.; Bai, X. Optik 2017, 139, 56.
|
[52] |
Toci, G.; Alderighi, D.; Pirri, A.; Vannini, M. Appl. Phys. B 2012, 106, 73.
|
[53] |
Zhou, N.; Yuan, M.; Gao, Y.; Li, D.; Yang, D. ACS Nano 2016, 10, 4154.
|
[54] |
Kim, D. W.; Hyun, C.; Shin, T. J.; Jeong, U. ACS Nano 2022, 16, 2521.
|
[55] |
Liu, X. F.; Zou, L.; Yang, C.; Zhao, W.; Li, X. Y.; Sun, B.; Hu, C. X.; Yu, Y.; Wang, Q.; Zhao, Q.; Zhang, H. L. ACS Appl. Mater. Interfaces 2020, 12, 43073.
|
[56] |
Kim, S.; Park, K. D.; Lee, H. Energies 2021, 14, 275.
|
[57] |
Seth, S.; Mondal, N.; Patra, S.; Samanta, A. J. Phys. Chem. Lett. 2016, 7, 266.
|
[1] | Yuqing Zhao, Dong Liang, Jihui Jia, Rongmin Yu, Can-Zhong Lu. Synthesis and Characterization of an Emissive Ag(I) Complex with a D-A Type Ligand Containing Two Electron-withdrawing Groups [J]. Acta Chimica Sinica, 2024, 82(5): 486-492. |
[2] | Huimin Chen, Long Wang, Pan Zhang, Xilin Bai, Guojun Zhou. Investigation on Photoluminescence and Mechanoluminescence of Single Tb3+-doped Intense Green Phosphor [J]. Acta Chimica Sinica, 2023, 81(7): 771-776. |
[3] | Shaoqin Zhang, Meiqing Li, Zhongjun Zhou, Zexing Qu. Theoretical Study on the Multiple Resonance Thermally Activated Delayed Fluorescence Process [J]. Acta Chimica Sinica, 2023, 81(2): 124-130. |
[4] | Wentao Wang, Gaochong Zhao, Liu Yang, Yicheng Zhou, Liming Ding. Study on Multimodal Color-switching Anti-counterfeiting Based on Magnetically Responsive Photonic Crystals and Quantum Dots [J]. Acta Chimica Sinica, 2022, 80(12): 1576-1582. |
[5] | Daolan Xu, Ying Yang, Wentao Fan, Zongbing He, Jiafeng Zou, Lei Feng, Man-Bo Li, Zhikun Wu. Single, Self-Born RP-Au-PR Motif Boosts 19-Fold Photoluminescence Quantum Yield of Metal Nanocluster [J]. Acta Chimica Sinica, 2022, 80(1): 1-6. |
[6] | Hao-Nan Qin, Zhao-Yang Wang, Shuang-Quan Zang. Photoluminescence and Electrochemical Sensing of Atomically Precise Cu13 Cluster [J]. Acta Chimica Sinica, 2021, 79(8): 1037-1041. |
[7] | Jin Fengming, Dong Hongwei, Zhao Yan, Zhuang Shengli, Liao Lingwen, Yan Nan, Gu Wanmiao, Zha Jun, Yuan Jinyun, Li Jin, Deng Haiteng, Gan Zibao, Yang Jinlong, Wu Zhikun. Module Replacement of Gold Nanoparticles by a Pseudo-AGR Process [J]. Acta Chimica Sinica, 2020, 78(5): 407-411. |
[8] | Shen Cheng, Zhang Jing, Shi Dongxia, Zhang Guangyu. Photoluminescence Enhancement in Monolayer Molybdenum Disulfide by Annealing in Air [J]. Acta Chim. Sinica, 2015, 73(9): 954-958. |
[9] | Xu Weigao, Zhao Yanyuan, Shen Chao, Zhang Jun, Xiong Qihua. Phonon-assisted Upconversion Photoluminescence in Monolayer MoSe2 and WSe2 [J]. Acta Chim. Sinica, 2015, 73(9): 959-964. |
[10] | Wang Xi, Han Yide, Hao Suqin, Yu Jihong, Xu Ruren. Microwave Synthesis, Characterization and Properties of Lanthanide Phosphites GdxTb2-x(HPO3)3(H2O)2(0≤x≤2) [J]. Acta Chimica Sinica, 2012, 70(13): 1496-1500. |
[11] | Zhang Jinli, Zhao Liping, Luo Xuan, Du Kai. Synthesis and Spectra Analyses of Eu(III) Binary Complexes with Polycarboxylic Acid [J]. Acta Chimica Sinica, 2012, 0(05): 679-682 . |
[12] | DU Yan-Rong, JIAO Huan, HE Di-Ping. Hydrothermal Synthesis and Luminescence of AgGd0.9Eu0.1(WO4)2 Phosphor [J]. Acta Chimica Sinica, 2011, 69(21): 2550-2554. |
[13] | XIE Jin-Song, WU Qing-Sheng. One-pot Glycine-hydrothermal Fabrication of NdOHCO3 Nanodisks and Their Three-dimensional Architectures with Luminescence Property [J]. Acta Chimica Sinica, 2011, 69(16): 1865-1873. |
[14] | . Synthesis of Aligned ZnO Submicron Rod Arrays by Heating Zinc Foil Covered with ZnCl2 Solution [J]. Acta Chimica Sinica, 2009, 67(13): 1515-1522. |
[15] | LI Li1,2 ;YANG He-Qing*,1 ;YU Jie ;JIAO Hua ZHANG Jian-Ying; ZHANG Rui-Gang; MA Jun-Hu1 . Controlled Synthesis and Photoluminescence of ZnO Nanosheet-based Microspheres and Layered assemblies [J]. Acta Chimica Sinica, 2008, 66(3): 335-342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||