有机化学 ›› 2021, Vol. 41 ›› Issue (4): 1275-1287.DOI: 10.6023/cjoc202009055 上一篇 下一篇
综述与进展
收稿日期:
2020-09-28
修回日期:
2020-11-02
发布日期:
2020-12-01
通讯作者:
韩文勇
基金资助:
Wenqing Zhua, Tingyi Xua, Wenyong Hanb,c,*()
Received:
2020-09-28
Revised:
2020-11-02
Published:
2020-12-01
Contact:
Wenyong Han
About author:
Supported by:
文章分享
二氟甲基化反应经过近二十年的发展已取得了较为显著的研究成果. 除直接和间接二氟甲基化反应外, 二氟甲基砌块参与的化学转化是一种向有机化合物中引入二氟甲基的新策略. 相比于亲电、亲核和自由基二氟甲基化试剂, 二氟甲基砌块的种类仍然有限并有待进一步开发. 其中, 二氟甲基重氮甲烷是近年来发展的一类新型含氟砌块, 受到了研究学者们的高度关注. 综述了二氟甲基重氮甲烷及其稳定替代物的最新应用研究进展, 着重介绍了其反应类型及相关机理, 并对今后的发展方向进行了展望.
朱文庆, 许婷怡, 韩文勇. 二氟甲基重氮甲烷作为含氟砌块的应用研究进展[J]. 有机化学, 2021, 41(4): 1275-1287.
Wenqing Zhu, Tingyi Xu, Wenyong Han. Recent Progress in the Application of Difluoromethyl Diazomethane as Fluorine-Containing Building Block[J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1275-1287.
[1] |
(a) Gouverneur, V.; Muller, K. Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications, Im-perial College Press, London, 2012.
pmid: 31099931 |
(b) Zhang, J.; Jin, C.; Zhang, Y. Chin. J. Org. Chem. 2014, 34,662. (in Chinese)
pmid: 31099931 |
|
( 张霁, 金传飞, 张英俊, 有机化学, 2014, 34,662.)
doi: 10.6023/cjoc201310039 pmid: 31099931 |
|
(c) Xing, L.; Blakemore, D.C.; Narayanan, A.; Unwalla, R.; Lovering, F.; Denny, R.A.; Zhou, H.; Bunnage, M.E. ChemMedChem 2015, 10,715.
doi: 10.1002/cmdc.201402555 pmid: 31099931 |
|
(d) Mei, H.; Han, J.; Fustero, S.; Medio-Simon, M.; Sedgwick, D.M.; Santi, C.; Ruzziconi, R.; Soloshonok, V.A. Chem.-Eur. J. 2019, 25,11797.
doi: 10.1002/chem.201901840 pmid: 31099931 |
|
[2] |
(a) Meanwell, N.A. J. Med. Chem. 2011, 54,2529.
doi: 10.1021/jm1013693 pmid: 21413808 |
(b) Zafrani, Y.; Sod-Moriah, G.; Yeffet, D.; Berliner, A.; Amir, D.; Marciano, D.; Elias, S.; Katalan, S.; Ashkenazi, N.; Madmon, M.; Gershonov, E.; Saphier, S. J. Med. Chem. 2019, 62,5628.
pmid: 21413808 |
|
[3] |
(a) Mori, T.; Ujihara, K.; Matsumoto, O.; Yanagi, K.; Matsuo, N. J. Fluorine Chem. 2007, 128,1174.
pmid: 28929412 |
(b) Thappali, S.R.; Varanasi, K.V.; Veeraraghavan, S.; Vakkalanka, S.K.; Mukkanti, K. J. Mass Spectrom. 2012, 47,1612.
doi: 10.1002/jms.3103 pmid: 28929412 |
|
(c) Giornal, F.; Pazenok, S.; Rodefeld, L.; Lui, N.; Vors, J.-P.; Leroux, F.R. J. Fluorine Chem. 2013, 152,2.
pmid: 28929412 |
|
(d) Rodriguez-Torres, M.; Glass, S.; Hill, J.; Freilich, B.; Hassman, D.; Di Bisceglie, A.M.; Taylor, J.G.; Kirby, B.J.; Dvory-Sobol, H.; Yang, J.-C.; An, D.; Stamm, L.M.; Brainard, D.M.; Kim, S.; Krefetz, D.; Smith, W.; Marbury, T.; Lawitz, E. J. Viral Hepatitis 2016, 23,614.
pmid: 28929412 |
|
(e) Lamb, Y.N. Drugs 2017, 77,1797.
pmid: 28929412 |
|
Zeng, J.; Xu, Z.; Ma, J. Chin. J. Org. Chem. 2020, 40,1105. (in Chinese)
pmid: 28929412 |
|
( 曾俊良, 许志红, 马军安, 有机化学, 2020, 40,1105.)
doi: 10.6023/cjoc201912024 pmid: 28929412 |
|
[4] |
For selected reviews on difluoromethylation, see: (a) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009,7465.
pmid: 28632338 |
(b) Lu, Y.; Liu, C.; Chen, Q.-Y. Curr. Org. Chem. 2015, 19,1638.
pmid: 28632338 |
|
(c) Belhomme, M.C.; Besset, T.; Poisson, T.; Pannecoucke, X. Chem. -Eur. J. 2015, 21,12836.
pmid: 28632338 |
|
(d) Ni, C.; Zhu, L.; Hu, J. Acta Chim. Sinica 2015, 73,90. (in Chinese)
pmid: 28632338 |
|
( 倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73,90.)
doi: 10.6023/cjoc202000056 pmid: 28632338 |
|
(e) Xu, P.; Guo, S.; Wang, L.; Tang, P. Synlett 2015, 26,36.
pmid: 28632338 |
|
(f) Rong, J.; Ni, C.; Hu, J. Asian J. Org. Chem. 2017, 6,139.
pmid: 28632338 |
|
(g) Yerien, D.E.; Barata-Vallejo, S.; Postigo, A. Chem.-Eur. J. 2017, 23,14676.
doi: 10.1002/chem.201702311 pmid: 28632338 |
|
(h) Wang, W.; Yu, Q.; Zhang, Q.; Li, J.; Hui, F.; Yang, J.; Lü, J.; Jin, C.; Zhang, Y. Chin. J. Org. Chem. 2018, 38,1569. (in Chinese)
pmid: 28632338 |
|
( 王为强, 余秦伟, 张前, 李江伟, 惠丰, 杨建明, 吕剑, 金传飞, 张英俊, 有机化学, 2018, 38,1569.)
doi: 10.6023/cjoc201801041 pmid: 28632338 |
|
(i) Feng, Z.; Xiao, Y.-L.; Zhang, X. Acc. Chem. Res. 2018, 51,2264.
pmid: 28632338 |
|
(j) Mykhailiuk, P.K.; Koenigs, R.M. Chem. -Eur. J. 2019, 25,6053.
pmid: 28632338 |
|
[5] |
Deng, X.-Y.; Lin, J.-H.; Zheng, J.; Xiao, J.-C. Chem. Commun. 2015, 51,8805.
|
[6] |
Li, L.; Wang, F.; Ni, C.; Hu, J. Angew. Chem., nt. Ed. 2013, 52,12390.
|
[7] |
For a recent example, see: Gao, X.; He, X.; Zhang, X. Chin. J. Org. Chem. 2019, 39,215. (in Chinese)
|
( 高兴, 何旭, 张新刚, 有机化学, 2019, 39,215.)
|
|
[8] |
Zhao, Y.; Huang, W.; Zheng, J.; Hu, J. Org. Lett. 2011, 13,5342.
doi: 10.1021/ol202208b pmid: 21910464 |
[9] |
For a review, see: Tao, X.; Sheng, R.; Bao, K.; Wang, Y.; Jin, Y. Chin. J. Org. Chem. 2019, 39,2726. (in Chinese)
|
( 陶雪芬, 盛荣, 鲍堃, 王玉新, 金银秀, 有机化学, 2019, 39,2726.)
|
|
[10] |
Xu, L.; Vicic, D.A. J. Am. Chem. Soc. 2016, 138,2536.
doi: 10.1021/jacs.6b00053 pmid: 26883690 |
[11] |
Chang, D.; Gu, Y.; Shen, Q. Chem. -Eur. J. 2015, 21,6074.
pmid: 25752832 |
[12] |
Fujita, T.; Sanada, S.; Chiba, Y.; Sugiyama, K.; Ichikawa, J. Org. Lett. 2014, 16,1398.
doi: 10.1021/ol5001582 pmid: 24552502 |
[13] |
Hanamoto, T.; Kurosato, F.; Ishikawa, T.; Yamada, Y. Synlett 2015, 26,1827.
|
[14] |
Zafrani, Y.; Sod-Moriah, G.; Segall, Y. Tetrahedron 2009, 65,5278.
|
[15] |
For selected reviews, see: (a) Zhang, Y.; Wang, J. Chem. Commun. 2009, 36,5350.
pmid: 32250543 |
(b) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46,236.
doi: 10.1021/ar300101k pmid: 32250543 |
|
(c) Qiu, D.; Qiu, M.; Ma, R.; Zhang, Y.; Wang, J. Acta Chim. Sinica 2016, 74,472. (in Chinese)
pmid: 32250543 |
|
( 邱頔, 邱孟龙, 马戎, 张艳, 王剑波, 化学学报, 2016, 74,472.)
pmid: 32250543 |
|
(d) Liu, L.; Zhang, J. Chin. J. Org. Chem. 2017, 37,1117. (in Chinese)
pmid: 32250543 |
|
( 刘路, 张俊良, 有机化学, 2017, 37,1117.)
pmid: 32250543 |
|
(e) Gao, Y.; Wang, J. Chin. J. Org. Chem. 2018, 38,1275. (in Chinese)
pmid: 32250543 |
|
( 郜云鹏, 王剑波, 有机化学, 2018, 38,1275.)
pmid: 32250543 |
|
(f) Yang, Z.; Stivanin, M.L.; Jurberg, I.D.; Koenigs, R.M. Chem. Soc. Rev. 2020, 49,6833.
doi: 10.1039/d0cs00224k pmid: 32250543 |
|
(g) Zhao, R.; Shi, L. Angew. Chem., nt. Ed. 2020, 59,12282.
pmid: 32250543 |
|
(h) Wu, S.; Song, H.-X.; Zhang, C.-P. Chem.-Asian J. 2020, 15,1660.
doi: 10.1002/asia.202000305 pmid: 32250543 |
|
[16] |
Gilman, H.; Jones, R.G. J. Am. Chem. Soc. 1943, 65,1458.
|
[17] |
For a leading review, see: (a) Mykhailiuk, P. K. Chem Rev. 2020, 120,12718.
|
For selected references, see: (b) Morandi, B.; Mariampillai, B.; Carreira, E.M. Angew. Chem., nt. Ed. 2011, 50,1101.
|
|
(c) Wu, G.; Deng, Y.; Wu, C.; Wang, X.; Zhang, Y.; Wang, J. Eur. J. Org. Chem. 2014, 2014,4477.
|
|
(d) Luo, H.; Wu, G.; Zhang, Y.; Wang, J. Angew. Chem., nt. Ed. 2015, 54,14503.
|
|
(e) Chen, Z.; Zheng, Y.; Ma, J.-A. Angew. Chem., nt. Ed. 2017, 56,4569.
|
|
(f) Chen, Z.; Ren, N.; Ma, X.; Nie, J.; Zhang, F.-G.; Ma, J.-A. ACS Catal. 2019, 9,4600.
|
|
(g) Li, J.; Zhang, D.; Chen, J.; Ma, C.; Hu, W. ACS Catal. 2020, 10,4559.
|
|
[18] |
(a) Atherton, J.H.; Fields, R.; Haszeldine, R.N. J. Chem. Soc. C 1971,366.
pmid: 25666338 |
(b) Mykhailiuk, P.K. Org. Biomol. Chem. 2015, 13,3438.
pmid: 25666338 |
|
[19] |
Mykhailiuk, P.K. Angew. Chem., nt. Ed. 2015, 54,6558.
|
[20] |
Li, J.; Yu, X.-L.; Cossy, J.; Lv, S.-Y.; Zhang, H.-L.; Su, F.; Mykhailiuk, P.K.; Wu, Y. Eur. J. Org. Chem. 2017, 2017,266.
|
[21] |
Zheng, Y.; Yu, X.; Lv, S.; Mykhailiuk, P.K.; Ma, Q.; Hai, L.; Wu, Y. RSC Adv. 2018, 8,5114.
|
[22] |
Lebed, P.S.; Fenneteau, J.; Wu, Y.; Cossy, J.; Mykhailiuk, P.K. Eur. J. Org. Chem. 2017, 2017,6114.
|
[23] |
Feraldi-Xypolia, A.; Fredj, G.; Tran, G.; Tsuchiya, T.; Vors, J.-P.; Mykhailiuk, P.; GomezPardo, D.; Cossy, J. Asian J. Org. Chem. 2017, 6,927.
|
[24] |
Han, W.-Y.; Zhao, J.; Wang, J.-S.; Xiang, G.-Y.; Zhang, D.-L.; Bai, M.; Cui, B.-D.; Wan, N.-W.; Chen, Y.-Z. Org. Biomol. Chem. 2017, 15,5571.
pmid: 28639676 |
[25] |
Han, W.-Y.; Zhao, J.; Wang, J.-S.; Cui, B.-D.; Wan, N.-W.; Chen, Y.-Z. Tetrahedron 2017, 73,5806.
|
[26] |
Han, W.-Y.; Zhao, J.; Cui, B.-D.; Chen, Y.-Z. Chin. J. Synth. Chem. 2018, 26,328. (in Chinese)
|
( 韩文勇, 赵佳, 崔宝东, 陈永正, 合成化学, 2018, 26,328.)
|
|
[27] |
Han, W.-Y.; Wang, J.-S.; Zhao, J.; Long, L.; Cui, B.-D.; Wan, N.-W.; Chen, Y.-Z. J. Org. Chem. 2018, 83,6556.
pmid: 29863343 |
[28] |
Wang, J.-S.; Shan, J.; Bai, M.; Cui, B.-D.; Wan, N.-W.; Wang, Y.-S.; Han, W.-Y.; Chen, Y.-Z. Tetrahedron 2018, 74,3904.
|
[29] |
Wang, J.-S.; Huang, K.-S.; Han, W.-Y.; Cui, B.-D.; Wan, N.-W.; Chen, Y.-Z. Org. Lett. 2019, 21,8751.
doi: 10.1021/acs.orglett.9b03371 pmid: 31642680 |
[30] |
Zhang, X.-W.; Hu, W.-L.; Chen, S.; Hu, X.-G. Org. Lett. 2018, 20,860.
|
[31] |
Gao, Y.; Peng, S.-Q.; Liu, D.-Y.; Rui, P.-X.; Hu, X.-G. Eur. J. Org. Chem. 2019, 2019,1715.
|
[32] |
Mykhailiuk, P.K.; Kishko, I.; Kubyshkin, V.; Budisa, N.; Cossy, J. Chem.-Eur. J. 2017, 23,13279.
pmid: 28753245 |
[33] |
Peng, S.-Q.; Zhang, X.-W.; Zhang, L.; Hu, X.-G. Org. Lett. 2017, 19,5689.
pmid: 28981298 |
[34] |
Li, J.; Ma, C.; Xing, D.; Hu, W. Org. Lett. 2019, 21,2101.
doi: 10.1021/acs.orglett.9b00382 pmid: 30888191 |
[35] |
Mertens, L.; Hock, K.J.; Koenigs, R.M. Chem.-Eur. J. 2016, 22,9542.
pmid: 27168358 |
[36] |
Hock, K.J.; Mertens, L.; Koenigs, R.M. Chem. Commun. 2016, 52,13783.
|
[37] |
Hock, K.J.; Mertens, L.; Metze, F.K.; Schmittmann, C.; Koenigs, R.M. Green Chem. 2017, 19,905.
|
[38] |
Britton, J.; Jamison, T.F. Angew. Chem., nt. Ed. 2017, 56,8823.
|
[39] |
Britton, J.; Jamison, T.F. Eur. J. Org. Chem. 2017, 2017,6566.
|
[40] |
Duan, Y.; Lin, J.-H.; Xiao, J.-C.; Gu, Y.-C. Chem. Commun. 2017, 53,3870.
|
[41] |
Duan, Y.; Lin, J.-H.; Xiao, J.-C.; Gu, Y.-C. Org. Chem. Front. 2017, 4,1917.
|
[42] |
Pan, X.-Y.; Zhao, Y.; Qu, H.-A.; Lin, J.-H.; Hang, X.-C.; Xiao, J.-C. Org. Chem. Front. 2018, 5,1452.
|
[43] |
Zeng, J.-L.; Chen, Z.; Zhang, F.-G.; Ma, J.-A. Org. Lett. 2018, 20,4562.
pmid: 30014703 |
[44] |
Peng, X.; Xiao, M.-Y.; Zeng, J.-L.; Zhang, F.-G.; Ma, J.-A. Org. Lett. 2019, 21,4808.
doi: 10.1021/acs.orglett.9b01697 pmid: 31184157 |
[45] |
Zhang, Z.-Q.; Zheng, M.-M.; Xue, X.-S.; Marek, I.; Zhang, F.-G.; Ma, J.-A. Angew. Chem., nt. Ed. 2019, 58,18191.
|
[46] |
Tan, X.-F.; Zhang, F.-G.; Ma, J.-A. Beilstein J. Org. Chem. 2020, 16,638.
|
[47] |
Peng, X.; Zhang, F.-G.; Ma, J.-A. Adv. Synth. Catal. 2020, 362,4432.
|
[48] |
Ning, Y.; Zhang, X.; Gai, Y.; Dong, Y.; Sivaguru, P.; Wang, Y.; Reddy, B.R. P.; Zanoni, G.; Bi, X. Angew. Chem.,Int. Ed. 2020, 59,6473.
|
[1] | 马虎, 黄丹凤, 王克虎, 唐朵朵, 冯杨, 任园园, 王君娇, 胡雨来. 3-(三氟甲基)吡唑类化合物的合成[J]. 有机化学, 2023, 43(9): 3257-3267. |
[2] | 雷容超, 兰文捷, 李梦竹, 傅滨. 苯并磺内酰胺联吡唑化合物的简便合成[J]. 有机化学, 2023, 43(7): 2553-2560. |
[3] | 许晓萍, 张翼飞, 莫小渝, 江俊. 铑催化3-重氮吲哚-2-亚胺与吡唑啉酮的C—H官能团化反应制备3-吡唑基吲哚[J]. 有机化学, 2023, 43(7): 2519-2527. |
[4] | 孙洋, 王杨, 张紫婵, 钱烨, 骆桂成, 周贝贝, 缪丽沙, 陈雨蝶, 戴红, 徐宝琳, 吴正光. 新型含1,3,4-噁二唑基团的吡唑肟衍生物的合成与生物活性[J]. 有机化学, 2023, 43(4): 1584-1590. |
[5] | 张紫婵, 孙洋, 华晟, 徐宝琳, 张敏, 赵勤, 郑丹丹, 王杨, 鞠剑峰, 石玉军, 戴红. 新型含异噁唑单元的吡唑酰胺类衍生物的合成及杀虫活性[J]. 有机化学, 2023, 43(4): 1435-1443. |
[6] | 陈祥, 欧阳文韬, 李潇, 何卫民. 可见光诱导有机光催化合成二氟乙基苯并噁嗪[J]. 有机化学, 2023, 43(12): 4213-4219. |
[7] | 涂志, 余金生, 周剑. 溴二氟甲基三甲基硅烷的合成及其在有机合成中的应用[J]. 有机化学, 2023, 43(10): 3491-3507. |
[8] | 桑田, 贾帆, 何静, 李春天, 刘岩, 刘平. I2催化β-酮腈与1H-吡唑-5-胺的环化反应[J]. 有机化学, 2023, 43(1): 195-201. |
[9] | 马豪杰, 周风院, 刘金磊, 韩波, 杨华, 张玉琦, 王记江. 无催化剂和无添加剂条件下分子间环化构建取代N-苯基吡唑[J]. 有机化学, 2022, 42(6): 1843-1848. |
[10] | 王长凯, 孙腾达, 张学博, 杨新玲, 路星星, 徐欢, 石发胜, 张莉, 凌云. 新型含氟吡唑酰肼类化合物的设计合成与生物活性研究[J]. 有机化学, 2022, 42(5): 1527-1536. |
[11] | 王伟, 武复冉, 马一丹, 徐丹, 徐功. 含取代吡唑新型苯甲酰胺类化合物的合成及抗真菌活性研究[J]. 有机化学, 2022, 42(2): 607-618. |
[12] | 穆思宇, 李红霞, 伍智林, 彭俊梅, 陈锦杨, 何卫民. 电催化肼、丙二酮和2-溴丙二酸二乙酯三组分合成4-溴吡唑[J]. 有机化学, 2022, 42(12): 4292-4299. |
[13] | 郭檬檬, 于子伦, 陈玉兰, 葛丹华, 马猛涛, 沈志良, 褚雪强. 二氟烯醇硅醚作为含氟砌块在构建有机氟化物中的研究进展[J]. 有机化学, 2022, 42(11): 3562-3587. |
[14] | 冯易浇, 何静, 韦玥婷, 汤婷, 李春天, 刘平. 一锅两步策略高效合成3-芳基-4-(芳硫基)-1H-吡唑-5-胺衍生物[J]. 有机化学, 2022, 42(1): 226-234. |
[15] | 刘云姝, 赵国栋, 武文菊, 王云泽, 喻艳超, 由君, 刘波. 镁-双噁唑啉络合物催化3,5-二甲基-N-α,β-不饱和酰基吡唑的不对称共轭氰化反应研究[J]. 有机化学, 2022, 42(1): 208-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||