有机化学 ›› 2021, Vol. 41 ›› Issue (5): 2029-2037.DOI: 10.6023/cjoc202011001 上一篇 下一篇
研究论文
杨金宇1, 黄丹凤1, 王克虎1, 王君姣1, 苏瀛鹏1, 邓周斌1, 杨天宇1, 胡雨来1,*()
收稿日期:
2020-11-02
修回日期:
2020-12-24
发布日期:
2021-02-07
通讯作者:
胡雨来
基金资助:
Jinyu Yang1, Danfeng Huang1, Kehu Wang1, Junjiao Wang1, Yingpeng Su1, Zhoubin Deng1, Tianyu Yang1, Yulai Hu1,*()
Received:
2020-11-02
Revised:
2020-12-24
Published:
2021-02-07
Contact:
Yulai Hu
About author:
Supported by:
文章分享
探索了三氟甲基酰腙的N-烃基化反应, 得到了一系列N-烃基取代的三氟甲基酰腙衍生物. 其结构经1H NMR和13C NMR、HRMS等确证. 该方法具有反应条件温和、产率高及操作简单等优点, 为合成N-烃基取代的三氟甲基酰腙类化合物提供了一种简单高效的方法.
杨金宇, 黄丹凤, 王克虎, 王君姣, 苏瀛鹏, 邓周斌, 杨天宇, 胡雨来. 三氟甲基酰腙N-烃基化反应研究[J]. 有机化学, 2021, 41(5): 2029-2037.
Jinyu Yang, Danfeng Huang, Kehu Wang, Junjiao Wang, Yingpeng Su, Zhoubin Deng, Tianyu Yang, Yulai Hu. Study on N-Alkylation Reactions of Trifluoromethylated Acylhydrazones[J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 2029-2037.
Entry | Molar ratio of 1a/2a/ base/additive | Base | Additive | Solvent | Time/h | Isolated yield/% |
---|---|---|---|---|---|---|
1 | 1/2/1.5/0 | K2CO3 | — | CH3CN | 61 | 77 |
2 | 1/2/1.5/0.1 | K2CO3 | TBAI | CH3CN | 15 | 79 |
3 | 1/1.5/1.5/0.1 | K2CO3 | TBAI | CH3CN | 24 | 76 |
4 | 1/2.5/1.5/0.1 | K2CO3 | TBAI | CH3 CN | 12 | 88 |
5 | 1/3.0/1.5/0.1 | K2CO3 | TBAI | CH3CN | 4 | 77 |
6 | 1/2.5/1/0.1 | K2CO3 | TBAI | CH3CN | 14 | 78 |
7 | 1/2.5/2/0.1 | K2CO3 | TBAI | CH3CN | 11 | 74 |
8 | 1/2.5/1.5/0.2 | K2CO3 | TBAI | CH3CN | 5 | 80 |
9 | 1/2.5/1.5/0.1 | K2CO3 | TBAB | CH3CN | 8 | 73 |
10 | 1/2.5/1.5/0.1 | K2CO3 | TBAC | CH3CN | 10 | 84 |
11 | 1/2.5/1.5/0.1 | K2CO3 | TEBA | CH3CN | 8 | 85 |
12 | 1/2.5/1.5/0.1 | K2CO3 | TBAF | CH3CN | 6 | 84 |
13 | 1/2.5/1.5/0.1 | K2CO3 | 18-Crown-6 | CH3CN | 11 | 75 |
14 | 1/2.5/1.5/0.1 | K2CO3 | TBAI | DMSO | 1 | 84 |
15 | 1/2.5/1.5/0.1 | K2CO3 | TBAI | DCE | 36 | 74 |
16 | 1/2.5/1.5/0.1 | K2CO3 | TBAI | DMF | 1.5 | 72 |
17 | 1/2.5/1.5/0.1 | K2CO3 | TBAI | 1,4-Dioxane | 22 | 81 |
18 | 1/2.5/1.5/0.1 | K2CO3 | TBAI | THF | 23 | 76 |
19 | 1/2.5/1.5/0.1 | K2CO3 | TBAI | Toluene | 52 | 67 |
20 | 1/2.5/1.5/0.1 | Cs2CO3 | TBAI | CH3CN | 2 | 75 |
21 | 1/2.5/1.5/0.1 | KOH | TBAI | CH3CN | 29 | 79 |
22 | 1/2.5/1.5/0.1 | NaOH | TBAI | CH3CN | 17 | 54 |
23 | 1/2.5/1.5/0.1 | LiOH | TBAI | CH3CN | 29 | 14 |
24 | 1/2.5/1.5/0.1 | Et3N | TBAI | CH3CN | 39 | 52 |
25 | 1/2.5/1.5/0.1 | DBU | TBAI | CH3CN | 39 | trace |
26 | 1/2.5/—/0.1 | — | TBAI | CH3CN | 24 | 0 |
Entry | Molar ratio of 1a/2a/ base/additive | Base | Additive | Solvent | Time/h | Isolated yield/% |
---|---|---|---|---|---|---|
1 | 1/2/1.5/0 | K2CO3 | — | CH3CN | 61 | 77 |
2 | 1/2/1.5/0.1 | K2CO3 | TBAI | CH3CN | 15 | 79 |
3 | 1/1.5/1.5/0.1 | K2CO3 | TBAI | CH3CN | 24 | 76 |
4 | 1/2.5/1.5/0.1 | K2CO3 | TBAI | CH3 CN | 12 | 88 |
5 | 1/3.0/1.5/0.1 | K2CO3 | TBAI | CH3CN | 4 | 77 |
6 | 1/2.5/1/0.1 | K2CO3 | TBAI | CH3CN | 14 | 78 |
7 | 1/2.5/2/0.1 | K2CO3 | TBAI | CH3CN | 11 | 74 |
8 | 1/2.5/1.5/0.2 | K2CO3 | TBAI | CH3CN | 5 | 80 |
9 | 1/2.5/1.5/0.1 | K2CO3 | TBAB | CH3CN | 8 | 73 |
10 | 1/2.5/1.5/0.1 | K2CO3 | TBAC | CH3CN | 10 | 84 |
11 | 1/2.5/1.5/0.1 | K2CO3 | TEBA | CH3CN | 8 | 85 |
12 | 1/2.5/1.5/0.1 | K2CO3 | TBAF | CH3CN | 6 | 84 |
13 | 1/2.5/1.5/0.1 | K2CO3 | 18-Crown-6 | CH3CN | 11 | 75 |
14 | 1/2.5/1.5/0.1 | K2CO3 | TBAI | DMSO | 1 | 84 |
15 | 1/2.5/1.5/0.1 | K2CO3 | TBAI | DCE | 36 | 74 |
16 | 1/2.5/1.5/0.1 | K2CO3 | TBAI | DMF | 1.5 | 72 |
17 | 1/2.5/1.5/0.1 | K2CO3 | TBAI | 1,4-Dioxane | 22 | 81 |
18 | 1/2.5/1.5/0.1 | K2CO3 | TBAI | THF | 23 | 76 |
19 | 1/2.5/1.5/0.1 | K2CO3 | TBAI | Toluene | 52 | 67 |
20 | 1/2.5/1.5/0.1 | Cs2CO3 | TBAI | CH3CN | 2 | 75 |
21 | 1/2.5/1.5/0.1 | KOH | TBAI | CH3CN | 29 | 79 |
22 | 1/2.5/1.5/0.1 | NaOH | TBAI | CH3CN | 17 | 54 |
23 | 1/2.5/1.5/0.1 | LiOH | TBAI | CH3CN | 29 | 14 |
24 | 1/2.5/1.5/0.1 | Et3N | TBAI | CH3CN | 39 | 52 |
25 | 1/2.5/1.5/0.1 | DBU | TBAI | CH3CN | 39 | trace |
26 | 1/2.5/—/0.1 | — | TBAI | CH3CN | 24 | 0 |
[1] |
Sugiura, M.; Kobayashi, S. Angew. Chem., Int. Ed. 2005, 44, 5176.
doi: 10.1002/(ISSN)1521-3773 |
[2] |
(a) Che, Z.; Zhang, S.; Shao, Y.; Fan, L.; Xu, H.; Yu, X.; Zhi, X.; Yao, X. J. Agric. Food Chem. 2013, 61, 5696.
doi: 10.1021/jf400536q pmid: 10758285 |
(b) Zhou, Y.; Luo, Y.; Yang, Y.-S.; Lu, L.; Zhu, H.-L. Med. Chem. Commun. 2016, 7, 1980.
doi: 10.1039/C6MD00263C pmid: 10758285 |
|
(c) Roth, H. S.; Hergenrother, P. J. Curr. Med. Chem. 2016, 23, 201.
doi: 10.2174/0929867323666151127201829 pmid: 10758285 |
|
(e) Dimmock, J. R.; Vashishtha, S. C.; Stables, J. P. Eur. J. Med. Chem. 2000, 35, 241.
pmid: 10758285 |
|
[3] |
Silva, A. G.; Zapata-Sudo, G.; Kummerle, A. E.; Fraga, C. A.; Barreiro, E. J.; Sudo, R. T. Bioorg. Med. Chem. 2005, 13, 3431.
doi: 10.1016/j.bmc.2005.03.003 |
[4] |
de Figueiredo, L. P.; Ibiapino A.L. do Amaral D. N.; Ferraz, L. S.; Rodrigues T.; Barreiro E. J.; Lima, L. M.; Ferreira F. F. J. Mol. Struct. 2017, 1147, 226.
doi: 10.1016/j.molstruc.2017.06.093 |
[5] |
Kümmerle, A. E.; Schmitt, M.; Cardozo, S. V. S.; Lugnier, C.; Villa, P.; Lopes, A. B.; Romeiro, N. C.; Justiniano, H.; Martins, M. A.; Fraga, C. A. M.; Bourguignon, J.-J.; Barreiro, E. J. J. Med. Chem. 2012, 55, 7525.
doi: 10.1021/jm300514y |
[6] |
Rodrigues, D. A.; Ferreira-Silva, G. A.; Ferreira, A. C. S.; Fernandes, R. A.; Kwee, J. K.; Sant'Anna, C. M. R.; Ionta, M.; Fraga, C. A. J. Med. Chem. 2016, 59, 655.
doi: 10.1021/acs.jmedchem.5b01525 |
[7] |
Vantomme, G.; Jiang, S.; Lehn, J.-M. J. Am. Chem. Soc. 2014, 136, 9509.
doi: 10.1021/ja504813r |
[8] |
(a) Shih, M.-H.; Xu, Y.-Y.; Yang, Y.-S.; Lin, T.-T. Molecules 2015, 20, 5184.
doi: 10.3390/molecules20035184 |
(b) Ragnarsson, U. Chem. Soc. Rev. 2001, 30, 205.
doi: 10.1039/b010091a |
|
[9] |
Kümmerle, A. E.; Raimundo, J. M.; Leal, C. M.; da Silva, G. S.; Balliano, T. L.; Pereira, M. A.; de Simone, C. A.; Sudo, R. T.; Zapata-Sudo, G.; Fraga, C. A. M.; Barreiro, E. J. Eur. J. Med. Chem. 2009, 44, 4004.
doi: 10.1016/j.ejmech.2009.04.044 pmid: 19500884 |
[10] |
Oikawa, N.; Müller, C.; Kunz, M.; Lichtenthaler, F. W. Carbohydr. Res. 1998, 309, 269.
doi: 10.1016/S0008-6215(98)00137-2 |
[11] |
Zhang, H.; Wang, K.-H.; Wang, J.; Su, Y.; Huang, D.; Hu, Y. Org. Biomol. Chem. 2019, 17, 2940.
doi: 10.1039/C9OB00236G |
[12] |
Mahmoud, N. F. H.; Elsayed, G. A. J. Heterocycl. Chem. 2020, 57, 1845.
doi: 10.1002/jhet.v57.4 |
[13] |
(a) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Lzawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
doi: 10.1021/acs.chemrev.5b00392 |
(b) Vitale, A.; Bongiovanni, R.; Ameduri, B. Chem. Rev. 2015, 115, 8835.
doi: 10.1021/acs.chemrev.5b00120 |
|
[14] |
(a) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683.
doi: 10.1021/cr400473a |
(b) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
doi: 10.1021/cr500223h |
|
(c) Studer, A. Angew. Chem.,Int. Ed. 2012, 51, 8950.
doi: 10.1002/anie.201202624 |
|
[15] |
(a) Ji, X.; Shi, G.; Zhang, Y. Chin. J. Org. Chem. 2019, 39, 929. (in Chinese).
doi: 10.6023/cjoc201810033 |
(季小明, 史广法, 张扬会, 有机化学, 2019, 39, 929.)
doi: 10.6023/cjoc201810033 |
|
(b) Qing, F. Chin. J. Org. Chem. 2012, 32, 815. (in Chinese).
doi: 10.6023/cjoc1202021 |
|
(卿凤翎, 有机化学, 2012, 32, 815.)
doi: 10.6023/cjoc1202021 |
|
(c) Liang, H.; Xu, G.; Feng, Z.; Wang, Z.; Xu, P. J. Org. Chem. 2019, 84, 60.
doi: 10.1021/acs.joc.8b02316 |
|
(d) Wang, J.; Li, F.; Xu, Y.; Wang, J.; Wu, Z.; Yang, C.; Liu, L. Chin. J. Org. Chem. 2018, 38, 1155. (in Chinese).
doi: 10.6023/cjoc201709049 |
|
(王晶晶, 李峰, 徐妍, 王娟, 武紫燕, 杨成玉, 刘澜涛, 有机化学, 2018, 38, 1155.)
doi: 10.6023/cjoc201709049 |
|
[16] |
(a) Wang, K.-H.; Shi, B.; Wang, Y.; Wang, J.; Huang, D.; Su, Y.; Hu, Y. Asian J. Org. Chem. 2019, 8, 716.
doi: 10.1002/ajoc.v8.5 |
(b) Xu, W.; Huang, D.; Wang, K.; Zhao, F.; Zhao, Z.; Hu, Y.; Su, Y.; Hu, Y. Chin. J. Org. Chem. 2020, 40, 922. (in Chinese).
doi: 10.6023/cjoc201910011 |
|
(徐炜刚, 黄丹凤, 王克虎, 赵芳霞, 赵转霞, 虎永琴, 苏瀛鹏, 胡雨来, 有机化学, 2020, 40, 922.)
doi: 10.6023/cjoc201910011 |
|
(c) Hu, Y.; Huang, D.; Wang, K.; Zhao, F.; Zhao, Z.; Xu, W.; Hu, Y. Chin. J. Org. Chem. 2020, 40, 1689. (in Chinese).
doi: 10.6023/cjoc201912006 |
|
(虎永琴, 黄丹凤, 王克虎, 赵芳霞, 赵转霞, 徐炜刚, 胡雨来, 有机化学, 2020, 40, 1689.)
doi: 10.6023/cjoc201912006 |
|
[17] |
(a) Peng, X.; Huang, D.; Wang, K.-H.; Wang, Y.; Wang, J.; Su, Y.; Hu, Y. Org. Biomol. Chem. 2017, 15, 6214.
doi: 10.1039/C7OB01299C |
(b) Liu, L.; Huang, D.; Wang, Y.; Wen, L.; Yang, Z.; Su, Y.; Wang, K.; Hu, Y. Chin. J. Org. Chem. 2018, 38, 1469. (in Chinese).
doi: 10.6023/cjoc201712036 |
|
(刘丽丽, 黄丹凤, 王玉祥, 文岚, 杨政, 苏瀛鹏, 王克虎, 胡雨来, 有机化学, 2018, 38, 1469.)
doi: 10.6023/cjoc201712036 |
|
(c) Zhao, F.; Wang, K.-H.; Wen, L.; Zhao, Z.; Hu, Y.; Xu, W.; Huang, D.; Su, Y.; Wang, J.; Hu, Y. Asian J. Org. Chem. 2020, 9, 1036.
doi: 10.1002/ajoc.v9.7 |
|
[18] |
Du, G.; Huang, D.; Wang, K. H.; Chen, X.; Xu, Y.; Ma, J.; Su, Y.; Hu, Y. Org. Biomol. Chem. 2016, 14, 1492.
doi: 10.1039/C5OB02260F |
[1] | 杨明, 黄丹凤, 王克虎, 韩侗育, 赵鹏飞, 王凤, 王君姣, 苏瀛鹏, 胡雨来. 银催化下三氟甲基取代的2-咪唑啉化合物的合成[J]. 有机化学, 2022, 42(5): 1509-1519. |
[2] | 韩峰, 王婷, 冯斌, 徐清. N,N-二甲基甲酰胺(DMF)促进羟基氮杂环与卤代烃的专一性N-烷基化反应: 直接高效的吡啶酮类化合物合成方法[J]. 有机化学, 2021, 41(7): 2831-2838. |
[3] | 虎永琴, 黄丹凤, 王克虎, 赵转霞, 赵芳霞, 徐炜刚, 胡雨来. 三氟甲基酰腙与烯丙基硅或烯丙基硼试剂的烯丙基化反应研究[J]. 有机化学, 2020, 40(6): 1689-1696. |
[4] | 徐炜刚, 黄丹凤, 王克虎, 赵芳霞, 赵转霞, 虎永琴, 苏瀛鹏, 胡雨来. 三氟甲基酰腙的氰基化反应研究[J]. 有机化学, 2020, 40(4): 922-929. |
[5] | 刘丽丽, 黄丹凤, 王玉祥, 文岚, 杨政, 苏瀛鹏, 王克虎, 胡雨来. 三氟甲基取代的吡唑烷及吡唑啉类化合物的合成[J]. 有机化学, 2018, 38(6): 1469-1476. |
[6] | 朱新强, 阳年发, 任芳. 薄荷基氯格氏试剂与卤代烃的立体选择性反应研究[J]. 有机化学, 2010, 30(11): 1759-1763. |
[7] | 夏 湘 , 邹康兵a, 方大为a, 许新华,b. 氢氧化铯促进下硒、端炔及卤代烃反应合成炔硒醚[J]. 有机化学, 2008, 28(08): 1487-1489. |
[8] | 纪顺俊,郎建平,汪顺义,黄晓英. 卤代化合物的光化学反应研究进展[J]. 有机化学, 2003, 23(4): 393-401. |
[9] | 张贞发,周伟澄. 钯等过渡金属催化的卤代芳烃和胺的偶联反应[J]. 有机化学, 2002, 22(10): 685-693. |
[10] | 许斌,麻生明. 1,1-二卤代-1-烯烃的制备及其在有机合成中的应用[J]. 有机化学, 2001, 21(4): 252-262. |
[11] | 程格,陶全华,杨琼辉,王跃川. Suzuki芳基偶联反应研究进展[J]. 有机化学, 2000, 20(6): 874-881. |
[12] | 黄志真,朱柳生,黄宪. 芳硒基乙炔的锆氢化反应[J]. 有机化学, 1999, 19(6): 636-638. |
[13] | 张小林,李鸣. TiCl~4-Ga还原体系中芳基三卤甲烷的还原偶联反应[J]. 有机化学, 1999, 19(3): 300-303. |
[14] | 杨锦飞,包建春,肖亚平,贝浼智. 羰基化合物及其与卤代烃在CeCl~3/萘锂试剂作用下的反应[J]. 有机化学, 1999, 19(1): 53-58. |
[15] | 胡辉,宋一麟,方屹,周春儿,陶凤岗,崔结. 超声条件下制备单取代硼酸[J]. 有机化学, 1997, 17(5): 478-480. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||