有机化学 ›› 2021, Vol. 41 ›› Issue (7): 2831-2838.DOI: 10.6023/cjoc202102026 上一篇 下一篇
研究论文
收稿日期:
2021-02-12
修回日期:
2021-03-16
发布日期:
2021-04-06
通讯作者:
徐清
基金资助:
Feng Hana, Ting Wangb, Bin Fenga, Qing Xua,b()
Received:
2021-02-12
Revised:
2021-03-16
Published:
2021-04-06
Contact:
Qing Xu
Supported by:
文章分享
在羟基氮杂环化合物与卤代烃的无碱、专一性N-烷基化合成吡啶酮类化合物的反应中,N,N-二甲基甲酰胺(DMF)比其他溶剂具有更好的溶剂效应, 使得该反应可以在更温和条件下得到更高的收率, 而且底物适用范围广. 据机理研究和文献报道, 除了一般的溶剂效应外, DMF还通过在反应中分解出二甲基胺作为碱促进反应进行.
韩峰, 王婷, 冯斌, 徐清. N,N-二甲基甲酰胺(DMF)促进羟基氮杂环与卤代烃的专一性N-烷基化反应: 直接高效的吡啶酮类化合物合成方法[J]. 有机化学, 2021, 41(7): 2831-2838.
Feng Han, Ting Wang, Bin Feng, Qing Xu. N,N-Dimethylformamide (DMF)-Promoted SpecificN-Alkylation of Hydroxyl N-Heterocycles with Organohalides: A Direct and Efficient Method for Synthesis of Pyridone Derivatives[J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2831-2838.
Entry | Solvent (mL) | T/℃ | 3/4b | 3aac/% |
---|---|---|---|---|
1d | — | 100 | >99/1 | (84)e |
2 | DMF (1) | 100 | >99/1 | 82 |
3 | MeOH (1) | 100 | >99/1 | 13 |
4 | DCE (1) | 100 | >99/1 | 60 |
5 | CH3CN (1) | 100 | >99/1 | 59 |
6 | DCM (1) | 100 | >99/1 | 58 |
7 | THF (1) | 100 | >99/1 | 79 (77)e |
8 | Toluene (0.5) | 100 | >99/1 | 71 (70)e |
9 | 1,4-Dioxane (0.5) | 100 | >99/1 | 68 |
10 | EtOH (0.5) | 100 | >99/1 | 20 |
11 | THF (0.5) | 100 | >99/1 | 84 |
12 | DMF (0.5) | 100 | >99/1 | 96 (96)e |
13 | DMF (0.5) | 90 | >99/1 | 91 |
14 | DMF (0.5) | 80 | >99/1 | 87 |
15 | DMF (0.5) | 60 | >99/1 | 66 |
Entry | Solvent (mL) | T/℃ | 3/4b | 3aac/% |
---|---|---|---|---|
1d | — | 100 | >99/1 | (84)e |
2 | DMF (1) | 100 | >99/1 | 82 |
3 | MeOH (1) | 100 | >99/1 | 13 |
4 | DCE (1) | 100 | >99/1 | 60 |
5 | CH3CN (1) | 100 | >99/1 | 59 |
6 | DCM (1) | 100 | >99/1 | 58 |
7 | THF (1) | 100 | >99/1 | 79 (77)e |
8 | Toluene (0.5) | 100 | >99/1 | 71 (70)e |
9 | 1,4-Dioxane (0.5) | 100 | >99/1 | 68 |
10 | EtOH (0.5) | 100 | >99/1 | 20 |
11 | THF (0.5) | 100 | >99/1 | 84 |
12 | DMF (0.5) | 100 | >99/1 | 96 (96)e |
13 | DMF (0.5) | 90 | >99/1 | 91 |
14 | DMF (0.5) | 80 | >99/1 | 87 |
15 | DMF (0.5) | 60 | >99/1 | 66 |
[1] |
(a) Li, Q.; Mitscher,L. A.; Shen, L. Med. Res. Rev. 2000, 20,231.
doi: 10.1002/(ISSN)1098-1128 |
(b) Jessen,H. J.; Gademann, K. Nat. Prod. Rep. 2010, 27,1168.
doi: 10.1039/b911516c |
|
(c) Vite-Caritino, H.; Gademann, H.; Mendez-Lucio, O.; Reyes, H.; Cabrera, A.; Chavez, D.; Medina-Franco,J. L. RSC Adv. 2016, 6,2119.
doi: 10.1039/C5RA25722K |
|
(d) Surup, F.; Wagner, O.; Frieling, J.; Schleicher, M.; Oess, S.; Müller, P.; Grond, S. J. Org. Chem. 2007, 72,5085.
doi: 10.1021/jo0703303 |
|
(e) Wang, J.; Tao, H.; Jin, M.; Li, L.; Xiao, Y.; Li, J.; Qin, Z. Chin. J. Org. Chem. 2019, 39,1044 (in Chinese).
doi: 10.6023/cjoc201810019 |
|
( 王家尧, 陶晗, 金蜜, 李丽莎, 肖玉梅, 李佳奇, 覃兆海, 有机化学, 2019, 39,1044.)
|
|
[2] |
(a) Wendt,J. A.; Gauvreau,P. J.; Bach,R. D. J. Am. Chem. Soc. 1994, 116,9921.
doi: 10.1021/ja00101a013 |
(b) Wall,M. E. Med. Res. Rev. 1998, 18,299.
doi: 10.1002/(ISSN)1098-1128 |
|
(c) Garrett,C. A.; Prasad, K. Adv. Synth. Catal. 2004, 346,889.
doi: 10.1002/(ISSN)1615-4169 |
|
(d) Purser, S.; Moore,P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37,320.
doi: 10.1039/B610213C |
|
(e) Richeldi, L.; Yasothan, U.; Kirkpatrick, P. Nat. Rev. Drug Discovery 2011, 10,489.
doi: 10.1038/nrd3495 |
|
(f) Pfefferkorn,J. A.; Lou, J.; Minich,M. L.; Filipski,K. J.; He, M.; Zhou, R.; Ahmed, S.; Benbow, J.; Perez,A. G.; Tu, M.; Litchfield, J.; Sharma, R.; Metzler, K.; Bourbonais, F.; Huang, C.; Beebe,D. A.; Oates,P. J. Bioorg. Med. Chem. Lett. 2009, 19,3247.
doi: 10.1016/j.bmcl.2009.04.107 |
|
(g) Xie,L. -Y.; Duan, Y.; Lu,L. -H.; Li,Y. -J.; Peng, S.; Wu, C.; Liu,K. -J.; Wang, Z.; He,W. -M. ACS Sustainable Chem. Eng. 2017, 5,10407.
doi: 10.1021/acssuschemeng.7b02442 |
|
(h) Xie,L. -Y.; Qu, J.; Peng, S.; Liu,K. -J.; Wang, Z.; Ding,M. -H.; Wang, Y.; Cao, Z.; He,W. -M. Green Chem. 2018, 20,760.
doi: 10.1039/C7GC03106H |
|
(i) Ye, M.; Qiu, S.; Yin, J. Chin. J. Org. Chem. 2017, 37,667 (in Chinese).
|
|
( 叶明琰, 邱少中, 殷国栋, 有机化学, 2017, 37,667.)
|
|
(j) Bai, F; Hu, D.; Liu, Y.; Wei, L. Chin. J. Org. Chem. 2018, 38,2054 (in Chinese).
doi: 10.6023/cjoc201801015 |
|
( 白飞成, 胡德庆, 刘云云, 韦丽, 有机化学, 2018, 38,2054.)
|
|
[3] |
(a) Ueda, N.; Konda, K.; Kono, M.; Takemoto, K.; Imoto, M. Makromol. Chem. 1968, 120,13.
doi: 10.1002/macp.1968.021200102 |
(b) Pitha, J.; Ts'o,P. O.P. J. Org. Chem. 1968, 33,1341.
doi: 10.1021/jo01268a006 |
|
(c) Kaye, H. J. Polym. Sci., art B:Polym. Lett. 1969, 7,1.
|
|
[4] |
(a) Hopkins,G. C.; Jonak,J. P.; Minnemeyer,H. J.; Tieckelmann, H. J. Org. Chem. 1967, 32,4040.
doi: 10.1021/jo01287a600 |
(b) Sugahara, M.; Moritani, Y.; Kuroda, T.; Kondo, K.; Shimadzu, H.; Ukita, T. Chem. Pharm. Bull. 2000, 48,589.
doi: 10.1248/cpb.48.589 |
|
(c) Nishiwaki, N.; Hisaki, M.; Ono, M.; Ariga, M. Tetrahedron 2009, 65,7403.
doi: 10.1016/j.tet.2009.07.024 |
|
[5] |
Chuang,N. M.; Tieckelmann, H. J. Org. Chem. 1970, 35,2517.
doi: 10.1021/jo00833a010 |
[6] |
Liu, H.; Ko,S. B.; Josien, H.; Curran,D. P. Tetrahedron Lett. 1995, 36,8917.
doi: 10.1016/0040-4039(95)01917-7 |
[7] |
Sato, T.; Yoshimatsu, K.; Otera, J. Synlett 1995,845.
|
[8] |
Lanni,E. L.; Bosscher,M. A.; Ooms,B. D.; Shandro,C. A.; Ellsworth,B. A.; Anderson,C. E. J. Org. Chem. 2008, 73,6425.
doi: 10.1021/jo800866w |
[9] |
Sosnickii,J. G.; Struk, Ł.; Idzik, T.; Maciejewska, G. Tetrahedron 2014, 70,8624.
doi: 10.1016/j.tet.2014.09.043 |
[10] |
Conreaux, D.; Bossharth, E.; Monteiro, N.; Desbordes, P.; Balme, G. Tetrahedron Lett. 2005, 46,7917.
doi: 10.1016/j.tetlet.2005.09.095 |
[11] |
Vavilina, G.; Zicmanis, A.; Mekss, P.; Klavins, M. Chem. Heterocycl. Compd. 2008, 44,549.
doi: 10.1007/s10593-008-0074-9 |
[12] |
Iida, H.; Suda, M.; Nakajima, E.; Hakamatsuka, H.; Nagash- ima, Y.; Joho, K.; Amemiya, K.; Moromizato, T.; Matsumoto, K.; Murakami, Y.; Hamana, H. Heterocycles 2010, 81,2057.
doi: 10.3987/COM-10-12006 |
[13] |
(a) Yeung,C. S.; Hsieh,T. H.H.; Dong,V. M. Chem. Sci. 2011, 2,544.
doi: 10.1039/C0SC00498G |
(b) Pan, S.; Ryu, N.; Shibata, T. Org. Lett. 2013, 15,1902.
doi: 10.1021/ol400557z |
|
[14] |
Mishra,A. K.; Morgon,N. H.; Sanyal, Souza,S. A. R.; Biswas, S. Adv. Synth. Catal. 2018, 360,3930.
doi: 10.1002/adsc.v360.20 |
[15] |
(a) Ballesteros, P.; Claramunt,R. M.; Elguero, J. Tetrahedron 1987, 43,2557.
doi: 10.1016/S0040-4020(01)81663-X |
(b) Loupy, A.; Philippon, N.; Pigeon, P.; Galons, H. Heterocycles 1991, 32,1947.
doi: 10.3987/COM-91-5819 |
|
(c) Cherng,Y. J. Tetrahedron 2002, 58,4931.
doi: 10.1016/S0040-4020(02)00424-6 |
|
(d) Liu, Q.; Lu, Z.; Ren, W.; Shen, K.; Wang, Y.; Xu, Q. Chin. J. Chem. 2013, 31,764.
doi: 10.1002/cjoc.v31.6 |
|
[16] |
(a) Shi, X.; Guo, J.; Ye, M.; Xu, Q. Chem.-Eur. J. 2015, 21,9988.
doi: 10.1002/chem.201501184 |
(b) Yao, S.; Zhou, K.; Wang, J.; Cao, H.; Yu, L.; Wu, J.; Qiu, P.; Xu, Q. Green Chem. 2017, 19,2945.
doi: 10.1039/C7GC00977A |
|
(c) Wang, Q.; Lv, M.; Liu, J.; Li, Y.; Xu, Q.; Zhang, X.; Cao, H. ChemSusChem 2019, 12,3043.
doi: 10.1002/cssc.v12.13 |
|
(d) Liu, H.; Han, F.; Li, H.; Liu, J.; Xu, Q. Org. Biomol. Chem. 2020, 18,7079.
doi: 10.1039/D0OB01549K |
|
[17] |
(a) Chen, H.; Dai, W.; Chen, Y.; Xu, Q.; Chen, J.; Yu, L.; Zhao, Y.; Ye, M.; Pan, Y. Green Chem. 2014, 16,2136.
doi: 10.1039/C3GC42310G |
(b) Li, Y.; Chen, H.; Liu, J.; Wan, X.; Xu, Q. Green Chem. 2016, 18,4865.
doi: 10.1039/C6GC01565D |
|
(c) Ma, X.; Li, B.; Xiao, Y.; Yu, X.; Su, C.; Xu, Q. Chin. J. Org. Chem. 2017, 37,2034 (in Chinese).
doi: 10.6023/cjoc201703028 |
|
( 马献涛, 李波, 肖映林, 余小春, 苏陈良, 徐清, 有机化学, 2017, 37,2034.)
|
|
[18] |
(a) Ma, X.; Su, C.; Xu, Q. Top. Curr. Chem. 2016, 374(3),27.
|
(b) Xu, Q.; Li, Q. Chin. J. Org. Chem. 2013, 33,18 (in Chinese).
doi: 10.6023/cjoc201208016 |
|
( 徐清, 李强, 有机化学, 2013, 33,18.)
|
|
(c) Xu, Q.; Li, Q.; Zhu, X.; Chen, J. Adv. Synth. Catal. 2013, 355,73.
doi: 10.1002/adsc.201200881 |
|
(d) Xu, Q.; Chen, J.; Liu, Q. Adv. Synth. Catal. 2013, 355,697.
doi: 10.1002/adsc.201200996 |
|
(e) Xu, Q.; Chen, J.; Tian, H.; Yuan, X.; Li, S.; Zhou, C.; Liu, J. Angew. Chem., nt. Ed. 2014, 53,2259.
|
|
(f) Xu, Q.; Xie, H.; Chen, P.; Yu, L.; Chen, J.; Hu,X. G. Green Chem. 2015, 17,2774.
doi: 10.1039/C5GC00284B |
|
(g) Xu, Q.; Xie, H.; Zhang, E.; Ma, X.; Chen, J.; Yu, X.; Li, H. Green Chem. 2016, 18,3940.
doi: 10.1039/C6GC00938G |
|
(h) Ma, X.; Yu, L.; Su, C.; Yang, Y.; Li, H.; Xu, Q. Adv. Synth. Catal. 2017, 359,1649.
doi: 10.1002/adsc.v359.10 |
|
(i) Ma, X.; Xu, Q.; Li, H.; Su, C.; Yu, L.; Zhang, X.; Cao, H.; Han, L. Green Chem. 2018, 20,3408.
doi: 10.1039/C8GC00931G |
|
(j) Ma, X.; Yu, J.; Yan, R.; Xu, Q. J. Org. Chem. 2019, 84,11294.
doi: 10.1021/acs.joc.9b01670 |
|
[19] |
Feng, B.; Li, Y.; Li, H.; Zhang, X.; Xie, H.; Cao, H.; Yu, L.; Xu, Q. J. Org. Chem. 2018, 83,6769.
doi: 10.1021/acs.joc.8b00787 |
[20] |
(a) Muzart, J. Tetrahedron 2009, 65,8313.
doi: 10.1016/j.tet.2009.06.091 |
(b) Ding, S.; Jiao, N. Angew. Chem., nt. Ed. 2012, 51,9226.
|
|
[21] |
Since addition of more than stoichiometric amount of base may lead to competing O-alkylation reaction to give ether byproducts (see Ref. [4]), reactions with addition of more amounts of Et3N was not investigated.
|
[22] |
After our finding that byproduct HBr could work as the catalyst to promote the O to N migratory rearrangement of pyridyl ethers to pyridone products, Biswas et al. reported a similar finding using HOTf as the catalyst, see Ref. [14].
|
[23] |
Kumar, D.; Vemula,S. R.; Cook,G. R. Green Chem. 2015, 17,4300.
doi: 10.1039/C5GC01028D |
[24] |
Breugst, M.; Mayr, H. J. Am. Chem. Soc. 2010, 132,15380.
doi: 10.1021/ja106962u |
[25] |
Hand,E. S.; Paudler,W. W. J. Org. Chem. 1978, 43,658.
doi: 10.1021/jo00398a030 |
[26] |
Yu, Y.; Niphakis,M. J.; Georg,G. I. Org. Lett. 2011, 13,5932.
doi: 10.1021/ol202677g |
[27] |
Fujita, R.; Hoshino, M.; Tomisawa, H. Chem. Pharm. Bull. 2006, 54,334.
doi: 10.1248/cpb.54.334 |
[28] |
Verhelst, T.; Verbeeck, S.; Ryabtsova, O.; Depraetere, S.; Maes,B. U. Org. Lett. 2011, 13,272.
doi: 10.1021/ol102703w |
[29] |
Chen, D.; Zhang, Z.; Bao, W. J. Org. Chem. 2010, 75,5768.
doi: 10.1021/jo101253a |
[30] |
Huang, L.; Gu, Y.; Furstner, A. Chem.-Asian J. 2019, 14,4017.
doi: 10.1002/asia.v14.22 |
[1] | 王维, 张哲宇, 张雪, 于海丰, 罗辉, 霍东月, 徐玉澎, 赵晓波. 多取代2,3-二氢-4-吡啶酮的水相合成[J]. 有机化学, 2023, 43(2): 742-750. |
[2] | 龚诚, 唐剑, 徐飞, 李鹏杰, 王泽田, 张玉敏, 余国贤, 王亮. 近年来过渡金属催化吡啶酮/异喹啉酮的C—H活化反应研究进展[J]. 有机化学, 2022, 42(7): 1925-1949. |
[3] | 底慧明, 刘云婷, 马艳榕, 杨鑫悦, 金辉, 张立新. 有机催化不对称合成3,4-二氢吡喃-2-酮和3,4-二氢吡啶-2-酮衍生物研究进展[J]. 有机化学, 2021, 41(6): 2228-2248. |
[4] | 杨金宇, 黄丹凤, 王克虎, 王君姣, 苏瀛鹏, 邓周斌, 杨天宇, 胡雨来. 三氟甲基酰腙N-烃基化反应研究[J]. 有机化学, 2021, 41(5): 2029-2037. |
[5] | 王家尧, 陶晗, 金蜜, 李丽莎, 肖玉梅, 李佳奇, 覃兆海. 芳基吡啶酮腙类化合物的设计、合成及杀菌活性研究[J]. 有机化学, 2019, 39(4): 1044-1052. |
[6] | 白飞成, 胡德庆, 刘云云, 韦丽. 多组分一锅法合成N-取代-4-羟基-2-吡啶酮[J]. 有机化学, 2018, 38(8): 2054-2059. |
[7] | 叶明琰, 邱少中, 殷国栋. 喹啉酮和吡啶酮稠合的氧杂双环[3.3.1]壬烷的合成[J]. 有机化学, 2017, 37(3): 667-674. |
[8] | 杨维芳, 徐晓丽, 张站斌. 1-(2-吡啶基)-2-氮杂-1, 3-丁二烯的合成与应用[J]. 有机化学, 2014, 34(6): 1161-1166. |
[9] | 段凯, 李小娜, 李云庆, 王家喜. 氨基取代的苯并咪唑衍生物的合成及在酮的氢转移反应中的应用[J]. 有机化学, 2012, 32(07): 1247-1254. |
[10] | 赵圣印, 黄婧, 程健, 刘宝硕, 陈晨. 4-羟基-2-吡啶酮类化合物的合成研究进展[J]. 有机化学, 2012, 32(04): 651-660. |
[11] | 荣良策, 刘丽华, 殷姗, 夏盛, 魏贤勇, 宗志敏. 无溶剂条件下方便、有效的方法合成3-氰基-2-吡啶酮衍生物[J]. 有机化学, 2012, 32(02): 400-403 . |
[12] | 唐玉敏, 李晶, 赵圣印. 4-羟基-2-吡啶酮类天然生物碱的研究进展[J]. 有机化学, 2011, 31(01): 9-21. |
[13] | 朱新强, 阳年发, 任芳. 薄荷基氯格氏试剂与卤代烃的立体选择性反应研究[J]. 有机化学, 2010, 30(11): 1759-1763. |
[14] | 杜杨, 许雯, 姚其正, 刘祖亮. 5(4H)-吡啶酮并氧化呋咱及其核苷衍生物的合成及结构表征[J]. 有机化学, 2010, 30(06): 928-932. |
[15] | 安林坤 , 邹 兰, 王晓冬 , 武 宁, 沈德清, 卜宪章, 黄志纾, 古练权. 1-(2-羟甲基-1,3-氧硫杂环戊基)吡啶酮类化合物的合成[J]. 有机化学, 2008, 28(08): 1379-1384. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||