有机化学 ›› 2021, Vol. 41 ›› Issue (7): 2601-2609.DOI: 10.6023/cjoc202101008 上一篇 下一篇
综述与进展
许亚文a, 王健鲲b, 甄乐b,*(), 王广基a,b,*()
收稿日期:
2021-01-05
修回日期:
2021-03-18
发布日期:
2021-04-16
通讯作者:
甄乐, 王广基
基金资助:
Yawen Xua, Jiankun Wangb, Le Zhenb(), Guangji Wanga,b()
Received:
2021-01-05
Revised:
2021-03-18
Published:
2021-04-16
Contact:
Le Zhen, Guangji Wang
Supported by:
文章分享
小分子氢过硫化物(RSSH)具有独特的化学性质, 近年来其生物学活性备受瞩目. 近五年间, 生理或病理条件下即可实现RSSH原位释放供体化合物取得了突破性的进展, 这类供体将成为研究RSSH生理功能、作用机制以及治疗潜能的有力工具. 按照激活模式将现有供体分子分为五类, 即酯酶激活型、ROS(活性氧物种)激活型、pH依赖型、光激活型以及硝基还原酶激活型, 并对各类供体进行综述. 现有供体在细胞水平表现出理想的抗氧化应激活性, 部分供体已经应用于心肌缺血再灌注模型的干预中, 并取得了积极效果. 此外, 还介绍了供体的释放机理及其概念验证过程, 并对供体分子的发展前景进行了展望.
许亚文, 王健鲲, 甄乐, 王广基. 小分子氢过硫化物供体的研究进展[J]. 有机化学, 2021, 41(7): 2601-2609.
Yawen Xu, Jiankun Wang, Le Zhen, Guangji Wang. Research Progress of Small-Molecular Hydropersulfide Donors[J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2601-2609.
[19] |
Dillon,K. M.; Carrazzone,R. J.; Wang, Y.; Powell,C. R.; Matson,J. B. ACS Macro Lett. 2020, 9,606.
doi: 10.1021/acsmacrolett.0c00118 |
[20] |
Powell,C. R.; Dillon,K. M.; Wang, Y.; Carrazzone,R. J.; Matson,J. B. Angew. Chem.,Int. Ed. 2018, 57,6324.
doi: 10.1002/anie.v57.21 |
[21] |
Kuivila,H. G. J. Am. Chem. Soc. 1954, 76,870.
doi: 10.1021/ja01632a070 |
[22] |
Monks,T. J.; Jones,D. C. Curr. Drug Metab. 2002, 3,425.
doi: 10.2174/1389200023337388 |
[23] |
Bora, P.; Chauhan, P.; Manna, S.; Chakrapani, H. Org. Lett. 2018, 20,7916.
doi: 10.1021/acs.orglett.8b03471 |
[24] |
Hankins,R. A.; Suarez,S. I.; Kalk,M. A.; Green,N. M.; Harty,M. N.; Lukesh,J. C. Angew. Chem.,Int. Ed. 2020, 59,22238.
doi: 10.1002/anie.v59.49 |
[25] |
(a) Fridovich, I. J. Biol. Chem. 1997, 272,18515.
doi: 10.1074/jbc.272.30.18515 |
(b) Bandyopadhyay, U.; Das, D.; Banerjee,R. K. Curr. Sci. 1999, 77,658.
|
|
[26] |
Wang, Y.; Dillon,K. M.; Li, Z.; Winckler,E. W.; Matson,J. B. Angew. Chem.,Int. Ed. 2020, 59,16698.
|
[27] |
Roger, T.; Raynaud, F.; Bouillaud, F.; Ransy, C.; Simonet, S.; Crespo, C.; Bourguignon, M.; Villeneuve, N.; Vilaine, J.; Artaud, I. ChemBioChem 2013, 14,2268.
doi: 10.1002/cbic.v14.17 |
[28] |
Artaud, I.; Galardon, E. ChemBioChem 2014, 15,2361.
doi: 10.1002/cbic.201402312 |
[29] |
Kang, J.; Xu, S.; Radford,M. N.; Zhang, W.; Kelly,S. S.; Day,J. J.; Xian, M. Angew. Chem.,Int. Ed. 2018, 57,5893.
doi: 10.1002/anie.201802845 |
[30] |
Khodade,V. S.; Toscano,J. P. J. Am. Chem. Soc. 2018, 140,17333.
doi: 10.1021/jacs.8b08469 |
[31] |
Khodade,V. S.; Pharoah,B. M.; Paolocci, N.; Toscano,J. P. J. Am. Chem. Soc. 2020, 142,4309.
doi: 10.1021/jacs.9b12180 |
[32] |
Chaudhuri, A.; Venkatesh, Y.; Das, J.; Gangopadhyay, M.; Maiti,T. K.; Singh,N. D.P. J. Org. Chem. 2019, 84,11441.
doi: 10.1021/acs.joc.9b01224 |
[33] |
Fan, Y.; Pedersen, O. Nat. Rev. Microbiol. 2021, 19,55.
doi: 10.1038/s41579-020-0433-9 |
[1] |
The representative reviews of hydrogen persulfides in recent years see: (a) Saund,S. S.; Sosa, V.; Henriquez, S.; Nguyen,Q. N. N.; Bianco,C. L.; Soeda, S.; Millikin, R.; White, C.; Le, H.; Ono, K.; Tantillo,D. J.; Kumagai, Y.; Akaike, T.; Lin, J.; Fukuto,J. M.. Arch. Biochem. Biophys. 2015, 588,15.
doi: 10.1016/j.abb.2015.10.016 |
(b) Kasamatsu, S.; Nishimura, A.; Morita, M.; Matsunaga, T.; Hamid,H. A.; Akaike, T. Molecules 2016, 21,1721.
doi: 10.3390/molecules21121721 |
|
(c) Fukuto,J. M.; Ignarro,L. J.; Nagy, P.; Wink,D. A.; Kevil,C. G.; Feelisch, M.; Cortese-Krott,M. M.; Bianco,C. L.; Kumagai, Y.; Hobbs,A. J.; Lin, J.; Ida, T.; Akaike, T. FEBS Lett. 2018, 592,2140.
doi: 10.1002/feb2.2018.592.issue-12 |
|
(d) Filipovic,M. R.; Zivanovic, J.; Alvarez, B.; Banerjee, R. Chem. Rev. 2018, 118,377.
|
|
(e) Lau, N.; Pluth,M. D. Curr. Opin. Chem. Biol. 2019, 49,1.
doi: 10.1016/j.cbpa.2018.08.012 |
|
(f) Sawa, T.; Motohashi, H.; Ihara, H.; Akaike, T. Biomolecules 2020, 10,1245.
doi: 10.3390/biom10091245 |
|
[2] |
(a) Iciek, M.; Bilska-Wilkosz, A.; Gorny, M. Acta Biochim. Pol. 2019, 66,533.
|
(b) Shinkai, Y.; Kumagai, Y. Toxicol. Sci. 2019, 170,3.
doi: 10.1093/toxsci/kfz091 |
|
[3] |
(a) Ono, K.; Akaike, T.; Sawa, T.; Kumagai, Y.; Wink,D. A.; Tantillo,D. J.; Hobbs,A. J.; Nagy, P.; Xian, M.; Lin, J.; Fukuto,J. M. Free Radical Biol. Med. 2014, 77,82.
doi: 10.1016/j.freeradbiomed.2014.09.007 |
(b) Park,C. -M.; Weerasinghe, L.; Day,J. J.; Fukuto,J. M.; Xian, M. Mol. Biosyst. 2015, 11,1775.
doi: 10.1039/C5MB00216H |
|
(c) Cuevasanta, E.; Moller,M. N.; Alvarez, B. Arch. Biochem. Biophys. 2017, 617,9.
doi: 10.1016/j.abb.2016.09.018 |
|
[4] |
(a) Everett,S. A.; Folkes,L. K.; Wardman, P.; Asmus,K. D. Free Radical Res. 1994, 20,387.
doi: 10.3109/10715769409145638 |
(b) Cuevasanta, E.; Lange, M.; Bonanata, J.; Laura Coitino, E.; Ferrer-Sueta, G.; Filipovic,M. R.; Alvarez, B. J. Biol. Chem. 2015, 290,26866.
doi: 10.1074/jbc.M115.672816 |
|
(c) Benchoam, D.; Semelak,J. A.; Cuevasanta, E.; Mastrogiovanni, M.; Grassano,J. S.; Ferrer-Sueta, G.; Zeida, A.; Trujillo, M.; Moller,M. N.; Estrin,D. A.; Alvarez, B. J. Biol. Chem. 2020, 295,15466.
doi: 10.1074/jbc.RA120.014728 |
|
[5] |
(a) Everett,S. A.; Wardman, P. Method Enzymol. 1995, 251,55.
|
(b) Jin, F.; Asatryan, R.; Bozzelli,J. W. Int. J. Quantum Chem. 2012, 112,1945.
doi: 10.1002/qua.v112.8 |
|
(c) Alvarez, L.; Bianco,C. L.; Toscano,J. P.; Lin, J.; Akaike, T.; Fukuto,J. M. Antioxid. Redox Signaling 2017, 27,622.
doi: 10.1089/ars.2017.7081 |
|
[6] |
Ida, T.; Sawa, T.; Ihara, H.; Tsuchiya, Y.; Watanabe, Y.; Kumagai, Y.; Suematsu, M.; Motohashi, H.; Fujii, S.; Matsunaga, T.; Yamamoto, M.; Ono, K.; Devarie-Baez,N. O.; Xian, M.; Fukuto,J. M.; Akaike, T. Proc. Natl. Acad. Sci. U. S. A. 2014, 111,7606.
doi: 10.1073/pnas.1321232111 |
[7] |
(a) Chen,X. L.; Jhee,K. H.; Kruger,W. D. J. Biol. Chem. 2004, 279,52082.
doi: 10.1074/jbc.C400481200 |
(b) Singh, S.; Padovani, D.; Leslie,R. A.; Chiku, T.; Banerjee, R. J. Biol. Chem. 2009, 284,22457.
doi: 10.1074/jbc.M109.010868 |
|
(c) Mishanina,A. V.; Libiad, M.; Banerjee, R. Nat. Chem. Biol. 2015, 11,457.
doi: 10.1038/nchembio.1834 |
|
[8] |
Akaike, T.; Ida, T.; Wei,F. -Y.; Nishida, M.; Kumagai, Y.; Alam,M. M.; Ihara, H.; Sawa, T.; Matsunaga, T.; Kasamatsu, S.; Nishimura, A.; Morita, M.; Tomizawa, K.; Nishimura, A.; Watanabe, S.; Inaba, K.; Shima, H.; Tanuma, N.; Jung, M.; Fujii, S.; Watanabe, Y.; Ohmuraya, M.; Nagy, P.; Feelisch, M.; Fukuto,J. M.; Motohashi, H. Nat. Commun. 2017, 8,1177.
doi: 10.1038/s41467-017-01311-y |
[9] |
(a) Toohey,J. I. Anal. Biochem. 2011, 413,1.
doi: 10.1016/j.ab.2011.01.044 |
(b) Greiner, R.; Palinkas, Z.; Baesell, K.; Becher, D.; Antelmann, H.; Nagy, P.; Dick,T. P. Antioxid. Redox Signaling 2013, 19,1749.
doi: 10.1089/ars.2012.5041 |
|
(c) Kimura, H. Free Radical Biol. Med. 2016, 96,S4.
|
|
(d) Yadav,P. K.; Martinov, M.; Vitvitsky, V.; Seravalli, J.; Wedmann, R.; Filipovic,M. R.; Banerjee, R. J. Am. Chem. Soc. 2016, 138,289.
doi: 10.1021/jacs.5b10494 |
|
[10] |
(a) Hildebrandt,T. M.; Grieshaber,M. K. FEBS J. 2008, 275,3352;.
doi: 10.1111/j.1742-4658.2008.06482.x |
(b) Libiad, M.; Yadav,P. K.; Vitvitsky, V.; Martinov, M.; Banerjee, R. J. Biol. Chem. 2014, 289,30901.
doi: 10.1074/jbc.M114.602664 |
|
(c) Landry,A. P.; Moon, S.; Kim, H.; Yadav,P. K.; Guha, A.; Cho,U. -S.; Banerjee, R. Cell Chem. Biol. 2019, 26,1515.
doi: 10.1016/j.chembiol.2019.09.010 |
|
[11] |
(a) Ihara, H.; Kasamatsu, S.; Kitamura, A.; Nishimura, A.; Tsutsuki, H.; Ida, T.; Ishizaki, K.; Toyama, T.; Yoshida, E.; Hamid,H. A.; Jung, M.; Matsunaga, T.; Fuji, S.; Sawa, T.; Nishida, M.; Kumagai, Y.; Akaike, T. Chem. Res. Toxicol. 2017, 30,1673.
doi: 10.1021/acs.chemrestox.7b00120 |
(b) Nishida, M.; Nishimura, A.; Matsunaga, T.; Motohashi, H.; Kasamatsu, S.; Akaike, T. Free Radical Biol. Med. 2017, 109,132.
doi: 10.1016/j.freeradbiomed.2017.01.024 |
|
(c) Khan, S.; Fujii, S.; Matsunaga, T.; Nishimura, A.; Ono, K.; Ida, T.; Ahmed,K. A.; Okamoto, T.; Tsutsuki, H.; Sawa, T.; Akaike, T. Cell Chem. Biol. 2018, 25,1403.
doi: 10.1016/j.chembiol.2018.08.007 |
|
[34] |
Dillon,K. M.; Morrison,H. A.; Powell,C. R.; Carrazzone,R. J.; Ringel-Scaia,V. M.; Winckler,E. W.; Council-Troche,R. M.; Allen,I. C.; Matson,J. B. Angew. Chem.,Int. Ed. 2021, 60,6061.
|
[11] |
(d) Kasamatsu, S. Antioxid. Redox Signaling 2020, 33,1320.
doi: 10.1089/ars.2020.8130 |
(e) Kanda, H.; Kumagai, Y. Yakugaku Zasshi 2020, 140,1119.
doi: 10.1248/yakushi.20-00096 |
|
[12] |
(a) Sawa, T.; Zaki,M. H.; Okamoto, T.; Akuta, T.; Tokutomi, Y.; Kim-Mitsuyama, S.; Ihara, H.; Kobayashi, A.; Yamamoto, M.; Fujii, S.; Arimoto, H.; Akaike, T. Nat. Chem. Biol. 2007, 3,727.
doi: 10.1038/nchembio.2007.33 |
(b) Fujii, S.; Sawa, T.; Ihara, H.; Tong,K. I.; Ida, T.; Okamoto, T.; Ahtesham,A. K.; Ishima, Y.; Motohashi, H.; Yamamoto, M.; Akaike, T. J. Biol. Chem. 2010, 285,23970.
doi: 10.1074/jbc.M110.145441 |
|
(c) Fujii, S.; Sawa, T.; Nishida, M.; Ihara, H.; Ida, T.; Motohashi, H.; Akaike, T. Arch. Biochem. Biophys. 2016, 595,140.
doi: 10.1016/j.abb.2015.11.008 |
|
[13] |
(a) Abiko, Y.; Yoshida, E.; Ishii, I.; Fukuto,J. M.; Akaike, T.; Kumagai, Y. Chem. Res. Toxicol. 2015, 28,1301.
doi: 10.1021/acs.chemrestox.5b00101 |
(b) Millikin, R.; Bianco,C. L.; White, C.; Saund,S. S.; Henriquez, S.; Sosa, V.; Akaike, T.; Kumagai, Y.; Soeda, S.; Toscano,J. P.; Lin, J.; Fukuto,J. M. Free Radical Biol. Med. 2016, 97,136.
doi: 10.1016/j.freeradbiomed.2016.05.013 |
|
(c) Zivanovic, J.; Kouroussis, E.; Schott-Roux, S.; Filipovic,M. R. Free Radical Biol. Med. 2017, 112,187.
|
|
(d) Ju, Y.; Fu, M.; Stokes, E.; Wu, L.; Yang, G. Molecules 2017, 22,1334.
doi: 10.3390/molecules22081334 |
|
(e) Aroca, A.; Gotor, C.; Romero,L. C. Front. Plant Sci. 2018, 9,1369.
doi: 10.3389/fpls.2018.01369 |
|
(f) Kimura, H. Brit. J. Pharmacol. 2020, 177,720.
doi: 10.1111/bph.v177.4 |
|
(g) Pedre, B.; Dick,T. P. Biol. Chem. 2021, 402,223.
doi: 10.1515/hsz-2020-0249 |
|
[14] |
(a) Bailey,T. S.; Zalcharov,L. N.; Pluth,M. D. J. Am. Chem. Soc. 2014, 136,10573.
doi: 10.1021/ja505371z |
(b) Bailey,T. S.; Pluth,M. D. Free Radical Biol. Med. 2015, 89,662.
doi: 10.1016/j.freeradbiomed.2015.08.017 |
|
[15] |
(a) Liang, D.; Wu, H.; Wong,M. W.; Huang, D. Org. Lett. 2015, 17,4196.
doi: 10.1021/acs.orglett.5b01962 |
(b) Cai,Y. -R.; Hu,C. -H. J. Phys. Chem. B 2017, 121,6359.
doi: 10.1021/acs.jpcb.7b03683 |
|
(c) Cerda,M. M.; Hammers,M. D.; Earp,M. S.; Zakharov,L. N.; Pluth,M. D. Org. Lett. 2017, 19,2314.
doi: 10.1021/acs.orglett.7b00858 |
|
(d) Nagai, S.; Yoshida, M.; Takigawa, Y.; Torii, S.; Koshiishi, I. Food Chem. 2020,128511.
|
|
[16] |
Zheng, Y.; Yu, B.; Li, Z.; Yuan, Z.; Organ,C. L.; Trivedi,R. K.; Wang, S.; Lefer,D. J.; Wang, B. Angew. Chem.,Int. Ed. 2017, 56,11749.
doi: 10.1002/anie.201704117 |
[17] |
Yuan, Z.; Zheng, Y.; Yu, B.; Wang, S.; Yang, X.; Wang, B. Org. Lett. 2018, 20,6364.
doi: 10.1021/acs.orglett.8b02611 |
[18] |
Jarosz,A. P.; Wei, W.; Gauld,J. W.; Auld, J.; Ozcan, F.; Aslan, M.; Mutus, B. Free Radical Biol. Med. 2015, 89,512.
doi: 10.1016/j.freeradbiomed.2015.09.007 |
[1] | 刘长俊, 胡慧玲, 刘宬宏, 朱超杰, 唐天地. 介孔ETS-10沸石担载Pd高效催化内炔氧化制备1,2-二酮[J]. 有机化学, 2023, 43(8): 2953-2960. |
[2] | 王余, 陈艺方, 罗鑫, 邢志富, 彭菊, 陈吉祥. 新型2-氰基丙烯酸酯(酰胺)类衍生物的设计合成及杀线虫活性研究[J]. 有机化学, 2023, 43(6): 2206-2216. |
[3] | 曹丽琴, 杨小琴, 李茂秋, 刘琳, 于俊婷, 谭华. 双极传输供体-受体(D-A)型铱(III)配合物近红外发光材料的合成及其电致发光性能[J]. 有机化学, 2022, 42(6): 1831-1838. |
[4] | 赵永梅, 穆叶舒, 罗稳, 田智勇. 胆碱酯酶抑制剂萘酰亚胺衍生物的合成与聚集诱导发光性质[J]. 有机化学, 2022, 42(3): 819-829. |
[5] | 杜川黔, 谢宝花, 贺明, 胡志烨, 刘豫, 何雪, 刘凡玉, 程晨, 周海兵, 黄胜堂, 董春娥. 新型吡喃并[2,3-b]萘醌类乙酰胆碱酯酶抑制剂的设计合成及生物活性研究[J]. 有机化学, 2020, 40(7): 2035-2044. |
[6] | 黄国保, 陈志林, 韦贤生, 陈钰, 李秀英, 仲辉, 谭明雄. 含有氢键供体大环化合物的构筑及其功能研究进展[J]. 有机化学, 2020, 40(3): 614-624. |
[7] | 胡曰富, 崔桂玲, 黄文才, 杨黎, 齐庆蓉. 二甲双胍硫化氢盐的合成、结构鉴定和稳定性研究[J]. 有机化学, 2019, 39(5): 1503-1508. |
[8] | 刘万冬, 杨雨, 李家明, 郭燕燕, 金凡, 张斌. 新型他克林-丁苯酞杂合物作为多靶点胆碱酯酶抑制剂的设计合成及活性评价[J]. 有机化学, 2019, 39(12): 3505-3515. |
[9] | 谢振达, 付曼琳, 尹彪, 朱勍. 1,8-萘酰亚胺类荧光探针在双光子成像中应用的研究进展[J]. 有机化学, 2018, 38(6): 1364-1376. |
[10] | 邓盾, 张云, 孙爱君, 赛克, 胡云峰. 一个新颖南极微生物酯酶EST112-2的功能鉴定和在手性叔醇(S)-芳樟醇制备中的应用[J]. 有机化学, 2018, 38(5): 1185-1192. |
[11] | 王兵, 李娜, 刘腾, 王英爱, 王晓静, 孙捷. 一氧化氮供体化合物的合成方法研究进展[J]. 有机化学, 2017, 37(4): 777-797. |
[12] | 梁光平, 曹佩雪, 杨秀虾, 黄正明, 刘青川, 梁光义, 徐必学. NO供体型马蹄金素衍生物的合成及其初步的抗乙肝病毒活性[J]. 有机化学, 2014, 34(5): 973-979. |
[13] | 许守慧, 刘浩然, 娄定辉, 汪秋安. 查尔酮Mannich碱衍生物的合成与AChE抑制活性研究[J]. 有机化学, 2014, 34(4): 749-755. |
[14] | 钟书明, 卫沈旗, 刘允, 唐煌. 6-(烷胺酰肼基)-1-氮杂苯并蒽酮衍生物的合成及生物活性研究[J]. 有机化学, 2014, 34(1): 137-146. |
[15] | 郭永彪, 刘海波, 许明. 新型他克林-吲哚杂二联体的微波促进Husigen [3+2]环加成反应合成及生物活性[J]. 有机化学, 2012, 32(02): 413-419 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||