有机化学 ›› 2021, Vol. 41 ›› Issue (9): 3682-3691.DOI: 10.6023/cjoc202104005 上一篇 下一篇
研究论文
南光明a, 詹靖波a, 原春鸣a, 文丽荣b,*(), 李明a,b,*()
收稿日期:
2021-04-02
修回日期:
2021-05-26
发布日期:
2021-06-17
通讯作者:
文丽荣, 李明
基金资助:
Guangming Nana, Jingbo Zhana, Chunming Yuana, Lirong Wenb(), Ming Lia,b()
Received:
2021-04-02
Revised:
2021-05-26
Published:
2021-06-17
Contact:
Lirong Wen, Ming Li
Supported by:
文章分享
建立了一种通过NEt3促进的β-羰基硫代酰胺(KTAs)和邻亚甲基苯醌(o-QMs)环合来合成高度取代的4H-色烯衍生物的新方法. 该方法涉及一个串联序列, 该序列包括1,6-共轭加成/O-环化/开环/O-环化. 该过程表现出良好的官能团耐受性及可扩展性, 且操作简单.
南光明, 詹靖波, 原春鸣, 文丽荣, 李明. 三乙胺促进的邻亚甲基苯醌与β-羰基硫代酰胺的[4+2]环加成反应构建功能化4H-色烯衍生物[J]. 有机化学, 2021, 41(9): 3682-3691.
Guangming Nan, Jingbo Zhan, Chunming Yuan, Lirong Wen, Ming Li. NEt3-Promoted Construction of Functionalized 4H-Chromenes via [4+2] Cycloaddition Reaction of ortho-Quinone Methides with β-Ketothioamides[J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3682-3691.
Entry | n(1a)∶n(2a) | Base (equiv.) | Solvent | T/℃ | Yield/% |
---|---|---|---|---|---|
1 | 1∶1 | NEt3 (1) | EtOH | 70 | 66 |
2 | 1∶1 | — | EtOH | 70 | Trace |
3 | 1∶1 | DIPEA (1) | EtOH | 70 | 60 |
4 | 1∶1 | DABCO (1) | EtOH | 70 | 57 |
5 | 1∶1 | DBU (1) | EtOH | 70 | Trace |
6 | 1∶1 | DMAP (1) | EtOH | 70 | 65 |
7 | 1∶1 | Pyridine (1) | EtOH | 70 | 35 |
8 | 1∶1 | PPh3 (1) | EtOH | 70 | 32 |
9 | 1∶1 | K2CO3 (1) | EtOH | 70 | Trace |
10 | 1∶1 | NEt3 (0.5) | EtOH | 70 | 77 |
11 | 1∶1 | NEt3 (0.2) | EtOH | 70 | 72 |
12 | 1∶1 | NEt3 (0.5) | — | 90 | 40 |
13 | 1∶1 | NEt3 (0.5) | HFIP | 70 | 72 |
14 | 1∶1 | NEt3 (0.5) | CH3OH | 70 | 63 |
15 | 1∶1 | NEt3 (0.5) | TFE | 70 | 65 |
16 | 1∶1 | NEt3 (0.5) | CH3CN | 70 | 65 |
17 | 1∶1 | NEt3 (0.5) | DCE | 70 | 63 |
18 | 1∶1 | NEt3 (0.5) | THF | 70 | 55 |
19 | 1∶1 | NEt3 (0.5) | Toluene | 70 | 50 |
20 | 1∶1 | NEt3 (0.5) | EtOH | 80 | 75 |
21 | 1∶1 | NEt3 (0.5) | EtOH | 60 | 69 |
22 | 1∶1.2 | NEt3 (0.5) | EtOH | 70 | 85 |
23 | 1.2∶1 | NEt3 (0.5) | EtOH | 70 | 75 |
24 | 1∶1.5 | NEt3 (0.5) | EtOH | 70 | 84 |
25c | 1∶1.2 | NEt3 (0.5) | EtOH | 70 | 72 |
Entry | n(1a)∶n(2a) | Base (equiv.) | Solvent | T/℃ | Yield/% |
---|---|---|---|---|---|
1 | 1∶1 | NEt3 (1) | EtOH | 70 | 66 |
2 | 1∶1 | — | EtOH | 70 | Trace |
3 | 1∶1 | DIPEA (1) | EtOH | 70 | 60 |
4 | 1∶1 | DABCO (1) | EtOH | 70 | 57 |
5 | 1∶1 | DBU (1) | EtOH | 70 | Trace |
6 | 1∶1 | DMAP (1) | EtOH | 70 | 65 |
7 | 1∶1 | Pyridine (1) | EtOH | 70 | 35 |
8 | 1∶1 | PPh3 (1) | EtOH | 70 | 32 |
9 | 1∶1 | K2CO3 (1) | EtOH | 70 | Trace |
10 | 1∶1 | NEt3 (0.5) | EtOH | 70 | 77 |
11 | 1∶1 | NEt3 (0.2) | EtOH | 70 | 72 |
12 | 1∶1 | NEt3 (0.5) | — | 90 | 40 |
13 | 1∶1 | NEt3 (0.5) | HFIP | 70 | 72 |
14 | 1∶1 | NEt3 (0.5) | CH3OH | 70 | 63 |
15 | 1∶1 | NEt3 (0.5) | TFE | 70 | 65 |
16 | 1∶1 | NEt3 (0.5) | CH3CN | 70 | 65 |
17 | 1∶1 | NEt3 (0.5) | DCE | 70 | 63 |
18 | 1∶1 | NEt3 (0.5) | THF | 70 | 55 |
19 | 1∶1 | NEt3 (0.5) | Toluene | 70 | 50 |
20 | 1∶1 | NEt3 (0.5) | EtOH | 80 | 75 |
21 | 1∶1 | NEt3 (0.5) | EtOH | 60 | 69 |
22 | 1∶1.2 | NEt3 (0.5) | EtOH | 70 | 85 |
23 | 1.2∶1 | NEt3 (0.5) | EtOH | 70 | 75 |
24 | 1∶1.5 | NEt3 (0.5) | EtOH | 70 | 84 |
25c | 1∶1.2 | NEt3 (0.5) | EtOH | 70 | 72 |
[1] |
(a) Pratap, R.; Ram, V. J. Chem. Rev. 2014, 114, 10476.
doi: 10.1021/cr500075s pmid: 11828478 |
(b) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
doi: 10.1021/cr020033s pmid: 11828478 |
|
(c) Lu, Z.-Y.; Lin, Z.-J.; Wang, W.-L.; Du, L.; Zhu, T.-J.; Fang, Y.-C.; Gu, Q.-Q.; Zhu, W.-M. J. Nat. Prod. 2008, 71, 543.
doi: 10.1021/np0704708 pmid: 11828478 |
|
(d) Costa, M.; Dias, T. A.; Brito, A.; Proença, F. Eur. J. Med. Chem. 2016, 123, 487.
doi: 10.1016/j.ejmech.2016.07.057 pmid: 11828478 |
|
(e) Das, S. G.; Srinivasan, B.; Hermanson, D. L.; Bleeker, N. P.; Doshi, J. M.; Tang, R.; Beck, W. T.; Xing, C. J. Med. Chem. 2011, 54, 5937.
pmid: 11828478 |
|
(f) Nicolaou, K. C.; Roecker, A. J.; Barluenga, S.; Pfefferkorn, J. A.; Cao, G.-Q. ChemBioChem 2001, 2, 460.
pmid: 11828478 |
|
[2] |
(a) Zhang, Z.; ElSohly, H. N.; Li, X.-C.; Khan, S. I.; Broedel, S. E.; Raulli, R. E.; Cihlar, R. L.; Burandt, C.; Walker, L. A. J. Nat. Prod. 2003, 66, 548.
doi: 10.1021/np020442j |
(b) Hufford, C. D.; Oguntimein, B. O.; Engen, D. V.; Muthard, D.; Clardy, J. J. Am. Chem. Soc. 1980, 102, 7365.
doi: 10.1021/ja00544a037 |
|
[3] |
(a) Azziz, R.; Ehrmann, D.; Legro, R. S.; Whitcomb, R. W.; Hanley, R.; Fereshetian, A. G.; O'Keefe, M.; Ghazzi, M. N. J. Clin. Endocrinol. Metab. 2001, 86, 1626.
|
(b) Yaghoub, P.; Fatemeh, Z.; Khalil, E.; Mahshid, T.; Laleh, M.; Mahnaz, A.; Arash, K.; Reza, S.; Ehsan, F.-M.; Ali, A. J. Nanosci. Nanotechnol. 2020, 20, 3206.
doi: 10.1166/jnn.2020.17396 |
|
[4] |
Das, S. G.; Doshi, J. M.; Tian, D.; Addo, S. N.; Srinivasan, B.; Hermanson, D. L.; Xing, C. J. Med. Chem. 2009, 52, 5937.
doi: 10.1021/jm9005059 |
[5] |
Chansakaow, S.; Ishikawa, T.; Seki, H.; Sekine, K.; Okada, M.; Chaichantipyuth, C. J. Nat. Prod. 2000, 63, 173.
pmid: 10691701 |
[6] |
(a) Tian, D.; Das, S. G.; Doshi, J. M.; Peng, J.; Lin, J.; Xing, C. Cancer Lett. 2008, 259, 198.
doi: 10.1016/j.canlet.2007.10.012 |
(b) Gourdeau, H.; Leblond, L.; Hamelin, B.; Desputeau, C.; Dong, K.; Kianicka, I.; Custeau, D.; Boudreau, C.; Geerts, L.; Cai, S.-X.; Drewe, J.; Labrecque, D.; Kasibhatla, S.; Tseng, B. Mol. Cancer Ther. 2004, 3, 1375.
|
|
[7] |
(a) Groweiss, A.; Cardellina, J. H.; Boyd, M. R. J. Nat. Prod. 2000, 63, 1537.
pmid: 11302799 |
(b) Sabry, N. M.; Mohamed, H. M.; Khattab, E. S. A.; Motlaq, S. S.; El-Agrody, A. M. Eur. J. Med. Chem. 2011, 46, 765.
doi: 10.1016/j.ejmech.2010.12.015 pmid: 11302799 |
|
(c) Creagh, T.; Ruckle, J. L.; Tolbert, D. T.; Giltner, J.; Eiznhamer, D. A.; Dutta, B.; Flavin, M. T.; Xu, Z.-Q. Antimicrob. Agents Chemother. 2001, 45, 1379.
pmid: 11302799 |
|
[8] |
(a) Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Eur. J. Med. Chem. 1993, 28, 517.
doi: 10.1016/0223-5234(93)90020-F pmid: 19232450 |
(b) Alvey, L.; Prado, S.; Saint-Joanis, B.; Michel, S.; Koch, M.; Cole, S. T.; Tillequin, F.; Janin, Y. L. Eur. J. Med. Chem. 2009, 44, 2497.
doi: 10.1016/j.ejmech.2009.01.017 pmid: 19232450 |
|
[9] |
Santhisudha, S.; Sreekanth, T.; Murali, S.; Kumar, B. V.; Devi, M. A.; Reddy, C. S. Cardiovasc. Hematol. Agents Med. Chem. 2016, 14, 167.
doi: 10.2174/1871525714666161205101225 |
[10] |
Mori, K.; Audran, G.; Monti, H. Synlett 1998, 259.
|
[11] |
Pietta, P.-G. J. Nat. Prod. 2000, 63, 1035.
pmid: 10924197 |
[12] |
(a) Shi, Y.-L.; Shi, M. Org. Biomol. Chem. 2007, 5, 1499.
doi: 10.1039/B618984A pmid: 20446707 |
(b) Mei, G.-J.; Xu, S.-L.; Zheng, W.-Q.; Bian, C.-Y.; Shi, F. J. Org. Chem. 2018, 83, 1414.
doi: 10.1021/acs.joc.7b02942 pmid: 20446707 |
|
(c) Wang, M.; Tang, B.-C.; Xiang, J.-C.; Cheng, Y.; Wang, Z.-X.; Ma, J.-T.; Wu, Y.-D.; Wu, A.-X. J. Org. Chem. 2018, 83, 3409.
doi: 10.1021/acs.joc.8b00126 pmid: 20446707 |
|
(d) Xu, W.; Li, Q.; Wang, W.; Zheng, H.; Zhang, F.; Hu, Y. RSC Adv. 2015, 5, 56333.
doi: 10.1039/C5RA11333D pmid: 20446707 |
|
(e) Bhunia, A.; Yetra, S. R.; Gonnade, R. G.; Biju, A. T. Org. Biomol. Chem. 2016, 14, 5612.
doi: 10.1039/c6ob00654j pmid: 20446707 |
|
(f) Ma, C.; Zhao, Y. Org. Biomol. Chem. 2018, 16, 703.
doi: 10.1039/C7OB02941A pmid: 20446707 |
|
(g) Wu, B.; Gao, X.; Yan, Z.; Chen, M.-W.; Zhou, Y.-G. Org. Lett. 2015, 17, 6134.
doi: 10.1021/acs.orglett.5b03148 pmid: 20446707 |
|
(h) Tahtaoui, C.; Demailly, A.; Guidemann, C.; Joyeux, C.; Schneider, P. J. Org. Chem. 2010, 75, 3781.
doi: 10.1021/jo100566c pmid: 20446707 |
|
[13] |
(a) Zhang, L.; Dong, J.; Xu, X.; Liu, Q. Chem. Rev. 2016, 116, 287.
doi: 10.1021/acs.chemrev.5b00360 pmid: 25322460 |
(b) Guo, W.-S.; Wen, L.-R.; Li, M. Org. Biomol. Chem. 2015, 13, 1942.
doi: 10.1039/C4OB02024C pmid: 25322460 |
|
(c) Luo, X.; Ge, L.-S.; An, X.-L.; Jin, J.-H.; Wang, Y.; Sun, P.-P.; Deng, W.-P. J. Org. Chem. 2015, 80, 4611.
doi: 10.1021/acs.joc.5b00488 pmid: 25322460 |
|
(d) Singh, M. S.; Nandi, G. C.; Samai, S. Green Chem. 2012, 14, 447.
doi: 10.1039/c1gc16129f pmid: 25322460 |
|
(e) Huang, F.; Wu, P.; Wang, L.; Chen, J.; Sun, C.; Yu, Z. J. Org. Chem. 2014, 79, 10553.
doi: 10.1021/jo5014542 pmid: 25322460 |
|
(f) Huang, F.; Wu, P.; Wang, L.; Chen, J.; Sun, C. Yu, Z. Chem. Commun. 2014, 50, 12479.
doi: 10.1039/C4CC05837B pmid: 25322460 |
|
(g) Nandi, G. C.; Soumini, K. J. Org. Chem. 2016, 81, 11909.
doi: 10.1021/acs.joc.6b02367 pmid: 25322460 |
|
(h) Nandi, G. C.; Singh, M. S. J. Org. Chem. 2016, 81, 5824.
doi: 10.1021/acs.joc.6b00342 pmid: 25322460 |
|
(i) Ansari, M. A.; Yadav, D.; Soni, S.; Srivastava, A.; Singh, M. S. J. Org. Chem. 2019, 84, 5404.
doi: 10.1021/acs.joc.9b00406 pmid: 25322460 |
|
[14] |
Wen, L.-R.; Men, L.-B.; He, T.; Ji, G.-J.; Li, M. Chem.-Eur. J. 2014, 20, 5028.
doi: 10.1002/chem.201304497 pmid: 24643848 |
[15] |
Man, N.-N.; Wang, J.-Q.; Zhang, L.-M.; Wen, L.-R.; Li, M. J. Org. Chem. 2017, 82, 5566.
doi: 10.1021/acs.joc.7b00371 |
[16] |
Guo, W.-S.; Xin, X.; Zhao, K.-L.; Wen, L.-R.; Li, M. RSC Adv. 2015, 5, 70429.
doi: 10.1039/C5RA13395E |
[17] |
Li, M.; Hou, Y.-L.; Wen, L.-R.; Gong, F.-M. J. Org. Chem. 2010, 75, 8522.
doi: 10.1021/jo101902z |
[18] |
(a) Zhao, K.; Zhi, Y.; Shu, T.; Valkonen, A.; Rissanen, K.; Enders, D. Angew. Chem., Int. Ed. 2016, 55, 12104.
doi: 10.1002/anie.201606947 |
(b) Wang, J.-Y.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Org. Chem. Front. 2020, 7, 1743.
doi: 10.1039/D0QO00387E |
|
(c) Mao, W.; Lin, S.; Zhang, S.; Lu, H.; Jia, J.; Xu, Z. Org. Chem. Front. 2020, 7, 856.
doi: 10.1039/D0QO00022A |
|
(d) Zhou, S.-J.; Cheng, X.; Hu, C.-X.; Xu, G.-Y.; Xiao, W.-J.; Xuan, J. Sci. China: Chem. 2021, 64, 61.
|
|
[19] |
For examples on [4+1] cyclizations of o-hydroxyphenyl substituted p-QMs: (a) Xiong, Y.-J.; Shi, S.-Q.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Org. Chem. Front. 2018, 5, 3483.
doi: 10.1039/C8QO00950C pmid: 31490078 |
(b) Liu, L.; Yuan, Z.; Pan, R.; Zeng, Y.; Lin, A.; Yao, H.; Huang, Y. Org. Chem. Front. 2018, 5, 623.
doi: 10.1039/C7QO00846E pmid: 31490078 |
|
(c) Zhi, Y.; Zhao, K.; Essen, C.; Rissanen, K.; Enders, D. Org. Chem. Front. 2018, 5, 1348.
doi: 10.1039/C8QO00008E pmid: 31490078 |
|
(d) Liou, Y.-C.; Karanam, P.; Jang, Y.-J.; Lin, W. Org. Lett. 2019, 21, 8008.
doi: 10.1021/acs.orglett.9b03001 pmid: 31490078 |
|
(e) Tan, J.-P.; Yu, P.; Wu, J.-H.; Chen, Y.; Pan, J.; Jiang, C.; Ren, X.; Zhang, H.-S.; Wang, T. Org. Lett. 2019, 21, 7298.
doi: 10.1021/acs.orglett.9b02560 pmid: 31490078 |
|
[20] |
For examples on [4+3] cyclizations of o-hydroxyphenyl substituted p-QMs: (a) Chen, K.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Green Chem. 2019, 21, 675.
doi: 10.1039/c8gc03593h |
(b) Li, W.; Yuan, H.; Liu, Z.; Zhang, Z.; Cheng, Y.; Li, P. Adv. Synth. Catal. 2018, 360, 2460.
doi: 10.1002/adsc.v360.13 |
|
(c) Liu, Q.; Li, S.; Chen, X.-Y.; Rissanen, K.; Enders, D. Org. Lett. 2018, 20, 3622.
doi: 10.1021/acs.orglett.8b01400 |
|
(d) Jiang, F.; Yuan, F.-R.; Jin, L.-W.; Mei, G.-J.; Shi, F. ACS Catal. 2018, 8, 10234.
doi: 10.1021/acscatal.8b03410 |
|
(e) Sun, M.; Ma, C.; Zhou, S.-J.; Lou, S.-F.; Xiao, J.; Jiao, Y.; Shi, F. Angew. Chem., Int. Ed. 2019, 58, 8703.
doi: 10.1002/anie.v58.26 |
|
[21] |
For examples on [4+2] cyclizations of o-hydroxyphenyl substituted p-QMs: (a) Liu, S.; Lan, X.-C.; Chen, K.; Hao, W.-J.; Li, G.; Tu, S.-J.; Jiang, B. Org. Lett. 2017, 19, 3831.
doi: 10.1021/acs.orglett.7b01705 pmid: 28991314 |
(b) Zhang, L.; Liu, Y.; Liu, K.; Liu, Z.; He, N.; Li, W. Org. Biomol. Chem. 2017, 15, 8743.
doi: 10.1039/c7ob02325a pmid: 28991314 |
|
(c) Zhang, Z.-P.; Xie, K.-X.; Yang, C.; Li, M.; Li, X. J. Org. Chem. 2018, 83, 364.
doi: 10.1021/acs.joc.7b02750 pmid: 28991314 |
|
(d) Mei, G.-J.; Xu, S.-L.; Zheng, W.-Q.; Bian, C.-Y.; Shi, F. J. Org. Chem. 2018, 83, 1414.
doi: 10.1021/acs.joc.7b02942 pmid: 28991314 |
|
(e) Jiang, X.-L.; Wu, S.-F.; Wang, J.-R.; Mei, G.-J.; Shi, F. Adv. Synth. Catal. 2018, 360, 4225.
doi: 10.1002/adsc.v360.21 pmid: 28991314 |
|
(f) Zhou, J.-Y.; Ma, C.; Zhang, Y.-Z.; Wu, Q.; Shi, F. Org. Biomol. Chem. 2018, 16, 9382.
doi: 10.1039/C8OB02776E pmid: 28991314 |
|
(g) Satbhaiya, S.; Khonde, N. S.; Rathod, J.; Gonnade, R.; Kumar, P. Eur. J. Org. Chem. 2019, 3127.
pmid: 28991314 |
|
(h) Huang, H.-M.; Wu, X.-Y.; Leng, B.-R.; Zhu, Y.-L.; Meng, X.-C.; Hong, Y.; Jiang, B.; Wang, D.-C. Org. Chem. Front. 2020, 7, 414.
doi: 10.1039/C9QO01343A pmid: 28991314 |
|
(i) Zhang, J.-R.; Jin, H.-S.; Wang, R.-B.; Zha, L.-M. Adv. Synth. Catal. 2019, 361, 4811.
doi: 10.1002/adsc.v361.20 pmid: 28991314 |
|
(j) Yuan, F.-R.; Jiang, F.; Chen, K.-W.; Mei, G.-J.; Wu, Q.; Shi, F. Org. Biomol. Chem. 2019, 17, 2361.
doi: 10.1039/C8OB02979B pmid: 28991314 |
|
(k) Tan, J.-P.; Zhang, H.; Jiang, Z.; Chen, Y.; Ren, X.; Jiang, C.; Wang, T. Adv. Synth. Catal. 2020, 362, 1058.
doi: 10.1002/adsc.201901413 pmid: 28991314 |
|
(l) Cheng, X.; Zhou, S.-J.; Xu, G.-Y.; Wang, L.; Yang, Q.-Q.; Xuan, J. Adv. Synth. Catal. 2020, 362, 523.
doi: 10.1002/adsc.v362.3 pmid: 28991314 |
|
(m) Zhang, Z.-P.; Chen, L.; Li, X.; Cheng, J.-P. J. Org. Chem. 2018, 83, 2714.
doi: 10.1021/acs.joc.7b03177 pmid: 28991314 |
|
[22] |
(a) Zhao, K.; Zhi, Y.; Shu, T.; Valkonen, A.; Rissanen, K.; Enders, D. Angew. Chem., Int. Ed. 2016, 55, 12104.
doi: 10.1002/anie.201606947 |
(b) Liu, S.; Lan, X.-C.; Chen, K.; Hao, W.-J.; Li, G.; Tu, S.-J.; Jiang, B. Org. Lett. 2017, 19, 3831.
doi: 10.1021/acs.orglett.7b01705 |
|
(c) Jiang, X.-L.; Wu, S.-F.; Wang, J.-R.; Mei, G.-J.; Shi, F. Adv. Synth. Catal. 2018, 360, 4225.
doi: 10.1002/adsc.v360.21 |
|
[23] |
(a) Mei, G.-J.; Xu, S.-L.; Zheng, W.-Q.; Bian, C.-Y.; Shi, F. J. Org. Chem. 2018, 83, 1414.
doi: 10.1021/acs.joc.7b02942 |
(b) Wang, C.-S.; Cheng, Y.-C.; Zhou, J.; Mei, G.-J.; Wang, S.-L.; Shi, F. J. Org. Chem. 2018, 83, 13861.
doi: 10.1021/acs.joc.8b02186 |
|
[24] |
(a) Satbhaiya, S.; Khonde, N. S.; Rathod, J.; Gonnade, R.; Kumar, P. Eur. J. Org. Chem. 2019, 3127.
|
(b) Zhang, L.; Zhou, X.; Li, P.; Liu, Z.; Liu, Y.; Sun, Y.; Li, W. RSC Adv. 2017, 7, 39216.
doi: 10.1039/C7RA08157J |
|
(c) Cheng, Y.-C.; Wang, C.-S.; Li, T.-Z.; Gao, F.; Jiao, Y.; Shi, F. Org. Biomol. Chem. 2019, 17, 6662.
doi: 10.1039/C9OB00918C |
|
[25] |
Li, W.; Shi, Z.; Zhou, X.CN 106674178, 2017.
|
[26] |
(a) Yuan, W.-K.; Cui, T.; Liu, W.; Wen, L.-R.; Li, M. Org. Lett. 2018, 20, 1513.
doi: 10.1021/acs.orglett.8b00217 pmid: 30821152 |
(b) Guo, W.-S.; Gong, H.; Zhang, Y.-A.; Wen, L.-R.; Li, M. Org. Lett. 2018, 20, 6394.
doi: 10.1021/acs.orglett.8b02697 pmid: 30821152 |
|
(c) Zhang, L.-B.; Zhu, M.-H.; Ni, S.-F.; Wen, L.-R.; Li, M. ACS Catal. 2019, 9, 1680.
doi: 10.1021/acscatal.8b04933 pmid: 30821152 |
|
(d) Yuan, W.-K.; Zhu, M.-H.; Geng, R.-S.; Ren, G.-Y.; Zhang, L.-B.; Wen, L.-R.; Li, M. Org. Lett. 2019, 21, 1654.
doi: 10.1021/acs.orglett.9b00181 pmid: 30821152 |
[1] | 王海清, 杨爽, 张宇辰, 石枫. 邻羟基苄醇参与的催化不对称反应研究进展[J]. 有机化学, 2023, 43(3): 974-999. |
[2] | 李文娟, 张睿, 蔡志华, 韩小强, 何林, 代斌. 苯炔[3+2]环加成反应构建三氟甲基取代的苯并环状亚砜亚胺衍生物及其杀棉蚜活性研究[J]. 有机化学, 2022, 42(9): 2832-2839. |
[3] | 夏超, 王东超, 郭海明. 三氟甲磺酸钪催化嘌呤与邻羟基苄醇反应构建非环核苷[J]. 有机化学, 2021, 41(11): 4391-4399. |
[4] | 张硕, 赵宁, 李庆刚, 张嘉祺, 侯梓桐, 刘一帆, 于一涛, 彭丹, 王峰, 李冰, 李金辉. Sc(Ⅲ)催化胺对邻亚甲基苯醌氮杂迈克尔加成反应合成贝蒂碱衍生物[J]. 有机化学, 2019, 39(3): 709-719. |
[5] | 张硕, 彭丹, 赵宁, 于一涛, 王峰, 刘海龙, 伊港. 三氟甲烷磺酸钪催化醇对邻亚甲基苯醌的氧杂迈克尔加成反应[J]. 有机化学, 2019, 39(2): 555-560. |
[6] | 江晓莉, 戴伟, 赵佳佳, 石枫. 布朗斯特酸催化下邻羟基苯乙烯与吲哚的反应——1,1-二芳基乙烷类化合物的合成[J]. 有机化学, 2016, 36(5): 1014-1020. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||