有机化学 ›› 2021, Vol. 41 ›› Issue (11): 4138-4153.DOI: 10.6023/cjoc202107044 上一篇 下一篇
综述与进展
收稿日期:
2021-07-21
修回日期:
2021-08-13
发布日期:
2021-08-24
通讯作者:
陈迁
基金资助:
Received:
2021-07-21
Revised:
2021-08-13
Published:
2021-08-24
Contact:
Qian Chen
Supported by:
文章分享
含有C(sp3)—P键的有机磷化合物被广泛应用于有机合成、生物有机和药物化学、农药、阻燃剂和萃取剂等领域中. 近年来, C—H键的直接磷酰化受到了广泛关注, 该策略在构建C—P键中显示出更为简洁、高效和原子经济性等优势. 综述了自2009年以来以仲膦氧化物和亚磷酸酯为磷源的C(sp3)—H磷酰化反应的研究进展, 根据C(sp3)—H键的类型, 对磷酰化反应分为五类进行介绍.
黄远婷, 陈迁. 基于仲膦氧化物和亚磷酸酯的C(sp3)—H磷酰化反应研究进展[J]. 有机化学, 2021, 41(11): 4138-4153.
Yuanting Huang, Qian Chen. Recent Advances in C(sp3)—H Phosphorylation Based on Secondary Phosphine Oxides and Phosphite Esters[J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4138-4153.
Entry | Amine | P-Nucleophile | Catalyst | Condition | Yield/% | Ref. |
---|---|---|---|---|---|---|
1 | R1, R2=H | R3=OAlkyl | FeCl2 | TBHP, MeOH, r.t.~reflux | 57~84 | [10] |
2 | N-Aryl THIQs | R3=OAlkyl | MoO3 | O2, MeOH, 60 ℃ | 86~95 | [12] |
3 | N-Aryl THIQs or R1, R2=H | R3=OAlkyl, Ar | | Air, CH3CN, 50 or 60 ℃ | 37~94 | [13] |
4 | N-Phenyl THIQ | R3=OAlkyl | NaSbCl6(α-NaphNO2), NHPI | O2, CH3CN, 40 ℃ | 81~90 | [14] |
5 | N-Aryl THIQs or R1, R2=H, alkyl | R3=OMe, OEt | AuNPore | O2 or TBHP, CH3CN, 80 ℃ | 52~90 | [15] |
6 | R1, R2=alkyl | R3=Ph | [Rh(COD)Cl]2, Ag2CO3 | Dioxane, 80 ℃ | 55~82 | [16] |
7 | N-Phenyl THIQ | R3=OEt, Ar | [Cu(Sal)2(NCMe)]2, TBAC | O2, CH3CN, 30 or 60 ℃ | 50~95 | [17] |
8 | N-Aryl THIQs | R3=OAlkyl | Fe(NO3)3•9H2O | Air, EtOH, 30 ℃ | 55~93 | [18] |
9 | N-Aryl THIQs | R3=OAlkyl | Co(OAc)2•4H2O, NHPI | O2, CH3CN, r.t. | 66~80 | [19] |
10 | N-Aryl THIQs | R3=OAlkyl, Ph | Co(OAc)2, NHPI | Air, CH3CN, 80 ℃ | 68~100 | [20] |
11 | | R3=OAlkyl, Ar | Cu(OTf)2 | p-Benzoquinone, CH3CN, 70 ℃ | 53~73 | [21] |
12 | N-Aryl THIQs | R3=OAlkyl, Ph | CoNiFe-LDH | O2, dioxane, 80 ℃ | 36~86 | [22] |
Entry | Amine | P-Nucleophile | Catalyst | Condition | Yield/% | Ref. |
---|---|---|---|---|---|---|
1 | R1, R2=H | R3=OAlkyl | FeCl2 | TBHP, MeOH, r.t.~reflux | 57~84 | [10] |
2 | N-Aryl THIQs | R3=OAlkyl | MoO3 | O2, MeOH, 60 ℃ | 86~95 | [12] |
3 | N-Aryl THIQs or R1, R2=H | R3=OAlkyl, Ar | | Air, CH3CN, 50 or 60 ℃ | 37~94 | [13] |
4 | N-Phenyl THIQ | R3=OAlkyl | NaSbCl6(α-NaphNO2), NHPI | O2, CH3CN, 40 ℃ | 81~90 | [14] |
5 | N-Aryl THIQs or R1, R2=H, alkyl | R3=OMe, OEt | AuNPore | O2 or TBHP, CH3CN, 80 ℃ | 52~90 | [15] |
6 | R1, R2=alkyl | R3=Ph | [Rh(COD)Cl]2, Ag2CO3 | Dioxane, 80 ℃ | 55~82 | [16] |
7 | N-Phenyl THIQ | R3=OEt, Ar | [Cu(Sal)2(NCMe)]2, TBAC | O2, CH3CN, 30 or 60 ℃ | 50~95 | [17] |
8 | N-Aryl THIQs | R3=OAlkyl | Fe(NO3)3•9H2O | Air, EtOH, 30 ℃ | 55~93 | [18] |
9 | N-Aryl THIQs | R3=OAlkyl | Co(OAc)2•4H2O, NHPI | O2, CH3CN, r.t. | 66~80 | [19] |
10 | N-Aryl THIQs | R3=OAlkyl, Ph | Co(OAc)2, NHPI | Air, CH3CN, 80 ℃ | 68~100 | [20] |
11 | | R3=OAlkyl, Ar | Cu(OTf)2 | p-Benzoquinone, CH3CN, 70 ℃ | 53~73 | [21] |
12 | N-Aryl THIQs | R3=OAlkyl, Ph | CoNiFe-LDH | O2, dioxane, 80 ℃ | 36~86 | [22] |
Entry | Amine | P-Nucleophile | Oxidant | Condition | Yield/% | Ref. |
---|---|---|---|---|---|---|
1 | N-Aryl THIQs | R3=OAlkyl | DDQ (10 mol%), AIBN (10 mol%), O2 | MeOH, 60 ℃ | 75~86 | [ |
2 | N-Aryl THIQs | R3=OAlkyl | I2 (10 mol%), O2 | MeOH, r.t. | 45~75 | [ |
3 | N-Aryl THIQs | R3=OAlkyl, Ph | TBPA+•SbCl6- (10 mol%), air | THF, r.t. | 73~97 | [ |
4 | N-Phenyl THIQ | R3=OAlkyl | CBr4, air | THF, r.t. | 80~84 | [ |
5 | N-Aryl THIQs or R1=R2=H | R3=OEt | Thiourea (20 mol%), TBHP | CH3CN, 50 ℃ | 23~89 | [ |
6 | N-Aryl THIQs | R3=OAlkyl | Air | DCE, 80 ℃ | 28~78 | [ |
7 | N-Aryl THIQs | R3=OAlkyl, Ph | TBHP | CH3CN, 80 ℃ | 50~92 | [ |
Entry | Amine | P-Nucleophile | Oxidant | Condition | Yield/% | Ref. |
---|---|---|---|---|---|---|
1 | N-Aryl THIQs | R3=OAlkyl | DDQ (10 mol%), AIBN (10 mol%), O2 | MeOH, 60 ℃ | 75~86 | [ |
2 | N-Aryl THIQs | R3=OAlkyl | I2 (10 mol%), O2 | MeOH, r.t. | 45~75 | [ |
3 | N-Aryl THIQs | R3=OAlkyl, Ph | TBPA+•SbCl6- (10 mol%), air | THF, r.t. | 73~97 | [ |
4 | N-Phenyl THIQ | R3=OAlkyl | CBr4, air | THF, r.t. | 80~84 | [ |
5 | N-Aryl THIQs or R1=R2=H | R3=OEt | Thiourea (20 mol%), TBHP | CH3CN, 50 ℃ | 23~89 | [ |
6 | N-Aryl THIQs | R3=OAlkyl | Air | DCE, 80 ℃ | 28~78 | [ |
7 | N-Aryl THIQs | R3=OAlkyl, Ph | TBHP | CH3CN, 80 ℃ | 50~92 | [ |
Entry | Amine | P-Nucleophile | PC, light source | Condition | Yield/% | Ref. |
---|---|---|---|---|---|---|
1 | N-Aryl THIQs | R3=OAlkyl, OPh | 5 W fluorescent bulb | Air, toluene/H2O, r.t. | 39~91 | [32] |
2 | N-Aryl THIQs | R3=OEt | Rose Bengal, green LEDs | Air, CH3CN/H2O at 0.05 mL•min-1, r.t. | 49~60 | [33] |
3 | N-Aryl THIQs | R3=OAlkyl, Ar | 5 W blue LEDs | Air, CH3CN, r.t. | 82~92 | [34] |
4 | N-Phenyl THIQ | R3=OMe, OEt | PdF20TPP, light (λ>400 nm) | O2 bubbling, CH3CN/MeOH | 63~84 | [35] |
5 | N-Aryl THIQs | R3=OAlkyl, Ar | PS-Ir, 7.1 W white LEDs | Air, MeOH, r.t. | 39~97 | [36] |
6 | N-Aryl THIQs | R3=OAlkyl, OPh | BODIPY, white LEDs | Air, MeOH, r.t. | 42~85 | [37] |
7 | N-Phenyl THIQ | R3=OEt | blue LEDs | CBrCl3, CH3CN, r.t. | 82 | [38] |
8 | N-Aryl THIQs | R3=OAlkyl | COF-JLU5, 30 W blue LEDs | O2, MeOH, 25 ℃ | 63~91 | [39] |
9 | N-Aryl THIQs or R1=H, alkyl; R2=H, Alkyl, Ph | R3=OAlkyl | Ru(bpy)3(PF6)2, 3 W blue LEDs | Co(dmgH)(dmgH2)Cl2, PhCOONa, CH3CN/DCE, r.t. | 36~99 | [40] |
10 | N-Aryl THIQs | R3=OEt, OPh | CPOPs, 23 W white LEDs | Air, MeOH, r.t. | 80~94 | [41] |
11 | N-Aryl THIQs or R1, R2=H, alkyl | R3=OAlkyl, OPh | CsPbBr3, white LEDs | Air, toluene or THF, r.t. | 50~96 | [42] |
12 | N-Aryl THIQs | R3=OAlkyl | N-methyl-3(10H)-Acridone, 6 W blue LEDs | Air, MeOH, r.t. | 45~86 | [43] |
13 | N-Aryl THIQs or R1, R2=H, Me | R3=OMe, Ar | | NaHCO3, DMF | 68~91 | [44] |
14 | N-Phenyl THIQ | R3=OEt | EY@UiO-66-NH2, 16 W green LEDs | Air, MeOH, r.t. | 80 | [45] |
15 | N-Phenyl THIQ | P(OEt)3 | | Air, toluene/H2O, r.t. | 82 | [46] |
16 | N-Aryl THIQs | R3=OAlkyl | MNPs-Eosin Y, 3 W green LEDs | Air, DMSO, r.t. | 86~97 | [47] |
Entry | Amine | P-Nucleophile | PC, light source | Condition | Yield/% | Ref. |
---|---|---|---|---|---|---|
1 | N-Aryl THIQs | R3=OAlkyl, OPh | 5 W fluorescent bulb | Air, toluene/H2O, r.t. | 39~91 | [32] |
2 | N-Aryl THIQs | R3=OEt | Rose Bengal, green LEDs | Air, CH3CN/H2O at 0.05 mL•min-1, r.t. | 49~60 | [33] |
3 | N-Aryl THIQs | R3=OAlkyl, Ar | 5 W blue LEDs | Air, CH3CN, r.t. | 82~92 | [34] |
4 | N-Phenyl THIQ | R3=OMe, OEt | PdF20TPP, light (λ>400 nm) | O2 bubbling, CH3CN/MeOH | 63~84 | [35] |
5 | N-Aryl THIQs | R3=OAlkyl, Ar | PS-Ir, 7.1 W white LEDs | Air, MeOH, r.t. | 39~97 | [36] |
6 | N-Aryl THIQs | R3=OAlkyl, OPh | BODIPY, white LEDs | Air, MeOH, r.t. | 42~85 | [37] |
7 | N-Phenyl THIQ | R3=OEt | blue LEDs | CBrCl3, CH3CN, r.t. | 82 | [38] |
8 | N-Aryl THIQs | R3=OAlkyl | COF-JLU5, 30 W blue LEDs | O2, MeOH, 25 ℃ | 63~91 | [39] |
9 | N-Aryl THIQs or R1=H, alkyl; R2=H, Alkyl, Ph | R3=OAlkyl | Ru(bpy)3(PF6)2, 3 W blue LEDs | Co(dmgH)(dmgH2)Cl2, PhCOONa, CH3CN/DCE, r.t. | 36~99 | [40] |
10 | N-Aryl THIQs | R3=OEt, OPh | CPOPs, 23 W white LEDs | Air, MeOH, r.t. | 80~94 | [41] |
11 | N-Aryl THIQs or R1, R2=H, alkyl | R3=OAlkyl, OPh | CsPbBr3, white LEDs | Air, toluene or THF, r.t. | 50~96 | [42] |
12 | N-Aryl THIQs | R3=OAlkyl | N-methyl-3(10H)-Acridone, 6 W blue LEDs | Air, MeOH, r.t. | 45~86 | [43] |
13 | N-Aryl THIQs or R1, R2=H, Me | R3=OMe, Ar | | NaHCO3, DMF | 68~91 | [44] |
14 | N-Phenyl THIQ | R3=OEt | EY@UiO-66-NH2, 16 W green LEDs | Air, MeOH, r.t. | 80 | [45] |
15 | N-Phenyl THIQ | P(OEt)3 | | Air, toluene/H2O, r.t. | 82 | [46] |
16 | N-Aryl THIQs | R3=OAlkyl | MNPs-Eosin Y, 3 W green LEDs | Air, DMSO, r.t. | 86~97 | [47] |
Entry | Amine | P-Nucleophile | Condition | Yield/% | Ref. |
---|---|---|---|---|---|
1 | | P(OEt)3 | TBPA+• (15 mol%), p-TsOH (10 mol%), O2, CH3CN, 60 ℃ | 17~94 | [54] |
2 | | R'=Et | TBPA+• (10 mol%), O2, CH3CN, 60 ℃ | 21~96 | [55] |
3 | | R'=alkyl, Ph | DDQ, THF, 80 ℃ | 15~99 | [56] |
4 | | R'=alkyl | DDQ, toluene, 80 ℃ | 22~92 | [57] |
5 | | R'=alkyl | Co(ClO4)2•6H2O (10 mol%), air, CH3CN, 80 ℃ | 40~95 | [58] |
6 | | R'=Me, Et, Bn | NaOAc (20 mol%), LiClO4, CH3CN, 6.6 V, r.t., graphite felt | 33~89 | [59] |
Entry | Amine | P-Nucleophile | Condition | Yield/% | Ref. |
---|---|---|---|---|---|
1 | | P(OEt)3 | TBPA+• (15 mol%), p-TsOH (10 mol%), O2, CH3CN, 60 ℃ | 17~94 | [54] |
2 | | R'=Et | TBPA+• (10 mol%), O2, CH3CN, 60 ℃ | 21~96 | [55] |
3 | | R'=alkyl, Ph | DDQ, THF, 80 ℃ | 15~99 | [56] |
4 | | R'=alkyl | DDQ, toluene, 80 ℃ | 22~92 | [57] |
5 | | R'=alkyl | Co(ClO4)2•6H2O (10 mol%), air, CH3CN, 80 ℃ | 40~95 | [58] |
6 | | R'=Me, Et, Bn | NaOAc (20 mol%), LiClO4, CH3CN, 6.6 V, r.t., graphite felt | 33~89 | [59] |
[1] |
(a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.
doi: 10.1021/cr00094a007 |
(b) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035.
doi: 10.1002/(ISSN)1615-4169 |
|
(c) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
doi: 10.1021/ar800036s |
|
(d) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27.
doi: 10.1039/C0SC00331J |
|
(e) Bisceglia, J. A.; Orelli, L. R. Curr. Org. Chem. 2015, 19, 744.
doi: 10.2174/1385272819666150311231006 |
|
(f) Sun, G.; Xiao, F.; Duan, W. Chin. J. Org. Chem. 2020, 40, 61. (in Chinese)
doi: 10.6023/cjoc201905022 |
|
(孙贵救, 肖繁花, 段伟良, 有机化学, 2020, 40, 61.)
doi: 10.6023/cjoc201905022 |
|
(g) Zhu, R.-Y.; Liao, K.; Yu, J.-S.; Zhou, J. Acta Chim. Sinica 2020, 78, 193. (in Chinese)
doi: 10.6023/A20010002 |
|
(朱仁义, 廖奎, 余金生, 周剑, 化学学报, 2020, 78, 193.)
doi: 10.6023/A20010002 |
|
(h) Xu, R.; Yang, H.; Tang, W. Chin. J. Org. Chem. 2020, 40, 1409. (in Chinese)
doi: 10.6023/cjoc202003015 |
|
(许容华, 杨贺, 汤文军, 有机化学, 2020, 40, 1409.)
doi: 10.6023/cjoc202003015 |
|
(i) Zhao, S.; Gong, X.; Gan, Z.; Yan, Q.; Liu, X.; Yang, D. Chin. J. Org. Chem. 2021, 41, 258. (in Chinese)
doi: 10.6023/cjoc202008045 |
|
(赵苏艳, 宫雪芹, 甘子玉, 颜秋莉, 刘学良, 杨道山, 有机化学, 2021, 41, 258.)
doi: 10.6023/cjoc202008045 |
|
(j) Liu, J.; Xu, J.; Pajkert, R.; Mei, H.; Röschenthaler, G.-V.; Han, J. Acta Chim. Sinica 2021, 79, 747. (in Chinese)
doi: 10.6023/A21030096 |
|
(刘江, 徐敬成, Romana, Pajkert, 梅海波, Gerd-Volker, Röschenthaler, 韩建林, 化学学报, 2021, 79, 747.)
doi: 10.6023/A21030096 |
|
(k) Sheng, L.; Gao, H.; Wu, X.; Fan, G.; Liu, P. Chin. J. Org. Chem. 2021, 41, 2105. (in Chinese)
|
|
(盛力, 高浩凌, 吴旭锋, 范钢, 刘鹏程, 有机化学, 2021, 41, 2105.)
doi: 10.6023/cjoc202011021 |
|
[2] |
(a) Romanenko, V. D.; Kukhar, V. P. Chem. Rev. 2006, 106, 3868.
pmid: 27787975 |
(b) Mucha, Kafarski, A. P.; Berlicki, Ł. J. Med. Chem. 2011, 54, 5955.
doi: 10.1021/jm200587f pmid: 27787975 |
|
(c) Turcheniuk, K. V.; Kukhar, V. P.; Röschenthaler, G.-V.; Aceña, J. L.; Soloshonok, V. A.; Sorochinsky, A. E. RSC Adv. 2013, 3, 6693.
doi: 10.1039/c3ra22891f pmid: 27787975 |
|
(d) Arya, T.; Reddi, R.; Kishor, C.; Ganji, R. J.; Bhukya, S.; Gumpena, R.; McGowan, S.; Drag, M.; Addlagatta, A. J. Med. Chem. 2015, 58, 2350.
doi: 10.1021/jm501790e pmid: 27787975 |
|
(e) Horsman, G. P.; Zechel, D. L. Chem. Rev. 2017, 117, 5704.
doi: 10.1021/acs.chemrev.6b00536 pmid: 27787975 |
|
[3] |
Takano, H. K.; Dayan, F. E. Pest Manage. Sci. 2020, 76, 3911.
doi: 10.1002/ps.v76.12 |
[4] |
Levchik, S. V.; Weil, E. D. Adv. Fire Retard. Mater. 2008, 41.
|
[5] |
(a) Gupta, B.; Deep, A.; Singh, V.; Tandon, S. N. Hydrometallurgy 2003, 70, 121.
doi: 10.1016/S0304-386X(03)00052-5 |
(b) Feng, W.; Zhang, S.; Zhong, Q.; Wang, G.; Pan, X.; Xu, X.; Zhou, W.; Li, T.; Luo, L.; Zhang, Y. J. Hazard Mater. 2020, 381, 120997.
doi: 10.1016/j.jhazmat.2019.120997 |
|
[6] |
(a) Arbuzov, B. A. Pure Appl. Chem. 1964, 9, 307.
doi: 10.1351/pac196409020307 |
(b) Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415.
doi: 10.1021/cr00044a004 |
|
(c) Megati, S.; Phadtare, S.; Zemlicka, J. J. Org. Chem. 1992, 57, 2320.
doi: 10.1021/jo00034a025 |
|
(d) Renard, P.-Y.; Vayron, P.; Leclerc, E.; Valleix, A.; Mioskowski, C. Angew. Chem., Int. Ed. 2003, 42, 2389.
doi: 10.1002/anie.200250270 |
|
(e) Abell, J. P.; Yamamoto, H. J. Am. Chem. Soc. 2008, 130, 10521.
doi: 10.1021/ja803859p |
|
(f) Guin, J.; Wang, Q.; van Gemmeren, M.; List, B. Angew. Chem., Int. Ed. 2015, 54, 355.
doi: 10.1002/anie.v54.1 |
|
[7] |
(a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
doi: 10.1021/ar800164n pmid: 22349590 |
(b) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
doi: 10.1021/cr100280d pmid: 22349590 |
|
(c) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
doi: 10.1021/cr100379j pmid: 22349590 |
|
(d) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
doi: 10.1039/c2cs15323h pmid: 22349590 |
|
(e) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74.
pmid: 22349590 |
|
[8] |
(a) Hou, C.; Ren, Y.; Lang, R.; Hu, X.; Xia, C.; Li, F. Chem. Commun. 2012, 48, 5181.
doi: 10.1039/c2cc30429e |
(b) Feng, C.-G.; Ye, M.; Xiao, K.-J.; Li, S.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 9322.
doi: 10.1021/ja404526x |
|
(c) Zhu, L.; Yu, H.; Guo, Q.; Chen, Q.; Xu, Z.; Wang, R. Org. Lett. 2015, 17, 1978.
doi: 10.1021/acs.orglett.5b00728 |
|
(d) Yang, J.; Chen, T.; Zhou, Y.; Yin, S.-F.; Han, L.-B. Organometallics 2015, 34, 5095.
doi: 10.1021/acs.organomet.5b00687 |
|
(e) Xu, P.; Wu, Z.; Zhou, N.; Zhu, C. Org. Lett. 2016, 18, 1143.
doi: 10.1021/acs.orglett.6b00257 |
|
(f) Zhang, J.-Q.; Chen, T.; Zhang, J.-S.; Han, L.-B. Org. Lett. 2017, 19, 4692.
doi: 10.1021/acs.orglett.7b02389 |
|
(g) Chen, L.; Liu, X.-Y.; Zou, Y.-X. Adv. Synth. Catal. 2020, 362, 1724.
doi: 10.1002/adsc.v362.9 |
|
[9] |
Baslé, O.; Li, C.-J. Chem. Commun. 2009, 4124.
|
[10] |
Han, W.; Ofial, A. R. Chem. Commun. 2009, 6023.
|
[11] |
Han, W.; Mayer, P.; Ofial, A. R. Adv. Synth. Catal. 2010, 352, 1667.
doi: 10.1002/adsc.v352:10 |
[12] |
Alagiri, K.; Devadig, P.; Prabhu, K. R. Tetrahedron Lett. 2012, 53, 1456.
doi: 10.1016/j.tetlet.2012.01.031 |
[13] |
Xie, J.; Li, H.; Xue, Q.; Cheng, Y.; Zhu, C. Adv. Synth. Catal. 2012, 354, 1646.
doi: 10.1002/adsc.201200360 |
[14] |
Tanoue, A.; Yoo, W.-J.; Kobayashi, S. Adv. Synth. Catal. 2013, 355, 269.
|
[15] |
Ho, H. E.; Ishikawa, Y.; Asao, N.; Yamamoto, Y.; Jin, T. Chem. Commun. 2015, 51, 12764.
doi: 10.1039/C5CC04856G |
[16] |
Mao, L.-L.; Li, C.-C.; Yang, Q.; Cheng, M.-X.; Yang, S.-D. Chem. Commun. 2017, 53, 4473.
doi: 10.1039/C7CC01391D |
[17] |
Liu, Y.; Wang, C.; Xue, D.; Xiao, M.; Li, C.; Xiao, J. Chem.-Eur. J. 2017, 23, 3051.
doi: 10.1002/chem.201604749 |
[18] |
Cai, J.; Liu, Y.; Jiang, Y.; Yang, Y. Phosphorus, Sulfur Silicon Relat. Elem. 2017, 192, 1068.
doi: 10.1080/10426507.2017.1330827 |
[19] |
Patil, M. R.; Dedhia, N. P.; Kapdi, A. R.; Kumar, A. V. J. Org. Chem. 2018, 83, 4477.
doi: 10.1021/acs.joc.8b00203 |
[20] |
Lin, B.; Shi, S.; Lin, R.; Cui, Y.; Fang, M.; Tang, G.; Zhao, Y. J. Org. Chem. 2018, 83, 6754.
doi: 10.1021/acs.joc.8b00674 |
[21] |
Wang, J.; Li, J.; Wei, Y.; Yang, J.; Huo, C. Org. Chem. Front. 2018, 5, 3534.
doi: 10.1039/C8QO01049H |
[22] |
Xia, Z.; Qin, L.; Zhou, W.; Wang, H.; Yu, B.; Sun, Z.; Qian, J.; He, M. Tetrahedron Lett. 2019, 60, article 151121.
|
[23] |
Wang, H.; Li, X.; Wu, F.; Wan, B. Tetrahedron Lett. 2012, 53, 681.
|
[24] |
Alagiri, K.; Devadig, P.; Prabhu, K. R. Chem.-Eur. J. 2012, 18, 5160.
doi: 10.1002/chem.v18.17 |
[25] |
Dhineshkumar, J.; Lamani, M.; Alagiri, K.; Prabhu, K. R. Org. Lett. 2013, 15, 1092.
doi: 10.1021/ol4001153 pmid: 23419035 |
[26] |
Huo, C.; Wang, C.; Wu, M.; Jia, X.; Wang, X.; Yuan, Y.; Xie, H. Org. Biomol. Chem. 2014, 12, 3123.
doi: 10.1039/c3ob42454e |
[27] |
Huo, C.; Xie, H.; Wu, M.; Jia, X.; Wang, X.; Chen, F.; Tang, J. Chem.-Eur. J. 2015, 21, 5723.
doi: 10.1002/chem.201500453 |
[28] |
Gu, K.; Zhang, Z.; Bao, Z.; Xing, H.; Yang, Q.; Ren, Q. Eur. J. Org. Chem. 2016, 3939.
|
[29] |
Dhineshkumar, J.; Samaddar, P.; Prabhu, K. R. ACS Omega 2017, 2, 4885.
doi: 10.1021/acsomega.7b00881 pmid: 31457767 |
[30] |
Lin, B.; Lu, G.; Lin, R.; Cui, Y.; Liu, Y.; Tang, G.; Zhao, Y. Synlett 2018, 29, 2697.
doi: 10.1055/s-0037-1610306 |
[31] |
Hari, D. P.; König, B. Org. Lett. 2011, 13, 3852.
doi: 10.1021/ol201376v |
[32] |
Rueping, M.; Zhu, S.; Koenigs, R. M. Chem. Commun. 2011, 47, 8679.
doi: 10.1039/c1cc12907d |
[33] |
Rueping, M.; Vila, C.; Bootwicha, T. ACS Catal. 2013, 3, 1676.
doi: 10.1021/cs400350j |
[34] |
Xue, Q.; Xie, J.; Jin, H.; Cheng, Y.; Zhu, C. Org. Biomol. Chem. 2013, 11, 1606.
doi: 10.1039/c3ob27400d |
[35] |
To, W.-P.; Liu, Y.; Lau, T.-C.; Che, C.-M. Chem.-Eur. J. 2013, 19, 5654.
doi: 10.1002/chem.v19.18 |
[36] |
Yoo, W.-J.; Kobayashi, S. Green Chem. 2014, 16, 2438.
doi: 10.1039/C4GC00058G |
[37] |
Wang, X.-Z.; Meng, Q.-Y.; Zhong, J.-J.; Gao, X.-W.; Lei, T.; Zhao, L.-M.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Chem. Commun. 2015, 51, 11256.
doi: 10.1039/C5CC03421C |
[38] |
Franz, J. F.; Kraus, W. B.; Zeitler, K. Chem. Commun. 2015, 51, 8280.
doi: 10.1039/C4CC10270C |
[39] |
Zhi, Y.; Li, Z.; Feng, X.; Xia, H.; Zhang, Y.; Shi, Z.; Mu, Y.; Liu, X. J. Mater. Chem. A 2017, 5, 22933.
doi: 10.1039/C7TA07691F |
[40] |
Niu, L.; Wang, S.; Liu, J.; Yi, H.; Liang, X.-A.; Liu, T.; Lei, A. Chem. Commun. 2018, 54, 1659.
doi: 10.1039/C7CC09624K |
[41] |
Liang, H.-P.; Chen, Q.; Han, B.-H. ACS Catal. 2018, 8, 5313.
doi: 10.1021/acscatal.7b04494 |
[42] |
Wu, W.-B.; Wong, Y.-C.; Tan, Z.-K.; Wu, J. Catal. Sci. Technol. 2018, 8, 4257.
doi: 10.1039/C8CY01240G |
[43] |
Chen, K.; Cheng, Y.; Chang, Y.; Li, E.; Xu, Q.-L.; Zhang, C.; Wen, X.; Sun, H. Tetrahedron 2018, 74, 483.
doi: 10.1016/j.tet.2017.12.019 |
[44] |
Quint, V.; Chouchène, N.; Askri, M.; Lalevée, J.; Gaumont, A.-C.; Lakhdar, S. Org. Chem. Front. 2019, 6, 41.
doi: 10.1039/C8QO00985F |
[45] |
Kumar, G.; Solanki, P.; Nazish, M.; Neogi, S.; Kureshy, R. I.; Khan, N.-U. H. J. Catal. 2019, 371, 298.
doi: 10.1016/j.jcat.2019.02.011 |
[46] |
Casado-Sánchez, A.; Uygur, M.; Gonzalez-Muñoz, D.; Aguilar- Galindo, F.; Nova-Fernández, J. L.; Arranz-Plaza, J.; Díaz-Tendero, S.; Cabrera, S.; Mancheño, O. G.; Alemán, J. J. Org. Chem. 2019, 84, 6437.
doi: 10.1021/acs.joc.9b00520 pmid: 30998010 |
[47] |
Li, P.; Wang, G.-W.; Zhu, X.; Wang, L. Tetrahedron 2019, 75, 3448.
doi: 10.1016/j.tet.2019.04.071 |
[48] |
Xie, W.; Liu, N.; Gong, B.; Ning, S.; Che, X.; Cui, L.; Xiang, J. Eur. J. Org. Chem. 2019, 2498.
|
[49] |
Ollivier, A.; Sengmany, S.; Rey, M.; Martens, T.; Léonel, E. Synlett 2020, 31, 1191.
doi: 10.1055/s-0039-1690899 |
[50] |
Das, D.; Seidel, D. Org. Lett. 2013, 15, 4358.
doi: 10.1021/ol401858k |
[51] |
Hu, G.; Chen, W.; Ma, D.; Zhang, Y.; Xu, P.; Gao, Y.; Zhao, Y. J. Org. Chem. 2016, 81, 1704.
doi: 10.1021/acs.joc.5b02625 |
[52] |
Zhi, H.; Ung, S. P.-M.; Liu, Y.; Zhao, L.; Li, C.-J. Adv. Synth. Catal. 2016, 358, 2553.
doi: 10.1002/adsc.201600539 |
[53] |
Cheng, M.-X.; Ma, R.-S.; Yang, Q.; Yang, S.-D. Org. Lett. 2016, 18, 3262.
doi: 10.1021/acs.orglett.6b01514 |
[54] |
Jia, X.; Liu, X.; Shao, Y.; Yuan, Y.; Zhu, Y.; Hou, W.; Zhang, X. Adv. Synth. Catal. 2017, 359, 4399.
doi: 10.1002/adsc.201700850 |
[55] |
Jia, X.; Liu, X.; Yuan, Y.; Li, P.; Hou, W.; He, K. Chem.-Asian J. 2018, 13, 1911.
doi: 10.1002/asia.v13.15 |
[56] |
Liu, Q.; Yu, S.; Hu, L.; Hussain, M. I.; Zhang, X.; Xiong, Y. Tetrahedron 2018, 74, 7209.
doi: 10.1016/j.tet.2018.10.058 |
[57] |
Cheng, M.-X.; Lei, J.-W.; Xie, C.-X. Synlett 2019, 30, 114.
doi: 10.1055/s-0037-1611362 |
[58] |
Zhu, Z.-Q.; Xiao, L.-J.; Guo, D.; Chen, X.; Ji, J.-J.; Zhu, X.; Xie, Z.-B.; Le, Z.-G. J. Org. Chem. 2019, 84, 435.
doi: 10.1021/acs.joc.8b02680 |
[59] |
Huang, M.; Dai, J.; Cheng, X.; Ding, M. Org. Lett. 2019, 21, 7759.
doi: 10.1021/acs.orglett.9b02707 pmid: 31525939 |
[60] |
Zhao, Z.; Xue, W.; Gao, Y.; Tang, G.; Zhao, Y. Chem.-Asian J. 2013, 8, 713.
doi: 10.1002/asia.v8.4 |
[61] |
Huang, Q.; Dong, K.; Bai, W.; Yi, D.; Ji, J.-X.; Wei, W. Org. Lett. 2019, 21, 3332.
doi: 10.1021/acs.orglett.9b01081 |
[62] |
Ke, J.; Tang, Y.; Yi, H.; Li, Y.; Cheng, Y.; Liu, C.; Lei, A. Angew. Chem., Int. Ed. 2015, 54, 6604.
doi: 10.1002/anie.201501287 |
[63] |
Leifert, D.; Studer, A. Angew. Chem., Int. Ed. 2020, 59, 74.
doi: 10.1002/anie.v59.1 |
[64] |
Fu, Q.; Yi, D.; Zhang, Z.; Liang, W.; Chen, S.; Yang, L.; Zhang, Q.; Ji, J.; Wei, W. Org. Chem. Front. 2017, 4, 1385.
doi: 10.1039/C7QO00202E |
[65] |
Zhang, Z.-J.; Yi, D.; Fu, Q.; Liang, W.; Chen, S.-Y.; Yang, L.; Du, F.-T.; Ji, J.-X.; Wei, W. Tetrahedron Lett. 2017, 58, 2417.
doi: 10.1016/j.tetlet.2017.05.005 |
[66] |
Li, C.-K.; Tao, Z.-K.; Zhou, Z.-H.; Bao, X.-G.; Zhou, S.-F.; Zou, J.-P. J. Org. Chem. 2019, 84, 2351.
doi: 10.1021/acs.joc.8b03093 |
[67] |
Li, L.; Huang, W.; Chen, L.; Dong, J.; Ma, X.; Peng, Y. Angew. Chem., Int. Ed. 2017, 56, 10539.
doi: 10.1002/anie.v56.35 |
[68] |
Zhao, X.; Huang, M.; Li, Y.; Zhang, J.; Kim, J. K.; Wu, Y. Org. Chem. Front. 2019, 6, 1433.
doi: 10.1039/C9QO00075E |
[69] |
Ou, Y.; Huang, Y.; Liu, Y.; Huo, Y.; Gao, Y.; Li, X.; Chen, Q. Adv. Synth. Catal. 2020, 362, 5783.
doi: 10.1002/adsc.v362.24 |
[70] |
Chen, Q.; Wen, C.; Wang, X.; Yu, G.; Ou, Y.; Huo, Y.; Zhang, K. Adv. Synth. Catal. 2018, 360, 3590.
doi: 10.1002/adsc.v360.18 |
[71] |
Wen, C.; Yu, G.; Ou, Y.; Wang, X.; Zhang, K.; Chen, Q. Tetrahedron Lett. 2019, 60, 1345.
|
[72] |
Chen, Q.; Wang, X.; Yu, G.; Wen, C.; Huo, Y. Org. Chem. Front. 2018, 5, 2652.
doi: 10.1039/C8QO00740C |
[73] |
Yuan, Y.; Qiao, J.; Cao, Y.; Tang, J.; Wang, M.; Ke, G.; Lu, Y.; Liu, X.; Lei, A. Chem. Commun. 2019, 55, 4230.
doi: 10.1039/C9CC00975B |
[74] |
Li, K.-J.; Jiang, Y.-Y.; Xu, K.; Zeng, C.-C.; Sun, B.-G. Green Chem. 2019, 21, 4412.
doi: 10.1039/C9GC01474H |
[75] |
Chen, L.; Zhou, Z.; Zhang, S.; Li, X.; Ma, X.; Dong, J. Chem. Commun. 2019, 55, 13693.
doi: 10.1039/C9CC07637A |
[76] |
(a) Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Science 2016, 353, 1014.
pmid: 27701109 |
(b) Wang, F.; Chen, P.; Liu, G. Acc. Chem. Res. 2018, 51, 2036.
doi: 10.1021/acs.accounts.8b00265 pmid: 27701109 |
|
(c) Li, J.; Zhang, Z.; Wu, L.; Zhang, W.; Chen, P.; Lin, Z.; Liu, G. Nature 2019, 574, 516.
doi: 10.1038/s41586-019-1655-8 pmid: 27701109 |
|
(d) Cheng, X.; Lu, H.; Lu, Z. Nat. Commun. 2019, 10, 3549.
doi: 10.1038/s41467-019-11392-6 pmid: 27701109 |
|
(e) Zhang, W.; Wu, L.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2019, 58, 6425.
doi: 10.1002/anie.v58.19 pmid: 27701109 |
|
(f) Ye, L.; Tian, Y.; Meng, X.; Gu, Q.-X.; Liu, X.-Y. Angew. Chem., Int. Ed. 2020, 59, 1129.
doi: 10.1002/anie.v59.3 pmid: 27701109 |
|
(g) Fu, L.; Zhang, Z.; Chen, P.; Lin, Z.; Liu, G. J. Am. Chem. Soc. 2020, 142, 12493.
doi: 10.1021/jacs.0c05373 pmid: 27701109 |
[1] | 蔡晨怡, 邹东. 甲苯及其衍生物苄位C(sp3)—H键官能团化反应研究进展[J]. 有机化学, 2022, 42(6): 1586-1608. |
[2] | 张云倩, 周晨凡, 刘功清. 叔丁基过氧化氢介导的磷酸硒酯合成[J]. 有机化学, 2022, 42(1): 218-225. |
[3] | 赵芳, 叶文静, 王凯. 手性单齿亚磷酸酯配体在不对称氢化反应中的研究进展[J]. 有机化学, 2021, 41(7): 2650-2665. |
[4] | 冯志刚, 谢小敏, 张兆国. 钯催化芳基磺酸酯与亚磷酸酯的交叉偶联反应[J]. 有机化学, 2018, 38(4): 896-901. |
[5] | 黄民国, 阮祥辉, 张菊平, 李琴, 王一会, 陈丽娟, 张橙, 李普, 薛伟. 取代黄酮磷酸酯的合成及抗细菌活性研究[J]. 有机化学, 2017, 37(8): 2145-2152. |
[6] | 邢爱萍, 田密, 王来来. C3对称的新型单齿亚磷酸酯配体在不对称氢甲酰化和1,4-共轭加成中的应用研究[J]. 有机化学, 2016, 36(12): 2912-2919. |
[7] | 徐清, 贾小娟, 李晓慧, 孙清, 周永波, 尹双凤, 韩立彪. 铜催化芳硼酸与亚磷酸酯在空气下的有氧碳-磷氧化偶联反应[J]. 有机化学, 2014, 34(7): 1340-1346. |
[8] | 方魏, 刘国桂, 黄晓飞, 贾俊, 王兴旺. 有机碱催化的H-亚磷酸酯与靛红及其衍生物的phospho-Aldol-Brook重排串联反应[J]. 有机化学, 2014, 34(6): 1177-1182. |
[9] | 王倩, 徐洲. 四丁基碘化铵催化的sp3-C—H键的磷酸酯化[J]. 有机化学, 2013, 33(11): 2430-2434. |
[10] | 韩国胜, 何成, 赵军峰, 廖新成, 武现丽. 二羟基蒽醌磷酰化衍生物的合成及表征[J]. 有机化学, 2011, 31(11): 1848-1851. |
[11] | 武现丽 高伟霞 马 兵 王 珍 韩 超 曹书霞 廖新成* . 含1,3,4-噻二唑α-氨基膦酸酯的合成及其表征[J]. 有机化学, 2009, 29(9): 1429-1433. |
[12] | 赵玉芬, 张建臣, 曹书霞, 徐军, 荣垂林, 屈凌波. N-二异丙氧磷酰化氨基酸的合成[J]. 有机化学, 2004, 24(6): 609-615. |
[13] | 张建臣, 曹书霞, 陈晓岚, 陈黎, 赵玉芬. O-二异丙氧磷酰基丝氨酸(或苏氨酸或酪氨酸)的合成[J]. 有机化学, 2004, 24(6): 650-653. |
[14] | 陈晓明,田庚元. 多糖磷酸酯化的研究进展[J]. 有机化学, 2002, 22(11): 835-839. |
[15] | 陈凯,杨华铮,刘准,胡方中,张春香. 微波照射下膦酰基/硫甲基烯酮硫代缩醛和N-取代膦酰 基/硫甲基硫代碳酸酯的 合成[J]. 有机化学, 2001, 21(9): 690-692. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||