甲苯是从石油和天然气中提取的烷基芳烃, 是化学工业中最廉价和最容易获得的材料之一. C—H键官能团化在合成各种生物活性物质中具有重要作用, 由于甲苯苄位碳氢键键能较高, 惰性碳氢键活化一直是该领域研究难点. 因此, 发展简便、高效的方法催化活化甲苯苄位C(sp3)—H键构建C—C和C—X键成为近年研究热点之一. 根据不同反应分类, 综述了近十年在不同催化条件下甲苯苄位C(sp3)—H键官能团化反应研究进展, 详细讨论了反应底物普适性、反应机理和应用, 并对该领域的发展前景和局限性进行了总结.
蔡晨怡, 邹东. 甲苯及其衍生物苄位C(sp3)—H键官能团化反应研究进展[J]. 有机化学, 2022, 42(6): 1586-1608.
Chenyi Cai, Dong Zou. Recent Progress in Benzylic C(sp3)—H Functionalization of Toluene and Its Derivatives[J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1586-1608.
[1] |
(a) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
doi: 10.1021/cr900184e |
(b) Vanjari, R.; Singh, K. N. Chem. Soc. Rev. 2015, 44, 8062.
doi: 10.1039/C5CS00003C |
|
[2] |
(a) Gandeepan, P.; Muller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. Chem. Rev. 2019, 119, 2192.
doi: 10.1021/acs.chemrev.8b00507 |
(b) Su, L.; Yu, Z.; Ren, P.; Luo, Z.; Hou, W.; Xu, H. Org. Biomol. Chem. 2018, 16, 7236.
doi: 10.1039/C8OB02071J |
|
(c) Zhang, X.; Bai, R.; Xiong, H.; Xu, H.; Hou, W. Bioorg. Med. Chem. Lett. 2020, 30, 126916.
doi: 10.1016/j.bmcl.2019.126916 |
|
[3] |
Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel- Delord, J.; Besset, T.; Maes, B. U. W.; Schnürch, M. Chem. Soc. Rev. 2018, 47, 6603.
doi: 10.1039/c8cs00201k pmid: 30033454 |
[4] |
Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456.
doi: 10.1021/ar00156a004 |
[5] |
(a) Yang, F.; Zou, D.; Chen, S.; Wang, H.; Zhao, Y.; Zhao, L.; Li, L.; Li, J.; Walsh, P. J. Adv. Synth. Catal. 2020, 362, 3423.
doi: 10.1002/adsc.202000622 |
(b) Zou, D.; Gan, L.-S.; Yang, F.; Wang, J.-M.; Li, L.-L.; Li, J. Tetrahedron Lett. 2020, 61, 152532.
doi: 10.1016/j.tetlet.2020.152532 |
|
(c) Zhang, J.; Bellomo, A.; Creamer, A. D.; Dreher, S. D.; Walsh, P. J. J. Am. Chem. Soc. 2012, 134, 13765.
|
|
(d) Bellomo, A.; Zhang, J.; Trongsiriwat, N.; Walsh, P. J. Chem. Sci. 2013, 4, 849.
doi: 10.1039/C2SC21673F |
|
(e) Zhang, J.; Bellomo, A.; Trongsiriwat, N.; Jia, T.; Carroll, P. J.; Dreher, S. D.; Tudge, M. T.; Yin, H.; Robinson, J. R.; Schelter, E. J.; Walsh, P. J. J. Am. Chem. Soc. 2014, 136, 6276.
doi: 10.1021/ja411855d |
|
(f) Cao, X.; Sha, S. C.; Li, M.; Kim, B. S.; Morgan, C.; Huang, R.; Yang, X.; Walsh, P. J. Chem. Sci. 2016, 7, 611.
doi: 10.1039/C5SC03704B |
|
(g) Li, J.; Wu, C.; Zhou, B.; Walsh, P. J. J. Org. Chem. 2018, 83, 2993.
doi: 10.1021/acs.joc.8b00016 |
|
[6] |
(a) Brutchey, R. L.; Drake, I. J.; Bell, A. T.; Tilley, T. D. Chem. Commun. 2005, 3736.
|
(b) Brückner, A. Catal. Rev. 2003, 45, 97.
doi: 10.1081/CR-120015739 |
|
[7] |
(a) Rej, S.; Chatani, N. Angew. Chem., Int. Ed. 2019, 58, 8304.
doi: 10.1002/anie.201808159 |
(b) Chen, Z.; Rong, M. Y.; Nie, J.; Zhu, X. F.; Shi, B. F.; Ma, J. A. Chem. Soc. Rev. 2019, 48, 4921.
doi: 10.1039/C9CS00086K |
|
[8] |
Pan, S.; Liu, J.; Li, Y.; Li, Z. Chin. Sci. Bull. 2012, 57, 2382.
doi: 10.1007/s11434-012-5223-y |
[9] |
Piou, T.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2012, 51, 11561.
doi: 10.1002/anie.201206267 |
[10] |
Zhou, S. L.; Guo, L. N.; Wang, H.; Duan, X. H. Chem.-Eur. J. 2013, 19, 12970.
doi: 10.1002/chem.201302139 |
[11] |
Zhou, S. L.; Guo, L. N.; Wang, S.; Duan, X. H. Chem. Commun. 2014, 50, 3589.
doi: 10.1039/c4cc00637b |
[12] |
Guo, L. N.; Wang, S.; Duan, X. H.; Zhou, S. L. Chem. Commun. 2015, 51, 4803.
doi: 10.1039/C5CC00426H |
[13] |
Yang, J. C.; Zhang, J. J.; Guo, L. N. Org. Biomol. Chem. 2016, 14, 9806.
doi: 10.1039/C6OB02012G |
[14] |
Li, F.; Tian, D.; Fan, Y.; Lee, R.; Lu, G.; Yin, Y.; Qiao, B.; Zhao, X.; Xiao, Z.; Jiang, Z. Nat. Commun. 2019, 10, 1774.
doi: 10.1038/s41467-019-09857-9 |
[15] |
(a) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857.
doi: 10.1039/c0cs00217h pmid: 21359404 |
(b) Davies, H. M. L.; Lian, Y. Acc. Chem. Res. 2012, 45, 923.
doi: 10.1021/ar300013t pmid: 21359404 |
|
[16] |
Qin, C.; Davies, H. M. J. Am. Chem. Soc. 2014, 136, 9792.
doi: 10.1021/ja504797x |
[17] |
Shi, J. L.; Luo, Q.; Yu, W.; Wang, B.; Shi, Z. J.; Wang, J. Chem. Commun. 2019, 55, 4047.
doi: 10.1039/C9CC01060B |
[18] |
Curto, J. M.; Kozlowski, M. C. J. Am. Chem. Soc. 2015, 137, 18.
doi: 10.1021/ja5093166 pmid: 25423164 |
[19] |
(a) Wang, Z.; Zheng, Z.; Xu, X.; Mao, J.; Walsh, P. J. Nat. Commun. 2018, 9, 3365.
doi: 10.1038/s41467-018-05638-y |
(b) Liu, G.; Walsh, P. J.; Mao, J. Org. Lett. 2019, 21, 8514.
doi: 10.1021/acs.orglett.9b02737 |
|
[20] |
Yamashita, Y.; Suzuki, H.; Sato, I.; Hirata, T.; Kobayashi, S. Angew. Chem., Int. Ed. 2019, 57, 6896.
doi: 10.1002/anie.201711291 |
[21] |
Sato, I.; Yamashita, Y.; Kobayashi, S. Synthesis 2019, 51, 240.
doi: 10.1055/s-0037-1610378 |
[22] |
Nanjo, T.; Tsukano, C.; Takemoto, Y. Org. Lett. 2012, 14, 4270.
doi: 10.1021/ol302035j |
[23] |
Pedroni, J.; Cramer, N. Org. Lett. 2016, 18, 1932.
doi: 10.1021/acs.orglett.6b00795 pmid: 27054603 |
[24] |
Mao, J.; Wang, Z.; Xu, X.; Liu, G.; Jiang, R.; Guan, H.; Zheng, Z.; Walsh, P. J. Angew. Chem., Int. Ed. 2019, 58, 11033.
doi: 10.1002/anie.201904658 |
[25] |
Shan, X. H.; Zheng, H. X.; Yang, B.; Tie, L.; Fu, J. L.; Qu, J. P.; Kang, Y. B. Nat. Commun. 2019, 10, 908.
doi: 10.1038/s41467-019-08849-z |
[26] |
Baudoin, O. Chem. Soc. Rev. 2011, 40, 4902.
doi: 10.1039/c1cs15058h |
[27] |
Hsiao, C.-C.; Lin, Y.-K.; Liu, C.-J.; Wu, T.-C.; Wu, Y.-T. Adv. Synth. Catal. 2010, 352, 3267.
doi: 10.1002/adsc.201000651 |
[28] |
Sha, S. C.; Tcyrulnikov, S.; Li, M.; Hu, B.; Fu, Y.; Kozlowski, M. C.; Walsh, P. J. J. Am. Chem. Soc. 2018, 140, 12415.
doi: 10.1021/jacs.8b05143 |
[29] |
Vasilopoulos, A.; Zultanski, S. L.; Stahl, S. S. J. Am. Chem. Soc. 2017, 139, 7705.
doi: 10.1021/jacs.7b03387 pmid: 28555493 |
[30] |
Zhang, W.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2017, 139, 7709.
doi: 10.1021/jacs.7b03781 pmid: 28562032 |
[31] |
(a) Jao, C.-W.; Lin, W.-C.; Wu, Y.-T.; Wu, P.-L. J. Nat. Prod. 2008, 71, 1275.
doi: 10.1021/np800064w pmid: 23321561 |
(b) Krivogorsky, B.; Nelson, A. C.; Douglas, K. A.; Grundt, P. Bioorg. Med. Chem. Lett. 2013, 23, 1032.
doi: 10.1016/j.bmcl.2012.12.024 pmid: 23321561 |
|
[32] |
Tsukano, C.; Okuno, M.; Nishiguchi, H.; Takemoto, Y. Adv. Synth. Catal. 2014, 356, 1533.
doi: 10.1002/adsc.201400078 |
[33] |
Soni, V.; Khake, S. M.; Punji, B. ACS Catal. 2017, 7, 4202.
doi: 10.1021/acscatal.7b01044 |
[34] |
Li, S.; Wang, B.; Dong, G.; Li, C.; Liu, H. RSC Adv. 2018, 8, 13454.
doi: 10.1039/C8RA01377B |
[35] |
Mita, T.; Michigami, K.; Sato, Y. Org. Lett. 2012, 14, 3462.
doi: 10.1021/ol301431d |
[36] |
Masuda, Y.; Ishida, N.; Murakami, M. J. Am. Chem. Soc. 2015, 137, 14063.
doi: 10.1021/jacs.5b10032 |
[37] |
Xie, P.; Xie, Y.; Qian, B.; Zhou, H.; Xia, C.; Huang, H. J. Am. Chem. Soc. 2012, 134, 9902.
doi: 10.1021/ja3036459 |
[38] |
Xie, P.; Xia, C.; Huang, H. Org. Lett. 2013, 15, 3370.
doi: 10.1021/ol401419u |
[39] |
Liu, H.; Laurenczy, G.; Yan, N.; Dyson, P. J. Chem. Commun. 2014, 50, 341.
doi: 10.1039/C3CC47015F |
[40] |
Tsukano, C.; Okuno, M.; Takemoto, Y. Angew. Chem., Int. Ed. 2012, 51, 2763.
doi: 10.1002/anie.201108889 |
[41] |
Zhang, Q.; Yu, H.-Z.; Fu, Y. Organometallics 2013, 32, 4165.
doi: 10.1021/om400370v |
[42] |
Kawasaki, T.; Yamazaki, K.; Tomono, R.; Ishida, N.; Murakami, M. Chem. Lett. 2021, 50, 1684.
doi: 10.1246/cl.210333 |
[43] |
(a) Fink, B. E.; Mortensen, D. S.; Stauffer, S. R.; Aron, Z. D.; Katzenellenbogen, J. A. Chem. Biol. 1999, 6, 205.
doi: 10.1016/S1074-5521(99)80037-4 |
(b) Sakai, T. T.; Krishna, N. R. Bioorg. Med. Chem. 1999, 7, 1559
doi: 10.1016/S0968-0896(99)00092-9 |
|
(c) Ng, L.-T.; Ko, H.-H.; Lu, T.-M. Bioorg. Med. Chem. 2009, 17, 4360.
doi: 10.1016/j.bmc.2009.05.019 |
|
[44] |
Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815.
doi: 10.1016/S0040-4039(01)91316-4 |
[45] |
Gu, Y.; Zhang, Z.; Wang, Y. E.; Dai, Z.; Yuan, Y.; Xiong, D.; Li, J.; Walsh, P. J.; Mao, J. J. Org. Chem. 2022, 87, 406.
doi: 10.1021/acs.joc.1c02446 |
[46] |
Wang, H.; Mao, J.; Shuai, S.; Chen, S.; Zou, D.; Walsh, P. J.; Li, J. Org. Chem. Front. 2021, 8, 6000.
doi: 10.1039/D1QO00944C |
[47] |
(a) Llobet, A.; Alvarez, M.; Albericio, F. Chem. Rev. 2009, 109, 2455.
doi: 10.1021/cr800323s |
(b) Pappas, C. S.; Malovikova, A.; Hromadkova, Z.; Tarantilis, P. A.; Ebringerova, A.; Polissiou, M. G. Carbohydr. Polym. 2004, 56, 465.
doi: 10.1016/j.carbpol.2004.03.014 |
|
[48] |
Rout, S. K.; Guin, S.; Ghara, K. K.; Banerjee, A.; Patel, B. K. Org. Lett. 2012, 14, 3982.
doi: 10.1021/ol301756y |
[49] |
Majji, G.; Guin, S.; Gogoi, A.; Rout, S. K.; Patel, B. K. Chem. Commun. 2013, 49, 3031.
doi: 10.1039/c3cc40832a |
[50] |
Dey, S.; Gadakh, S. K.; Sudalai, A. Org. Biomol. Chem. 2015, 13, 10631.
doi: 10.1039/C5OB01586C |
[51] |
Liu, L.; Yun, L.; Wang, Z.; Fu, X.; Yan, C.-H. Tetrahedron Lett. 2013, 54, 5383.
doi: 10.1016/j.tetlet.2013.07.114 |
[52] |
Xu, J.; Zhang, P.; Li, X.; Gao, Y.; Wu, J.; Tang, G.; Zhao, Y. Adv. Synth. Catal. 2014, 356, 3331.
doi: 10.1002/adsc.201400436 |
[53] |
Liu, H.; Shi, G.; Pan, S.; Jiang, Y.; Zhang, Y. Org. Lett. 2013, 15, 4098.
|
[54] |
Mou, F.; Sun, Y.; Jin, W.; Zhang, Y.; Wang, B.; Liu, Z.; Guo, L.; Huang, J.; Liu, C. RSC Adv. 2017, 7, 23041.
|
[55] |
Lu, B.; Zhu, F.; Sun, H. M.; Shen, Q. Org. Lett. 2017, 19, 1132.
doi: 10.1021/acs.orglett.7b00148 |
[56] |
(a) Shi, E.; Shao, Y.; Chen, S.; Hu, H.; Liu, Z.; Zhang, J.; Wan, X. Org. Lett. 2012, 14, 3384.
doi: 10.1021/ol3013606 |
(b) Moayyed, M.; Saberi, D. J. Iran. Chem. Soc. 2020, 18, 445.
|
|
[57] |
Yoganathan, K.; Rossant, C.; Huang, Y.; Butler, M. S.; Buss, A. D. J. Nat. Prod. 2003, 66, 1116.
pmid: 12932138 |
[58] |
Lee, J. M.; Chang, S. Tetrahedron Lett. 2006, 47, 1375.
doi: 10.1016/j.tetlet.2005.12.104 |
[59] |
Novák, P.; Correa, A.; Gallardo-Donaire, J.; Martin, R. Angew. Chem., Int. Ed. 2011, 50, 12236.
doi: 10.1002/anie.201105894 |
[60] |
Qian, S.; Li, Z. Q.; Li, M.; Wisniewski, S. R.; Qiao, J. X.; Richter, J. M.; Ewing, W. R.; Eastgate, M. D.; Chen, J. S.; Yu, J. Q. Org. Lett. 2020, 22, 3960.
doi: 10.1021/acs.orglett.0c01243 |
[61] |
Duanmu, D.; Liang, B.; Jiang, Q.; Yan, H. Chin. J. Org. Chem. 2017, 37, 2669. (in Chinese)
|
( 端木丹丹, 梁柏键, 蒋其柏, 燕红, 有机化学, 2017, 37, 2669.)
doi: 10.6023/cjoc201704040 |
|
[62] |
Chen, Y.; Li, C.; Cui, Y.; Sun, M.; Jia, X.; Li, J. Synthesis 2019, 51, 3667.
doi: 10.1055/s-0039-1690105 |
[63] |
Yang, H.; Sun, P.; Zhu, Y.; Yan, H.; Lu, L.; Qu, X.; Li, T.; Mao, J. Chem. Commun. 2012, 48, 7847.
doi: 10.1039/c2cc33203e |
[64] |
Yang, H.; Yan, H.; Sun, P.; Zhu, Y.; Lu, L.; Liu, D.; Rong, G.; Mao, J. Green Chem. 2013, 15.
|
[65] |
Zhao, Y.; Sun, L.; Zeng, T.; Wang, J.; Peng, Y.; Song, G. Org. Biomol. Chem. 2014, 12, 3493.
doi: 10.1039/C4OB00155A |
[66] |
Qin, G.; Chen, X.; Yang, L.; Huang, H. ACS Catal. 2015, 5, 2882.
doi: 10.1021/acscatal.5b00310 |
[67] |
Vidal, X.; Mascarenas, J. L.; Gulias, M. Org. Lett. 2021, 23, 5323.
doi: 10.1021/acs.orglett.1c01594 |
[68] |
Hili, R.; Yudin, A. K. Nat. Chem. Biol. 2006, 2, 284.
doi: 10.1038/nchembio0606-284 |
[69] |
(a) Liang, C.; Collet, F.; Robert-Peillard, F.; Muller, P.; Dodd, R. H.; P. Dauban J. Am. Chem. Soc. 2008, 130, 343.
|
(b) Pelletier, G.; D. A. Powell Org. Lett. 2006, 8, 6031.
doi: 10.1021/ol062514u |
|
(c) Bhuyan, R.; Nicholas, K. M. Org. Lett. 2007, 9, 3957.
doi: 10.1021/ol701544z |
|
[70] |
Powell, D. A.; Fan, H. J. Org. Chem. 2010, 75, 2726.
doi: 10.1021/jo100197r pmid: 20297848 |
[71] |
Ni, Z.; Zhang, Q.; Xiong, T.; Zheng, Y.; Li, Y.; Zhang, H.; Zhang, J.; Liu, Q. Angew. Chem., Int. Ed. 2012, 51, 1244.
doi: 10.1002/anie.201107427 |
[72] |
Xue, Q.; Xie, J.; Li, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 3700.
doi: 10.1039/c3cc41558a |
[73] |
Wang, L.; Zhu, K.; Chen, Q.; He, M. J. Org. Chem. 2014, 79, 11780.
doi: 10.1021/jo502283h |
[74] |
Zhao, D.; Shen, Q.; Li, J.-X. Adv. Synth. Catal. 2015, 357, 339.
doi: 10.1002/adsc.201400827 |
[75] |
Liu, L.-Y.; Yan, Y.-Z.; Bao, Y.-J.; Wang, Z.-Y. Chin. Chem. Lett. 2015, 26, 1216.
doi: 10.1016/j.cclet.2015.07.008 |
[76] |
Wang, D.; Li, X.; Zhao, Y.; Chen, J. Synth. Commun. 2017, 47, 351.
doi: 10.1080/00397911.2016.1265128 |
[77] |
Pang, S.; Shi, F. Tetrahedron Lett. 2016, 57, 5872.
doi: 10.1016/j.tetlet.2016.11.057 |
[78] |
Wang, D.; Zhang, R.; Deng, R.; Lin, S.; Guo, S.; Yan, Z. J. Org. Chem. 2016, 81, 11162.
doi: 10.1021/acs.joc.6b02145 |
[79] |
Zhu, D.; Luo, W. K.; Yang, L.; Ma, D. Y. Org. Biomol. Chem. 2017, 15, 7112.
doi: 10.1039/c7ob01539a pmid: 28825437 |
[80] |
Luo, W.-K.; Xu, C.-L.; Yang, L. Tetrahedron Lett. 2019, 60, 151328.
doi: 10.1016/j.tetlet.2019.151328 |
[81] |
Shantharjun, B.; Rajeswari, R.; Vani, D.; Unnava, R.; Sridhar, B.; Reddy, K. R. Asian J. Org. Chem. 2019, 8, 2162.
doi: 10.1002/ajoc.201900588 |
[82] |
Clark, J. R.; Feng, K.; Sookezian, A.; White, M. C. Nat. Chem. 2018, 10, 583.
doi: 10.1038/s41557-018-0020-0 |
[83] |
Yao, H.; Xie, B.; Zhong, X.; Jin, S.; Lin, S.; Yan, Z. Org. Biomol. Chem. 2020, 18, 3263.
doi: 10.1039/D0OB00491J |
[84] |
(a) Ito, T.; Ando, H.; Suzuki, T.; Ogura, T.; Hotta, K.; Imamura, Y.; Yamaguchi, Y.; Handa, H. Science 2010, 327, 1345.
doi: 10.1126/science.1177319 |
(b) Zeldis, J. B.; Knight, R.; Hussein, M.; Chopra, R.; Muller, G. Ann. N. Y. Acad. Sci. 2011, 1222, 76.
doi: 10.1111/j.1749-6632.2011.05974.x |
|
[85] |
Zhang, M. J. Chem. Res. 2013, 37, 606
doi: 10.3184/174751913X13801883437178 |
[86] |
Liu, S.; Zhuang, Z.; Qiao, J. X.; Yeung, K. S.; Su, S.; Cherney, E. C.; Ruan, Z.; Ewing, W. R.; Poss, M. A.; Yu, J. Q. J. Am. Chem. Soc. 2021, 143, 21657.
doi: 10.1021/jacs.1c10183 |
[87] |
Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
doi: 10.1021/cr100347k pmid: 21391564 |
[88] |
Yuan, J.; Ma, X.; Yi, H.; Liu, C.; Lei, A. Chem. Commun. 2014, 50, 14386.
doi: 10.1039/C4CC05661B |
[89] |
Feng, J.; Lu, G. P.; Cai, C. RSC Adv. 2014, 4, 54409.
doi: 10.1039/C4RA09450F |
[90] |
Chen, C.; Xu, X. H.; Yang, B.; Qing, F. L. Org. Lett. 2014, 16, 3372.
doi: 10.1021/ol501400u |
[91] |
Savateev, A.; Kurpil, B.; Mishchenko, A.; Zhang, G.; Antonietti, M. Chem. Sci. 2018, 9, 3584.
doi: 10.1039/C8SC00745D |
[92] |
(a) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375.
doi: 10.1021/cr00037a011 pmid: 19421578 |
(b) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063.
pmid: 19421578 |
|
(c) Mortensen, M.; Husmann, R.; Veri, E.; Bolm, C. Chem. Soc. Rev. 2009, 38, 1002.
doi: 10.1039/b816769a pmid: 19421578 |
|
[93] |
(a) Sakakura, T.; Tokunaga, Y.; Sodeyama, T.; Tanaka, M. Chem. Lett. 1987, 2375.
|
(b) Baba, T.; Kato, A.; Yuasa, H.; Toriyama, F.; Handa, H.; Ona, Y. Catal. Today 1998, 44, 271.
doi: 10.1016/S0920-5861(98)00199-0 |
|
(c) Kakiuchi, F.; Tsuchiya, K.; Matsumoto, M.; Mizushima, E.; Chatani, N. J. Am. Chem. Soc. 2004, 126, 12792.
doi: 10.1021/ja047040d |
|
[94] |
(a) Li, Q.; Driess, M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2014, 53, 8471.
doi: 10.1002/anie.201404620 |
(b) Chen, C.; Guan, M.; Zhang, J.; Wen, Z.; Zhao, Y. Org. Lett. 2015, 17, 3646.
doi: 10.1021/acs.orglett.5b01393 |
|
(c) Hua, Y.; Jung, S.; Roh, J.; Jeon, J. J. Org. Chem. 2015, 80, 4661.
doi: 10.1021/acs.joc.5b00564 |
|
(d) Fang, H.; Hou, W.; Liu, G.; Huang, Z. J. Am. Chem. Soc. 2017, 139, 11601.
doi: 10.1021/jacs.7b06798 |
|
[95] |
Manvar, A.; Fleming, P.; O'Shea, D. F. J. Org. Chem. 2015, 80, 8727.
doi: 10.1021/acs.joc.5b01540 pmid: 26280940 |
[96] |
Das, M.; Manvar, A.; Jacolot, M.; Blangetti, M.; Jones, R. C.; O'Shea, D. F. Chem.-Eur. J. 2015, 21, 8737.
doi: 10.1002/chem.201500475 |
[97] |
Wen, J.; Dong, B.; Zhu, J.; Zhao, Y.; Shi, Z. Angew. Chem., Int. Ed. 2020, 59, 10909.
doi: 10.1002/anie.202003865 |
[98] |
Guo, Y.; Liu, M. M.; Zhu, X.; Zhu, L.; He, C. Angew. Chem., Int. Ed. 2021, 60, 13887.
doi: 10.1002/anie.202103748 |
[99] |
Djerassi, C. Chem. Rev. 1948, 43, 271.
doi: 10.1021/cr60135a004 |
[100] |
Amijs, C. H. M.; Klink, G. P. M. V.; Koten, G. V. Green Chem. 2003, 5, 470.
doi: 10.1039/b304673g |
[101] |
Salama, T. A.; Novák, Z. Tetrahedron Lett. 2011, 52, 4026.
doi: 10.1016/j.tetlet.2011.05.135 |
[102] |
(a) Podgoršek, A.; Stavber, S.; Zupan, M.; Iskra, J. Tetrahedron Lett. 2006, 47, 1097.
doi: 10.1016/j.tetlet.2005.12.040 |
(b) Podgoršek, A.; Stavber, S.; Zupan, M.; Iskra, J. Tetrahedron 2009, 65, 4429.
doi: 10.1016/j.tet.2009.03.034 |
|
[103] |
Mestres, R.; Palenzuela, J. S. Green Chem. 2002, 4, 314.
doi: 10.1039/b203055a |
[104] |
Zhao, M.; Li, M.; Lu, W. Synthesis 2018, 50, 4933.
doi: 10.1055/s-0037-1610651 |
[105] |
Ma, J. J.; Yi, W. B.; Lu, G. P.; Cai, C. Org. Biomol. Chem. 2015, 13, 2890.
doi: 10.1039/C4OB02418D |
[106] |
Guo, P.; Li, Y.; Zhang, X. G.; Han, J. F.; Yu, Y.; Zhu, J.; Ye, K. Y. Org. Lett. 2020, 22, 3601.
doi: 10.1021/acs.orglett.0c01072 |
[107] |
Rafiee, M.; Wang, F.; Hruszkewycz, D. P.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 22.
doi: 10.1021/jacs.7b09744 |
[108] |
Badsara, S. S.; Liu, Y. C.; Hsieh, P. A.; Zeng, J. W.; Lu, S. Y.; Liu, Y. W.; Lee, C. F. Chem. Commun. 2014, 50, 11374.
doi: 10.1039/C4CC04503C |
[109] |
Manna, K.; Ji, P.; Lin, Z.; Greene, F. X.; Urban, A.; Thacker, N. C.; Lin, W. Nat. Commun. 2016, 7, 12610.
doi: 10.1038/ncomms12610 |
[1] | 石宇冰, 白文己, 母伟花, 李江平, 于嘉玮, 连冰. 钯催化C—H键官能团化形成C—X (X=O, N, F, I, ……)键的密度泛函理论研究进展[J]. 有机化学, 2022, 42(5): 1346-1374. |
[2] | 陈永欣, 郭鑫, 刘亚凤, 杨雪莹, 陈保华. I2催化下通过2-氨基吡啶和N-对甲苯磺酰腙氧化偶联反应合成1,2,4-三唑[4,3-a]吡啶[J]. 有机化学, 2022, 42(11): 3863-3869. |
[3] | 郑露露, 王雨晴, 李小港, 张文彬. 低共熔溶剂/苯磺酸: 通过Biginelli反应合成二氢嘧啶酮类化合物的环境友好催化体系[J]. 有机化学, 2022, 42(11): 3714-3720. |
[4] | 韩超, 聂磊, 韩晓, 张岩, 孙克磊, 石磊, 崔广华, 孟伟. “一锅”三组分合成新型1,5-苯并二氮杂䓬类化合物与抗牛病毒性腹泻病毒(BVDV)活性[J]. 有机化学, 2021, 41(2): 819-825. |
[5] | 李鑫玲, 刘会丽, 张顺吉. 炔丙醇与烯醇硅醚的直接亲核取代反应[J]. 有机化学, 2021, 41(1): 407-411. |
[6] | 马学林, 韩利民, 张骁勇, 郝占忠, 杨威, 张玉恒, 王丽. 多响应锆基金属有机框架荧光传感器对Fe3+,Cr2O72-离子和有机小分子的识别[J]. 有机化学, 2020, 40(9): 2938-2948. |
[7] | 程辉成, 林锦龙, 张耀丰, 陈冰, 王敏, 程丽华, 马姣丽. 过渡金属催化导向基团辅助的惰性C-H键硝化反应研究进展[J]. 有机化学, 2019, 39(2): 318-327. |
[8] | 贾启芳, 朱丽娟, 范明慧, 李全新. 金属氧化物改性的HZSM-5催化热解木质素定向制备对二甲苯[J]. 有机化学, 2018, 38(8): 2101-2108. |
[9] | 李建玲, 丁国华, 牛燕燕, 吴禄勇, 段红叶, 冯华杰, 何文英. 5-苯基-2-(3-三氟甲苯)-2H-1,2,3-三氮唑-4-羧酸乙酯的结构性质及其罗丹明B衍生物对Hg2+的显色响应[J]. 有机化学, 2018, 38(4): 931-939. |
[10] | 华远照, 韩兴旺, 黄利华, 王敏灿. 双锌催化剂催化的吡咯与查尔酮类化合物的不对称傅-克烷基化反应[J]. 有机化学, 2018, 38(1): 237-245. |
[11] | 郑纯智, 徐小丹, 王雅珍, 赵德建, 张继振. 新型离子负载羟基(对甲苯磺酰氧基)碘苯对α,β-查尔酮及其衍生物的加成产物用于1,4,5-三芳基吡唑的合成[J]. 有机化学, 2015, 35(5): 1137-1145. |
[12] | 许恺, 沈冲, 盛卫坚, 单尚, 贾义霞. 铜催化β-酮酸酯的苄基化反应[J]. 有机化学, 2015, 35(3): 633-637. |
[13] | 许恺, 沈冲, 单尚. 对甲苯磺酰腙的偶联反应研究进展[J]. 有机化学, 2015, 35(2): 294-308. |
[14] | 刘振兴, 张艳, 王剑波. 过渡金属催化的对甲苯磺酰腙的偶联反应[J]. 有机化学, 2013, 33(04): 687-692. |
[15] | 彭春勇, 辛春伟, 李建发, 戢丹, 鲍秀荣, 卢俊瑞. 1-对甲苯基-5-取代苯基亚胺基-1,2,3-三唑甲酸/甲酰胺的合成及生物活性研究[J]. 有机化学, 2013, 33(02): 383-388. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||