有机化学 ›› 2021, Vol. 41 ›› Issue (11): 4154-4166.DOI: 10.6023/cjoc202107023 上一篇 下一篇
综述与进展
收稿日期:
2021-07-09
修回日期:
2021-08-11
发布日期:
2021-08-24
通讯作者:
张建涛, 刘卫兵
基金资助:
Jiantao Zhang(), Peng Zhou, Duoduo Xiao, Weibing Liu()
Received:
2021-07-09
Revised:
2021-08-11
Published:
2021-08-24
Contact:
Jiantao Zhang, Weibing Liu
Supported by:
文章分享
1,3,5-三嗪烷是一类重要的合成子, 可看成是甲醛亚胺的等价物, 参与各类含氮杂环骨架的构建. 近年来, 1,3,5-三嗪烷在含氮杂环化合物的构建中引起了越来越多的关注. 基于此, 系统综述了1,3,5-三嗪烷作为双原子、三原子以及四原子合成子参与[2+n], [3+n], [4+n]环加成反应构建含氮杂环化合物的反应研究进展, 总结了其在环加成、杂环化学以及药物化学中的应用, 并展望了基于1,3,5-三嗪烷参与构建含氮杂环骨架及其应用的未来发展趋势.
张建涛, 周鹏, 肖朵朵, 刘卫兵. 1,3,5-三嗪烷合成含氮杂环的反应研究进展[J]. 有机化学, 2021, 41(11): 4154-4166.
Jiantao Zhang, Peng Zhou, Duoduo Xiao, Weibing Liu. Research Progress of 1,3,5-Triazinanes in the Synthesis of Nitrogen-Containing Heterocycles[J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4154-4166.
[1] |
(a) Tang, Y.; Zhang, J.; Zhang, S.; Geng, R.; Zhou, C. Chin. J. Chem. 2012, 30, 1831.
doi: 10.1002/cjoc.v30.8 |
(b) Yu, K.; Gao, B.; Ding, H. Acta Chim. Sinica 2016, 74, 410. (in Chinese)
doi: 10.6023/A16020102 |
|
(余宽, 高北岭, 丁寒锋, 化学学报, 2016, 74, 410.)
doi: 10.6023/A16020102 |
|
(c) Liu, J.; Lin, Z.; Chen, H.; Guo, H.; Tao, J.; Liu, W. Chin. J. Chem. 2019, 37, 35.
doi: 10.1002/cjoc.v37.1 |
|
(d) Ye, Z.; Zhang, F. Chin. J. Chem. 2019, 37, 513.
doi: 10.1002/cjoc.v37.5 |
|
(e) Mu, B. S.; Zhang, Z. H.; Wu, W. B.; Yu, J. S.; Zhou, J. Acta Chim. Sinica 2021, 79, 685. (in Chinese)
doi: 10.6023/A21040131 |
|
(穆博帅, 张志豪, 武文彪, 余金生, 周剑, 化学学报, 2021, 79, 685.)
doi: 10.6023/A21040131 |
|
[2] |
Zheng, Y.; Chi, Y.; Bao, M.; Qiu, L.; Xu, X. J. Org. Chem. 2017, 82, 2129.
doi: 10.1021/acs.joc.6b02947 pmid: 28120615 |
[3] |
Ha, H.-J.; Choi, C.-J.; Ahn, Y.-G.; Yun, H.; Dong, Y.; Lee, W. K. J. Org. Chem. 2000, 65, 8384.
pmid: 11101403 |
[4] |
Oda, S.; Sam, B.; Krische, M. J. Angew. Chem., nt. Ed. 2015, 54, 8525.
|
[5] |
Oda, S.; Franke, J.; Krische, M. J. Chem. Sci. 2016, 7, 136.
doi: 10.1039/C5SC03854E |
[6] |
Lian, X.; Lin, L.; Fu, K.; Ma, B.; Liu, X.; Feng, X. Chem. Sci. 2017, 8, 1238.
doi: 10.1039/C6SC03902B |
[7] |
Gong, J.; Li, S.-W.; Qurban, S.; Kang, Q. Eur. J. Org. Chem. 2017, 3584.
|
[8] |
Liu, R.; Liu, J.; Wei, Y.; Shi, M. Org. Lett. 2019, 21, 4077.
doi: 10.1021/acs.orglett.9b01261 |
[9] |
Ruscoe, R. E.; Callingham, M.; Baker, J. A.; Korkis, S. E.; Lam, H. W. Chem. Commun. 2019, 55, 838.
doi: 10.1039/C8CC09238A |
[10] |
Wang, Y.; Zheng, H.; Xu, J.; Zhuang, C.; Liu, X.; Cao, H. Org. Chem. Front. 2021, 10.1039/d1qo00883h.
|
[11] |
Peng, S.; Ji, D.; Sun, J. Chem. Commun. 2017, 53, 12770.
doi: 10.1039/C7CC07554E |
[12] |
Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem., nt. Ed. 2014, 53, 5504.
|
[13] |
Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Biomol. Chem. 2015, 13, 655.
doi: 10.1039/c4ob02117g pmid: 25425071 |
[14] |
Singh, P.; Varshnaya, R. K.; Dey, R.; Banerjee, P. Adv. Synth. Catal. 2020, 362, 1447.
doi: 10.1002/adsc.v362.7 |
[15] |
Pirenne, V.; Muriel, B.; Waser, J. Chem. Rev. 2021, 121, 227.
doi: 10.1021/acs.chemrev.0c00109 |
[16] |
Wang, J.; Blaszczyk, S. A.; Li, X.; Tang, W. Chem. Rev. 2021, 121, 110.
doi: 10.1021/acs.chemrev.0c00160 |
[17] |
Garve, L. K. B.; Kreft, A.; Jones, P. G.; Werz, D. B. J. Org. Chem. 2017, 82, 9235.
doi: 10.1021/acs.joc.7b01631 |
[18] |
Chu, Z.-Y.; Li, N.; Liang, D.; Li, Z.-H.; Zheng, Y.-S.; Liu, J.-K. Tetrahedron Lett. 2018, 59, 715.
doi: 10.1016/j.tetlet.2018.01.016 |
[19] |
Tu, L.; Li, Z.; Feng, T.; Yu, S.; Huang, R.; Li, J.; Wang, W.; Zheng, Y.; Liu, J.-K. J. Org. Chem. 2019, 84, 11161.
doi: 10.1021/acs.joc.9b01959 |
[20] |
Shi, Z.; Fan, T.; Zhang, X.; Zhan, F.; Wang, Z.; Zhao, L.; Lin, J.-S.; Jiang, Y. Adv. Synth. Catal. 2021, 363, 2619.
doi: 10.1002/adsc.v363.10 |
[21] |
Zhang, X.; Cheng, B.; Li, H.; He, Y.; Xu, W.; Duan, X.; Sun, H.; Wang, T.; Zhai, H. Adv. Synth. Catal. 2021, 363, 565.
doi: 10.1002/adsc.v363.2 |
[22] |
Ji, D.; Sun, J. Org. Lett. 2018, 20, 2745.
doi: 10.1021/acs.orglett.8b00951 |
[23] |
Zhang, C.-B.; Dou, P.-H.; You, Y.; Wang, Z.-H.; Zhou, M.-Q.; Xu, X.-Y.; Yuan, W.-C. Tetrahedron 2019, 75, 130571.
doi: 10.1016/j.tet.2019.130571 |
[24] |
Ji, D.; Wang, C.; Sun, J. Org. Lett. 2018, 20, 3710.
doi: 10.1021/acs.orglett.8b01584 |
[25] |
Zheng, Y.; Tu, L.; Li, N.; Huang, R.; Feng, T.; Sun, H.; Li, Z.; Liu, J.-K. Adv. Synth. Catal. 2019, 361, 44.
doi: 10.1002/adsc.v361.1 |
[26] |
Liang, D.; Tan, L.-P.; Xiao, W.-J.; Chen, J.-R. Chem. Commun. 2020, 56, 3777.
doi: 10.1039/D0CC00747A |
[27] |
Cheng, X.; Zhou, S.-J.; Xu, G.-Y.; Wang, L.; Yang, Q.-Q.; Xuan, J. Adv. Synth. Catal. 2020, 362, 523.
doi: 10.1002/adsc.v362.3 |
[28] |
Cheng, B.; Zhang, X.; Zhai, S.; He, Y.; Tao, Q.; Li, H.; Wei, J.; Sun, H.; Wang, T.; Zhai, H. Adv. Synth. Catal. 2020, 362, 3836.
doi: 10.1002/adsc.v362.18 |
[29] |
Cheng, X.; Cai, B.-G.; Mao, H.; Lu, J.; Li, L.; Wang, K.; Xuan, J. Org. Lett. 2021, 23, 4109.
doi: 10.1021/acs.orglett.1c00979 |
[30] |
Yang, Y.; Yang, W. Chem. Commun. 2018, 54, 12182.
doi: 10.1039/C8CC06945J |
[31] |
Xu, Y.; Chen, L.; Yang, Y.; Zhang, Z.; Yang, W. Org. Lett. 2019, 21, 6674.
doi: 10.1021/acs.orglett.9b02266 |
[32] |
Wang, J.; Zhao, L.; Rong, Q.; Lv, C.; Lu, Y.; Pan, X.; Zhao, L.; Hu, L. Org. Lett. 2020, 22, 5833.
doi: 10.1021/acs.orglett.0c01920 |
[33] |
Lu, W.-Y.; Wang, Y.; You, Y.; Wang, Z.-H.; Zhao, J.-Q.; Zhou, M.-Q.; Yuan, W.-C. J. Org. Chem. 2021, 86, 1779.
doi: 10.1021/acs.joc.0c02621 |
[34] |
Yang, L.-C.; Rong, Z.-Q.; Wang, Y.-N.; Yin Tan, Z.; Wang, M.; Zhao, Y. Angew. Chem., nt. Ed. 2017, 56, 2927.
|
[35] |
Das, P.; Gondo, S.; Nagender, P.; Uno, H.; Tokunaga, E.; Shibata, N. Chem. Sci. 2018, 9, 3276.
doi: 10.1039/C7SC05447E |
[36] |
Wei, Y.; Liu, S.; Li, M.-M.; Li, Y.; Lan, Y.; Lu, L.-Q.; Xiao, W.-J.; J. Am. Chem. Soc. 2019, 141, 133.
doi: 10.1021/jacs.8b12095 pmid: 30540187 |
[37] |
Xia, C.; Wang, D.-C.; Qu, G.-R.; Guo, H.-M. Org. Chem. Front. 2020, 7, 1474.
doi: 10.1039/D0QO00128G |
[38] |
Chen, L.; Liu, K.; Sun, J. RSC Adv. 2018, 8, 5532.
doi: 10.1039/C7RA11973A |
[39] |
Cheng, B.; Li, H.; Hou, J.; Zhang, X.; He, Y.; Sun, H.; Xu, W.; Wang, T.; Zhai, H. J. Org. Chem. 2020, 85, 13339.
doi: 10.1021/acs.joc.0c01984 |
[40] |
Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981;
doi: 10.1021/acs.chemrev.5b00121 |
[41] |
Cheng, X.; Cai, B.-G.; Mao, H.; Lu, J.; Li, L.; Wang, K.; Xuan, J. Org. Lett. 2021, 23, 4109.
doi: 10.1021/acs.orglett.1c00979 |
[42] |
Zhu, C.; Xu, G.; Sun, J. Angew. Chem., nt. Ed. 2016, 55, 11867.
|
[43] |
Liu, P.; Xu, G.; Sun, J. Org. Lett. 2017, 19, 1858.
doi: 10.1021/acs.orglett.7b00600 |
[44] |
Liu, P.; Zhu, C.; Xu, G.; Sun, J. Org. Biomol. Chem. 2017, 15, 7743.
doi: 10.1039/C7OB02115A |
[45] |
Zhou, Y.; Ma, F.; Lu, P.; Wang, Y. Org. Biomol. Chem. 2019, 17, 8849.
doi: 10.1039/C9OB01767D |
[46] |
Reis, M. I. P.; Campos, V. R.; Resende, J. A. L. C.; Silva1, F. C.; Ferreira, V. F. Beilstein J. Org. Chem. 2015, 11, 1235.
doi: 10.3762/bjoc.11.137 |
[47] |
Peng, S.; Cao, S.; Sun, J. Org. Lett. 2017, 19, 524.
doi: 10.1021/acs.orglett.6b03691 |
[48] |
Wang, X.-N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res. 2014, 47, 560.
doi: 10.1021/ar400193g |
[49] |
Chen, Y.-B.; Qian, P.-C.; Ye, L.-W. Chem. Soc. Rev. 2020, 49, 8897.
doi: 10.1039/D0CS00474J |
[50] |
Zhou, X. Y.; Liang, Z. X.; Wang, X. N. Chin. J. Org. Chem. 2021, 41, 1288. (in Chinese)
doi: 10.6023/cjoc202009025 |
(周欣悦, 梁宗显, 王晓娜, 有机化学, 2021, 41, 1288.)
doi: 10.6023/cjoc202009025 |
|
[51] |
Hu, Y.-C.; Zhao, Y.; Wan, B.; Chen, Q.-A. Chem. Soc. Rev. 2021, 50, 2582.
doi: 10.1039/D0CS00283F |
[52] |
Zeng, Z.; Jin, H.; Song, X.; Wang, Q.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Chem. Commun. 2017, 53, 4304.
doi: 10.1039/C7CC00789B |
[53] |
Garve, L. K. B.; Jones, P. G.; Werz, D. B. Angew. Chem. Int. Ed. 2017, 56, 9226.
doi: 10.1002/anie.201704619 |
[54] |
Liu, F.; Yu, Y.; Zhang, J. Angew. Chem. Int. Ed. 2009, 48, 5505.
doi: 10.1002/anie.v48:30 |
[55] |
Gao, H.; Zhao, X.; Yu, Y.; J. Zhang, Chem.-Eur. J. 2010, 16, 456.
doi: 10.1002/chem.v16:2 |
[56] |
He, T.; Gao, P.; Qiu, Y.-F.; Yan, X.-B.; Liu, X.-Y.; Liang, Y.-M. RSC Adv. 2013, 3, 19913.
doi: 10.1039/c3ra44467h |
[57] |
Wang, Y.; Zhang, P.; Qian, D.; Zhang, J. Angew. Chem., nt. Ed. 2015, 54, 14849.
|
[58] |
Qi, J.; Teng, Q.; Thirupathi, N.; Tung, C.-H.; Xu, Z. Org. Lett. 2019, 21, 692.
doi: 10.1021/acs.orglett.8b03880 |
[59] |
Di, X.; Wang, Y.; Wu, L.; Zhang, Z.-M.; Dai, Q.; Li, W.; Zhang, J. Org. Lett. 2019, 21, 3018.
doi: 10.1021/acs.orglett.9b00537 |
[60] |
Kardile, R. D.; Chao, T.-H.; Cheng, M.-J.; Liu, R.-S. Angew. Chem., nt. Ed. 2020, 59, 10396.
|
[61] |
Liu, S.; Yang, P.; Peng, S.; Zhu, C.; Cao, S.; Li, J.; Sun, J. Chem. Commun. 2017, 53, 1152.
doi: 10.1039/C6CC09154G |
[62] |
Kamata, M.; Yamashita, T.; Kina, A.; Tawada, M. Endo, S.; Mizukami, A.; Sasaki, M.; Tani, A.; Nakano, Y.; Watanabe, Y.; Furuyama, N.; Funami, M.; Amano, N.; Fukatsu, K. Bioorg. Med. Chem. Lett. 2012, 22, 4769.
doi: 10.1016/j.bmcl.2012.05.062 |
[63] |
Liang, D.; Xiao, W.-J.; Chen, J.-R. Synthesis 2020, 52, 2469.
doi: 10.1055/s-0040-1707160 |
[64] |
Chen, R.; Liu, Q.; Wang, K.-K.; Qi, Y.; Zhou, Y.; Zhang, A.; Meng, T.; Liu, L. Asian J. Org. Chem. 2021, 10, 371.
doi: 10.1002/ajoc.v10.2 |
[65] |
Chattopadhyay, B.; Gevorgyan, V. Angew. Chem., nt. Ed. 2012, 51, 862.
|
[66] |
Gulevich, A. V.; Gevorgyan, V. Angew. Chem., nt. Ed. 2013, 52, 1371.
|
[67] |
Davies, H. M. L.; Alford, J. S. Chem. Soc. Rev. 2014, 43, 5151.
doi: 10.1039/c4cs00072b pmid: 24802192 |
[68] |
Jia, M.; Ma, S. Angew. Chem., nt. Ed. 2016, 55, 9134.
|
[69] |
Jiang, Y.; Sun, R.; Tang, X. Y.; Shi, M. Chem.-Eur. J. 2016, 22, 17910.
doi: 10.1002/chem.201601703 pmid: 27406408 |
[70] |
Xia, Y.; Qiu, D.; Wang, J. Chem. Rev. 2017, 117, 13810.
doi: 10.1021/acs.chemrev.7b00382 |
[71] |
Li, Y.; Yang, H.; Zhai, H. Chem.-Eur. J. 2018, 24, 12757.
doi: 10.1002/chem.v24.49 |
[72] |
Ge, J.; Wu, X.; Bao, X. Chem. Commun. 2019, 55, 6090.
doi: 10.1039/C9CC02294E |
[1] | 陈祖良, 魏颖静, 张俊良. 供体-受体氮杂环丙烷碳-碳键断裂的环加成反应研究进展[J]. 有机化学, 2023, 43(9): 3078-3088. |
[2] | 孔德亮, 戴闻, 赵怡玲, 陈艺林, 朱红平. 脒基胺硼基硅宾与单酮和二酮的氧化环加成反应研究[J]. 有机化学, 2023, 43(5): 1843-1851. |
[3] | 戴春波, 夏思奇, 陈晓玉, 杨丽敏. 氮杂环卡宾(NHC)催化[4+3]环加成反应构建4-氨基苯并环庚烯内酯[J]. 有机化学, 2023, 43(3): 1084-1090. |
[4] | 梁俊秀, 刘亚洲, 王阿木, 吴彦超, 马小锋, 李惠静. 基于原位形成的氮杂邻亚甲基苯醌和卤代萘酚的分子间[4+1]螺环化/去芳香化反应[J]. 有机化学, 2023, 43(11): 3888-3899. |
[5] | 侯学会, 李议慧, 张庆玲, 刘俊桃, 陈亚静. 1,4-吡啶硫内鎓盐在有机合成中的研究与应用[J]. 有机化学, 2023, 43(11): 3844-3860. |
[6] | 张维露, 陈绍维, 沈晓. 镍催化苯并硅杂环丁烷与酰基硅烷的[4+2]环化反应[J]. 有机化学, 2023, 43(10): 3635-3643. |
[7] | 覃小婷, 邹宁, 农彩梅, 莫冬亮. 九元氮杂环化合物合成最新研究进展[J]. 有机化学, 2023, 43(1): 130-155. |
[8] | 张建涛, 张聪, 郑梓栋, 周鹏, 刘卫兵. 亚砜叶立德参与构建五/六元氮杂环的反应研究进展[J]. 有机化学, 2022, 42(9): 2745-2759. |
[9] | 王君姣, 吕瑜瑜, 尚永伟, 崔振丽, 王克虎, 黄丹凤, 胡雨来. α-羟基酮类化合物参与的反应研究进展[J]. 有机化学, 2022, 42(8): 2300-2321. |
[10] | 洪科苗, 黄晶晶, 姚铭瀚, 徐新芳. 氮宾/炔烃复分解串联反应研究进展[J]. 有机化学, 2022, 42(2): 344-352. |
[11] | 赵晓伟, 夏紫琴, 张曼, 周能能. 自由基介导的串联环化反应构建七元含氮/氧杂环化合物[J]. 有机化学, 2022, 42(12): 3995-4023. |
[12] | 安逸, 张放, 蔡志华, 杜广芬. 碱催化α-氰基-β-甲基烯基(杂)芳基酮苯增环反应合成多取代苯[J]. 有机化学, 2021, 41(9): 3625-3632. |
[13] | 孙佳兵, 苗涛, 李品华, 王磊. t-BuOK促进的还原脱砜/脱氢反应: 选择性合成2-取代的1,3-共轭二烯及其应用[J]. 有机化学, 2021, 41(8): 3144-3156. |
[14] | 孙忠文, 张聪聪, 陈丽君, 谢惠定, 柳波, 刘丹丹. 三氟乙基酮亚胺参与的催化不对称反应研究进展[J]. 有机化学, 2021, 41(5): 1789-1803. |
[15] | 周欣悦, 梁宗显, 王晓娜. 近年来炔酰胺参与的成环反应研究进展[J]. 有机化学, 2021, 41(4): 1288-1318. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||