异氰酸酯是一种重要的有机合成中间体, 经霍夫曼重排、柯提斯重排或洛森重排反应等方法制得. 与霍夫曼重排和柯提斯重排相比, 科学家们对反应条件温和、过程安全和试剂毒害性低的洛森重排反应产生了极大的兴趣, 展开了一系列研究和应用. 结合洛森重排反应机理, 对历年来典型的洛森重排反应的研究成果进行了系统性总结, 并对该研究领域的发展前景进行了展望.
崔银, 张国富, 丁成荣. 洛森重排反应研究进展[J]. 有机化学, 2022, 42(7): 2015-2027.
Yin Cui, Guofu Zhang, Chengrong Ding. Recent Advances in Lossen Rearrangement[J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2015-2027.
[1] |
Guan, A.; Liu, C.; Yang, X.; Dekeyser, M. Chem. Rev. 2014, 114, 7079.
doi: 10.1021/cr4005605 |
[2] |
Lambert, W. T.; Buysse, A. M.; Wessels, F. J. Pest Manage. Sci. 2020, 76, 497.
doi: 10.1002/ps.5537 |
[3] |
Kozikowski, A. P.; Zhang, J.; Nan, F.; Petukhov, P. A.; Grajkowska, E.; Wroblewski, J. T.; Yamamoto, T.; Bzdega, T.; Wroblewska, B.; Neale, J. H. J. Med. Chem. 2004, 47, 1729.
pmid: 15027864 |
[4] |
Frezza, M.; Castang, S.; Estephane, J.; SoulHre, L.; Deshayes, C.; Chantegrel, B.; Nasser, W.; Queneau, Y.; Reverchon, S.; Doutheau, A. Bioorg. Med. Chem. 2006, 14, 4781.
doi: 10.1016/j.bmc.2006.03.017 |
[5] |
McGeary, R. P.; Bennett, A. J.; Tran, Q. B.; Cosgrove, K. L.; Ross, B. P. Mini-Rev. Med. Chem. 2008, 8, 1384.
pmid: 18991754 |
[6] |
Patrick, D. A.; Gillespie, J. R.; McQueen, J.; Hulverson, M. A.; Ranade, R. M.; Creason, S. A.; Herbst, Z. M.; Gelb, M. H.; Buckner, F. S.; Tidwell, R. R. J. Med. Chem. 2017, 60, 957.
doi: 10.1021/acs.jmedchem.6b01163 pmid: 27992217 |
[7] |
López, J. L.; Pérez, E. M.; Viruela, P. M.; Viruela, R.; Ortí, E.; Martín, N. Org. Lett. 2009, 11, 4524.
doi: 10.1021/ol901695m pmid: 19754141 |
[8] |
Dawn, S.; Dewal, M. B.; Sobransingh, D.; Paderes, M. C.; Wibowo, A. C.; Smith, M. D.; Krause, J. A.; Pellechia, P. J. J. Am. Chem. Soc. 2011, 133, 7025.
doi: 10.1021/ja110779h |
[9] |
Tsopmo, A.; Ngnokam, D.; Ngamga, D.; Ayafor, J. F.; Sterner, O. J. Nat. Prod. 1999, 62, 1435.
pmid: 10543911 |
[10] |
Kimmel, K. L.; Robak, M. T.; Ellman, J. A. J. Am. Chem. Soc. 2009, 131, 8754.
doi: 10.1021/ja903351a pmid: 19496569 |
[11] |
Zhu, B.; Lee, R.; Li, J.; Ye, X.; Hong, S.-N.; Qiu, S.; Coote, M. L.; Jiang, Z. Angew. Chem., Int. Ed. 2016, 55, 1299.
doi: 10.1002/anie.201507796 |
[12] |
Sun, L.; Wu, X.; Xiong, D.; Ye, X. Angew. Chem., Int. Ed. 2016, 55, 8041.
doi: 10.1002/anie.201600142 |
[13] |
Bar, G. L. J.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem. Soc. 2005, 127, 7308.
doi: 10.1021/ja051181d |
[14] |
Clayden, J.; Dufour, J.; Grainger, D. M.; Helliwell, M. J. Am. Chem. Soc. 2007, 129, 7488.
doi: 10.1021/ja071523a |
[15] |
Twitchett, H. J. Chem. Soc. Rev. 1974, 3, 209.
|
[16] |
Paul, F. Coord. Chem. Rev. 2000, 203, 269.
doi: 10.1016/S0010-8545(99)00230-1 |
[17] |
Uriz, P.; Serra, M.; Salagre, P.; Castillon, S.; Claver, C.; Fernandez, E. Tetrahedron Lett. 2002, 43, 1673.
doi: 10.1016/S0040-4039(02)00094-1 |
[18] |
Curtius, T. J. Prakt. Chem. 1894, 50, 275.
doi: 10.1002/prac.18940500125 |
[19] |
Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297.
doi: 10.1021/cr00084a001 |
[20] |
Wolff, M. E. Chem. Rev. 1963, 63, 55.
doi: 10.1021/cr60221a004 |
[21] |
Yale, H. L. Chem. Rev. 1943, 33, 209.
doi: 10.1021/cr60106a002 |
[22] |
Lossen, W. Z. Chem. 1865, 8, 551.
|
[23] |
Lossen, H. Liebigs Ann. Chem. 1869, 150, 314.
doi: 10.1002/jlac.18691500304 |
[24] |
Lossen, W. Liebigs Ann. Chem. 1872, 150, 314.
doi: 10.1002/jlac.18691500304 |
[25] |
Lossen, W. Liebigs Ann. Chem. 1877, 186, 1.
doi: 10.1002/jlac.18771860102 |
[26] |
Lossen, W. Liebigs Ann. Chem. 1889, 252, 170.
doi: 10.1002/jlac.18892520112 |
[27] |
Lossen, W. Liebigs Ann. Chem. 1894, 281, 169.
doi: 10.1002/jlac.18942810202 |
[28] |
Bright, R. D.; Hauser, C. R. J. Am. Chem. Soc. 1939, 61, 618.
doi: 10.1021/ja01872a022 |
[29] |
Swenson, J. S.; Davis, A. M.; Deyo, R. A.; Graham, B. W.; Jahn, E. P.; Mattice, J. D. J. Org. Chem. 1973, 38, 3956.
doi: 10.1021/jo00962a034 |
[30] |
Tiemann, F. Ber. Dtsch. Chem. Ges. Beil. 1891, 24, 4162.
|
[31] |
Exner, O. Collect. Czech. Chem. Commun. 1962, 27, 2284.
doi: 10.1135/cccc19622284 |
[32] |
Bauer, L.; Miarka, S. V. J. Org. Chem. 1959, 24, 1293.
doi: 10.1021/jo01091a035 |
[33] |
Podlaha, J.; Císařová, I.; Soukupová, L.; Schraml, J.; Exner, O. J. Chem. Res., Synop. 1998, 520.
|
[34] |
Ducháčková, L.; Roithová, J. Chem.-Eur. J. 2009, 15, 13399.
doi: 10.1002/chem.200901645 |
[35] |
Jašíková, L.; Hanikýřová, E.; Škríba, A.; Jašík, J.; Roithová, J. J. Org. Chem. 2012, 77, 2829.
doi: 10.1021/jo300031f pmid: 22360436 |
[36] |
Hoshino, Y.; Okuno, M.; Kawamura, E.; Honda, K.; Inoue, S. Chem. Commun. 2009, 2281.
|
[37] |
Ohtsuka, N.; Okuno, M.; Hoshino, Y.; Honda, K. Org. Biomol. Chem. 2016, 14, 9046.
doi: 10.1039/c6ob01178k pmid: 27605448 |
[38] |
Hoshino, Y.; Shimbo, Y.; Ohtsuka, N.; Honda, K. Tetrahedron Lett. 2015, 56, 710.
doi: 10.1016/j.tetlet.2014.12.084 |
[39] |
Strotman, N. A.; Ortiz, A.; Savage, S. A.; Wilbert, C. R.; Ayers, S.; Kiau, S. J. Org. Chem. 2017, 82, 4044.
doi: 10.1021/acs.joc.7b00450 pmid: 28394130 |
[40] |
Ortiz, A.; Soumeillant, M.; Savage, S. A.; Strotman, N. A.; Haley, M.; Benkovics, T.; Nye, J.; Xu, Z.; Tan, Y.; Ayers, S.; Gao, Q.; Kiau, S. J. Org. Chem. 2017, 82, 4958.
doi: 10.1021/acs.joc.7b00438 |
[41] |
Dubé, P.; Nathel, N. F. F.; Vetelino, M.; Couturier, M.; Aboussafy, C. L.; Pichette, S.; Jorgensen, M. L.; Hardink, M. Org. Lett. 2009, 11, 5622.
doi: 10.1021/ol9023387 |
[42] |
Hamon, F.; Prié, G.; Lecornué, F.; Papot, S. Tetrahedron Lett. 2009, 50, 6800.
doi: 10.1016/j.tetlet.2009.09.115 |
[43] |
Yadav, D. K.; Yadav, A. K.; Srivastava, V. P.; Watal, G.; Yadav, L. D. S. Tetrahedron Lett. 2012, 53, 2890.
doi: 10.1016/j.tetlet.2012.03.129 |
[44] |
Fiorani, G.; Perosa, A.; Selva, M. Green Chem. 2018, 20, 288.
doi: 10.1039/C7GC02118F |
[45] |
Mutlu, H.; Ruiz, J.; Solleder, S. C.; Meier, M. A. Green Chem. 2012, 14, 1728.
doi: 10.1039/c2gc35191a |
[46] |
Kreye, O.; Wald, S.; Meier, M. A. R. Adv. Synth. Catal. 2013, 355, 81.
doi: 10.1002/adsc.201200760 |
[47] |
Yoganathan, S.; Miller, S. J. Org. Lett. 2013, 15, 602.
doi: 10.1021/ol303424b pmid: 23327543 |
[48] |
Thalluri, K.; Manne, S. R.; Dev, D.; Mandal, B. J. Org. Chem. 2014, 79, 3765.
doi: 10.1021/jo4026429 pmid: 24678821 |
[49] |
Manne, S. R.; Thalluri, K.; Giri, S. R.; Chandra, J.; Mandal, B. Adv. Synth. Catal. 2017, 359, 168.
doi: 10.1002/adsc.201600661 |
[50] |
Dong, J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B. Angew. Chem.,Int. Ed. 2014, 53, 9430.
doi: 10.1002/anie.201309399 |
[51] |
Chen, W.; Dong, J.; Plate, L.; Mortenson, D. E.; Brighty, G. J.; Li, S.; Liu, Y.; Galmozzi, A.; Lee, P. S.; Hulce, J. J.; Cravatt, B. F.; Saez, E.; Powers, E. T.; Wilson, I. A.; Sharpless, K. B.; Kelly, J. W. J. Am. Chem. Soc. 2016, 138, 7353.
doi: 10.1021/jacs.6b02960 |
[52] |
Gao, B.; Zhang, L.; Zheng, Q.; Zhou, F.; Klivansky, L. M.; Lu, J.; Liu, Y.; Dong, J.; Wu, P.; Sharpless, K. B. Nat. Chem. 2017, 9, 1083.
doi: 10.1038/nchem.2796 |
[53] |
Zhao, Q.; Ouyang, X.; Wan, X.; Gajiwala, K. S.; Kath, J. C.; Jones, L. H. A.; Burlingame, L.; Taunton, J. J. Am. Chem. Soc. 2017, 139, 680.
doi: 10.1021/jacs.6b08536 |
[54] |
Liu, Z.; Li, J.; Li, S.; Li, G.; Sharpless, K. B.; Wu, P. J. Am. Chem. Soc. 2018, 140, 2919.
doi: 10.1021/jacs.7b12788 |
[55] |
Mortenson, D. E.; Brighty, G. J.; Plate, L.; Bare, G.; Chen, W.; Li, S.; Wang, H.; Cravatt, B. F.; Forli, S.; Powers, E. T.; Sharpless, K. B.; Wilson, I. A.; Kelly, J. W. J. Am. Chem. Soc. 2018, 140, 200.
doi: 10.1021/jacs.7b08366 pmid: 29265822 |
[56] |
Wang, N.; Yang, B.; Fu, C.; Zhu, H.; Zheng, F.; Kobayashi, T.; Liu, J.; Li, S.; Ma, C.; Wang, P. G.; Wang, Q.; Wang, L. J. Am. Chem. Soc. 2018, 140, 4995.
doi: 10.1021/jacs.8b01087 |
[57] |
Hanley, P. S.; Clark, T. P.; Krasovskiy, A. L.; Ober, M. S.; O'Brien, J. P.; Staton, T. S. ACS Catal. 2016, 6, 3515.
doi: 10.1021/acscatal.6b00865 |
[58] |
Schimler, S. D.; Cismesia, M. A.; Hanley, P. S.; Froese, R. D. J.; Jansma, M. J.; Bland, D. C.; Sanford, M. S. J. Am. Chem. Soc. 2017, 139, 1452.
doi: 10.1021/jacs.6b12911 pmid: 28111944 |
[59] |
Epifanov, M.; Foth, P. J.; Gu, F.; Barrillon, C.; Kanani, S. S.; Higman, C. S.; Hein, J. E.; Sammis, G. M. J. Am. Chem. Soc. 2018, 140, 16464.
doi: 10.1021/jacs.8b11309 pmid: 30433772 |
[60] |
Zha, G. F.; Fang, W. Y.; Li, Y. G.; Leng, J.; Chen, X.; Qin, H. L. J. Am. Chem. Soc. 2018, 140, 17666.
doi: 10.1021/jacs.8b10069 |
[61] |
Zhao, C.; Fang, W. Y.; Rakesh, K. P.; Qin, H. L. Org. Chem. Front. 2018, 5, 1 835.
doi: 10.1039/C8QO00295A |
[62] |
Fang, W. Y.; Zha, G. F.; Qin, H. L. Org. Lett. 2019, 21, 8657.
doi: 10.1021/acs.orglett.9b03274 |
[63] |
Jiang, Y.; Sun, B.; Fang, W. Y.; Qin, H. L. Eur. J. Org. Chem. 2019, 3190.
|
[64] |
Lekkala, R.; Lekkala, R.; Moku, B.; Rakesh, K. P.; Qin, H. L. Org. Chem. Front. 2019, 6, 3490.
doi: 10.1039/C9QO00747D |
[65] |
Fang, W. Y.; Zha, G. F.; Zhao, C.; Qin, H. L. Chem. Commun. 2019, 55, 6273.
doi: 10.1039/C9CC02659B |
[66] |
Leng, J.; Qin, H. L. Org. Biomol. Chem. 2019, 17, 5001.
doi: 10.1039/C9OB00903E |
[67] |
Zha, G. F.; Fang, W. Y.; Leng, J.; Qin, H. L. Adv. Synth. Catal. 2019, 361, 2262.
doi: 10.1002/adsc.201900104 |
[68] |
Zhang, X.; Rakesh, K. P.; Qin, H. L. Chem. Commun. 2019, 55, 2845.
doi: 10.1039/C8CC09693G |
[69] |
Lekkala, R.; Mokua, B.; Qin, H. L. Org. Chem. Front. 2019, 6, 796.
doi: 10.1039/C8QO01388H |
[70] |
Zhao, Y.; Zhang, G.; Ding, C. Synlett 2019, 30, 1484.
doi: 10.1055/s-0037-1611840 |
[71] |
Zhang, G.; Zhao, Y.; Xuan, L.; Ding, C. Eur. J. Org. Chem. 2019, 4911.
|
[72] |
Zhao, Y.; Zhang, G.; Ding, C. Org. Biomol. Chem. 2019, 17, 7684.
doi: 10.1039/C9OB01547G |
[73] |
Zhang, G.; Cui, Y.; Zhao, Y.; Cui, Y.; Bao, S.; Ding, C. ChemistrySelect 2020, 5, 7817
doi: 10.1002/slct.202002270 |
[74] |
Harger, M. J. P. J. Chem. Soc., Perkin Trans. 2 1999, 159.
|
[75] |
Martin, J. P. J. Chem. Soc., Chem. Commun. 1994, 1619.
|
[76] |
Pantaine, L.; Richard, F.; Marrot, J.; Moreau, X.; Coeffard, V.; Greck, C. Adv. Synth. Catal. 2016, 358, 2012.
doi: 10.1002/adsc.201501139 |
[77] |
Han, S.; Xue, Z.; Wang, Z.; Wen, T. B. Chem. Commun. 2010, 46, 8413.
doi: 10.1039/c0cc02881a |
[78] |
Lei, Z.; Yang, Y. J. Am. Chem. Soc. 2014, 136, 6594.
doi: 10.1021/ja502945q |
[79] |
Huo, B.; Du, M.; Shen, A.; Li, M.; Lai, Y.; Gong, A.; Bai, X. Anal. Chem. 2019, 91, 10979.
doi: 10.1021/acs.analchem.9b01006 |
[80] |
Codd, R. Coord. Chem. Rev. 2008, 252, 1387.
doi: 10.1016/j.ccr.2007.08.001 |
[81] |
Monneret, C. Eur. J. Org. Chem. 2005, 40, 1.
|
[82] |
Thomas, M.; Rivault, F.; Tranoy-Opalinski, I.; Roche, J.; Gesson, J. P.. Papot2, S. Bioorg. Med. Chem. Lett. 2007, 17, 983.
doi: 10.1016/j.bmcl.2006.11.042 |
[83] |
Shen, S.; Kozikowski, A. P. ChemMedChem 2016, 11, 15.
doi: 10.1002/cmdc.201500486 |
[84] |
Richon, V. M.; Emiliani, S.; Verdin, E.; Webb, Y.; Breslow, R.; Rifkind, R. A.; Marks, P. A. Proc. Natl. Acad. Sci. U. S. A. 1998. 95, 3003.
pmid: 9501205 |
[85] |
Ganeshpurkar, A.; Kumar, D.; Singh, S K. Curr. Org. Synth. 2018, 15, 154.
doi: 10.2174/1570179414666170614123508 |
[86] |
Thomas, M.; Alsarraf, J.; Araji, N.; Tranoy-Opalinski, I.; Renoux, B.; Papot, S. Org. Biomol. Chem. 2019, 17, 5420.
doi: 10.1039/C9OB00789J |
[87] |
Shan, G. Q.; Yu, A.; Zhao, C. F.; Huang, C. H.; Zhu, L. Y.; Zhu, B. Z. J. Org. Chem. 2015, 80, 180.
doi: 10.1021/jo5022713 |
[88] |
Zhu, B. Z.; Zhu, J. G.; Mao, L.; Kalyanaraman, B.; Shan, G. Q. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20686.
doi: 10.1073/pnas.1010950107 |
[89] |
Li, F.; Huang, C. H.; Xie, L. N.; Qu, N.; Shao, J.; Shao, B.; Zhu, B. Z. Sci. Rep. 2016, 6, 1.
doi: 10.1038/s41598-016-0001-8 |
[90] |
Fier, P. S.; Maloney, K. M. Org. Lett. 2016, 18, 2244.
doi: 10.1021/acs.orglett.6b00876 |
[91] |
Jia, M.; Zhang, H.; Lin, Y.; Chen, D.; Chen, Y.; Xia, Y. Org. Biomol. Chem. 2018, 16, 3615.
doi: 10.1039/C8OB00490K |
[92] |
Polat, D. E.; Brzezinski, D. D.; Beauchemin, A. M. Org. Lett. 2019, 21, 4849.
doi: 10.1021/acs.orglett.9b01742 |
[93] |
AbdelHafez, E. S. M.; Aly, O. M.; Abuo-Rahma, G. E. D. A.; King, S. B. Adv. Synth. Catal. 2014, 356, 3456.
doi: 10.1002/adsc.201400170 |
[94] |
Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908.
doi: 10.1021/ja102571b |
[95] |
Wang, D. H.; Wasa, M.; Giri, R.; Yu, J. Q. J. Am. Chem. Soc. 2008, 130, 7190.
doi: 10.1021/ja801355s |
[96] |
Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350.
doi: 10.1021/ja109676d pmid: 21275421 |
[97] |
Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2011, 133, 6449.
doi: 10.1021/ja201143v |
[98] |
Yamada, T.; Shibata, Y.; Kawauchi, S.; Yoshizaki, S.; Tanaka, K. Chem.-Eur. J. 2018, 24, 5723.
|
[99] |
Yamada, T.; Shibata, Y.; Tanaka, K. Chem.-Eur. J. 2019, 25, 16022.
|
[100] |
Ma, B.; Wu, P.; Wang, X.; Wang, Z.; Lin, H. X.; Dai, H. X. Angew. Chem., Int. Ed. 2019, 58, 13335.
doi: 10.1002/anie.201906589 |
[101] |
Bian, M.; Mawjuda, H.; Gao., H.; Xu, H.; Zhou, Z.; Yi, W. Org. Lett. 2020, 22, 9677.
doi: 10.1021/acs.orglett.0c03734 |
[102] |
Petropavlovskikh, D. A.; Vorobyeva, D. V.; Godovikov, I. A.; Nefedov, S. E.; Filippov, O. A.; Osipov, S. N. Org. Biomol. Chem. 2021, 19, 9421.
doi: 10.1039/d1ob01711j pmid: 34668894 |
[1] | 邹发凯, 王能中, 姚辉, 王慧, 刘明国, 黄年玉. 1β-/3R-芳基硫代糖的区域与立体选择性合成[J]. 有机化学, 2024, 44(2): 593-604. |
[2] | 李路瑶, 贺忠文, 张振国, 贾振华, 罗德平. 三芳基碳正离子在有机合成中的应用[J]. 有机化学, 2024, 44(2): 421-437. |
[3] | 梅青刚, 李清寒. 可见光促进C(3)(杂)芳硫基吲哚化合物的合成研究进展[J]. 有机化学, 2024, 44(2): 398-408. |
[4] | 冯康博, 陈炯, 古双喜, 王海峰, 陈芬儿. 全连续流反应技术在药物合成中的新进展(2019~2022)[J]. 有机化学, 2024, 44(2): 378-397. |
[5] | 李鹏辉, 谢青洋, 万福贤, 张元红, 姜林. 含环丙基的新型取代嘧啶-5-甲酰胺的合成及杀菌活性研究[J]. 有机化学, 2024, 44(2): 650-656. |
[6] | 杨维清, 葛宴兵, 陈元元, 刘萍, 付海燕, 马梦林. 1,8-萘酰亚胺衍生物的设计、合成及其对半胱氨酸的识别研究[J]. 有机化学, 2024, 44(1): 180-194. |
[7] | 于士航, 刘嘉威, 安碧玉, 边庆花, 王敏, 钟江春. 黑腹尼虎天牛接触性信息素的不对称合成[J]. 有机化学, 2024, 44(1): 301-308. |
[8] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
[9] | 陈珊, 陈志林, 胡琼, 蒙艳双, 黄悦, 陶萍芳, 卢丽如, 黄国保. 含双硫脲基团分子钳在非极性溶剂中识别中性分子[J]. 有机化学, 2024, 44(1): 277-281. |
[10] | 王化坤, 任晓龙, 宣宜宁. 卤盐催化的α,β-环氧羧酸酯与异氰酸酯[3+2]环加成反应研究[J]. 有机化学, 2024, 44(1): 251-258. |
[11] | 金玉坤, 任保轶, 梁福顺. 可见光介导的三氟甲基的选择性C-F键断裂及其在偕二氟类化合物合成中的应用[J]. 有机化学, 2024, 44(1): 85-110. |
[12] | 马翠云, 罗海澜, 张福华, 郭丹, 陈树兴, 王飞. 3-Pyrrolyl BODIPY的绿色生物合成、光物理性质及应用研究[J]. 有机化学, 2024, 44(1): 216-223. |
[13] | 王博珍, 张婕, 粘春惠, 金茗茗, 孔苗苗, 李物兰, 何文斐, 吴建章. 含有3,4-二氯苯基的酰胺类化合物的合成及抗肿瘤活性研究[J]. 有机化学, 2024, 44(1): 232-241. |
[14] | 曹瑞霞, 贾玉萍. 含香豆素的吡咯并[2,3-d]嘧啶衍生物的合成及生物活性研究[J]. 有机化学, 2023, 43(9): 3304-3311. |
[15] | 李焕清, 陈兆华, 陈祖佳, 邱琪雯, 张又才, 陈思鸿, 汪朝阳. 基于有机小分子的汞离子荧光探针研究进展[J]. 有机化学, 2023, 43(9): 3067-3077. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||