有机化学 ›› 2022, Vol. 42 ›› Issue (11): 3721-3729.DOI: 10.6023/cjoc202206029 上一篇 下一篇
研究论文
收稿日期:
2022-06-18
修回日期:
2022-07-13
发布日期:
2022-08-10
通讯作者:
姜建文, 万结平
基金资助:
Haozhi Wu, Tian Luo, Jianwen Jiang(), Jieping Wan()
Received:
2022-06-18
Revised:
2022-07-13
Published:
2022-08-10
Contact:
Jianwen Jiang, Jieping Wan
Supported by:
文章分享
报道了采用2.5 mol%碘化钾为唯一催化剂, 无需任何过渡金属催条件下无保护8-氨基喹啉的碳-氢甲芳基硫醚化反应. 有趣的是, 通过简单调控反应时间和介质可以实现选择性的C(5)-芳基硫醚化和C(5),C(7)-双芳基硫醚化. 在对二甲苯中反应12 h时为C(5)-芳基硫醚化. 另一方面, 延长反应时间至24 h并更换反应介质为甲苯则选择性地发生C(5),C(7)-双芳基硫醚化. 此外, 双芳基硫醚化反应可以扩展到吲哚类底物, 实现含2,3-二芳基硫醚结构的吲哚合成.
吴豪志, 罗田, 姜建文, 万结平. 碘化钾催化无保护8-氨基喹啉的选择性C(5)-芳基硫醚化和C(5),C(7)-双芳基硫醚化及吲哚C(2),C(3)-双芳基硫醚化反应[J]. 有机化学, 2022, 42(11): 3721-3729.
Haozhi Wu, Tian Luo, Jianwen Jiang, Jieping Wan. KI-Catalyzed Selective C(5)-Sulfenylation and C(5),C(7)-Disulfenylation of Unprotected 8-Aminoquinolines and the Indole C(2),C(3)-Disulfenylation[J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3721-3729.
Entry | Catalyst | Solvent | Temp./℃ | Yieldb/% | |
---|---|---|---|---|---|
3a | 4a | ||||
1 | KI | p-Xylene | 120 | 36 | 0 |
2 | TBAI | p-Xylene | 120 | 36 | 0 |
3 | I2 | p-Xylene | 120 | 27 | 0 |
4 | NIS | p-Xylene | 120 | 33 | 0 |
5 | NaI | p-Xylene | 120 | 26 | Trace |
6c | KI | p-Xylene | 120 | 32 | 0 |
7d | KI | p-Xylene | 120 | 34 | 0 |
8 | KI | p-Xylene | 110 | 26 | 0 |
9 | KI | p-Xylene | 130 | 35 | 0 |
10 | KI | Toluene | 120 | 30 | 43 |
11 | KI | DMF | 120 | 25 | 0 |
12 | KI | DMSO | 120 | 0 | 0 |
13e | KI | p-Xylene | 120 | 32 | 0 |
14f | KI | p-Xylene | 120 | 60 | Trace |
15g | KI | p-Xylene | 120 | 52 | 0 |
16h | KI | Toluene | 120 | Trace | 57 |
17h | KI | Toluene | 110 | 21 | 43 |
18h,i | KI | Toluene | 120 | Trace | 74 |
19h,j | KI | Toluene | 120 | Trace | 84 |
20k | KI | Toluene | 120 | 0 | 0 |
21 | — | Toluene | 120 | 0 | 0 |
Entry | Catalyst | Solvent | Temp./℃ | Yieldb/% | |
---|---|---|---|---|---|
3a | 4a | ||||
1 | KI | p-Xylene | 120 | 36 | 0 |
2 | TBAI | p-Xylene | 120 | 36 | 0 |
3 | I2 | p-Xylene | 120 | 27 | 0 |
4 | NIS | p-Xylene | 120 | 33 | 0 |
5 | NaI | p-Xylene | 120 | 26 | Trace |
6c | KI | p-Xylene | 120 | 32 | 0 |
7d | KI | p-Xylene | 120 | 34 | 0 |
8 | KI | p-Xylene | 110 | 26 | 0 |
9 | KI | p-Xylene | 130 | 35 | 0 |
10 | KI | Toluene | 120 | 30 | 43 |
11 | KI | DMF | 120 | 25 | 0 |
12 | KI | DMSO | 120 | 0 | 0 |
13e | KI | p-Xylene | 120 | 32 | 0 |
14f | KI | p-Xylene | 120 | 60 | Trace |
15g | KI | p-Xylene | 120 | 52 | 0 |
16h | KI | Toluene | 120 | Trace | 57 |
17h | KI | Toluene | 110 | 21 | 43 |
18h,i | KI | Toluene | 120 | Trace | 74 |
19h,j | KI | Toluene | 120 | Trace | 84 |
20k | KI | Toluene | 120 | 0 | 0 |
21 | — | Toluene | 120 | 0 | 0 |
[1] |
(a) Bisht, R.; Haldar, C.; Hassan, M. M. M.; Hoque, M. E.; Chaturvedi, J.; Chattopadhyay, B. Chem. Soc. Rev. 2022, 51, 5042.
doi: 10.1039/D1CS01012C |
(b) Liao, Y.; Liu, F.; Shi, Z.-J. Chem. Commun. 2021, 57, 13288.
doi: 10.1039/D1CC04802C |
|
(b) Ali, R.; Siddiqui, R. Adv. Synth. Catal. 2021, 363, 1290.
doi: 10.1002/adsc.202001053 |
|
(d) Tian, S.; Luo, T.; Zhu, Y.; Wan, J.-P. Chin. Chem. Lett. 2020, 31, 3073.
doi: 10.1016/j.cclet.2020.07.042 |
|
(e) Zhao, B.; Liu, Y. Synthesis 2020, 52, 3211.
doi: 10.1055/s-0040-1707124 |
|
(f) Katariri, T.; Amao, Y. Green Chem. 2020, 22, 6682.
doi: 10.1039/D0GC01796E |
|
[2] |
(a) Chen, Y.; Wen, S.; Tian, Q.; Zhang, Y.; Cheng, G. Org. Lett. 2021, 23, 7905.
doi: 10.1021/acs.orglett.1c02912 pmid: 34085523 |
(b) Yu, Q.; Liu, Y.; Wan, J.-P. Chin. Chem. Lett. 2021, 32, 3514.
doi: 10.1016/j.cclet.2021.04.037 pmid: 34085523 |
|
(c) Moseev, T. D.; Nikiforov, E. A.; Varaksin, M. V.; Charushin, V. N.; Chupakhin, O. N. J. Org. Chem. 2021, 86, 13702.
doi: 10.1021/acs.joc.1c01796 pmid: 34085523 |
|
(d) Selmani, A.; Schoenebeck, F. Org. Lett. 2021, 23, 4779.
doi: 10.1021/acs.orglett.1c01505 pmid: 34085523 |
|
(e) Han, Q.-Q.; Chen, D.-M.; Wang, Z.-L.; Sun, Y.-Y.; Yang, S.-H.; Song, J.-C.; Dong, D.-Q. Chin. Chem. Lett. 2021, 32, 2559.
doi: 10.1016/j.cclet.2021.02.018 pmid: 34085523 |
|
(f) Zhu, H.-L.; Zeng, F.-L.; Chen, X.-L.; Sun, K.; Li, H.-C.; Yuan, X.-Y.; Qu, L.-B.; Yu, B. Org. Lett. 2021, 23, 2976.
doi: 10.1021/acs.orglett.1c00655 pmid: 34085523 |
|
(g) Liu, D.; Zhang, Z.; Yu, J.; Chen, H.; Lin, X.; Li, M.; Wen, L.; Guo, W. Org. Chem. Front. 2022, 9, 2963.
doi: 10.1039/D2QO00201A pmid: 34085523 |
|
(h) Wang, Z.-Q.; Hou, C.; Zhong, Y.-F.; Lu, Y.-X.; Mo, Z.-Y.; Pan, Y.-M.; Tang, H.-T. Org. Lett. 2019, 21, 9841.
doi: 10.1021/acs.orglett.9b03682 pmid: 34085523 |
|
[3] |
(a) Nandy, A.; Kazi, I.; Guha, S.; Sekar, G. J. Org. Chem. 2021, 86, 2570.
doi: 10.1021/acs.joc.0c02672 pmid: 29693382 |
(b) Halimehjani, A. Z.; Shokrgozar, S.; Beier, P. J. Org. Chem. 2018, 83, 5778.
doi: 10.1021/acs.joc.8b00206 pmid: 29693382 |
|
(c) Guo, W.-S.; Gong, H.; Zhang, Y.-A.; Wen, L.-R.; Li, M. Org. Lett. 2018, 20, 6394.
doi: 10.1021/acs.orglett.8b02697 pmid: 29693382 |
|
(d) Hazarika, S.; Barman, P. ChemistrySelect 2020, 5, 11583.
doi: 10.1002/slct.202002512 pmid: 29693382 |
|
(e) Taninoto, K.; Ohkado, R.; Iida, H. J. Org. Chem. 2019, 84, 14980.
doi: 10.1021/acs.joc.9b02422 pmid: 29693382 |
|
(f) Bai, F.; Zhang, S.; Wei, L.; Liu, Y. Asian J. Org. Chem. 2018, 7, 371.
doi: 10.1002/ajoc.201700677 pmid: 29693382 |
|
[4] |
(a) Zhang, B.; Liu, D.; Sun, Y.; Zhang, Y.; Feng, J.; Yu, F. Org. Lett. 2021, 23, 3076.
doi: 10.1021/acs.orglett.1c00751 |
(b) Deng, L.; Liu, Y. ACS Omega 2018, 3, 11890.
doi: 10.1021/acsomega.8b01946 |
|
(c) Zhang, C.; Luo, J.; Zhang, J.; Chen, L.; Zhu, X.; Guo, M.; Shen, C.; Li, Z.; Wang, W. Asian J. Org. Chem. 2022, 11, e202200014.
|
|
(d) Zhang, T.; Yao, W.; Wan, J.-P.; Liu, Y. Adv. Synth. Catal. 2021, 363, 4811.
doi: 10.1002/adsc.202100617 |
|
(e) Ali, D.; Panday, A. K.; Choudhury, L. H. J. Org. Chem. 2020, 85, 13610.
doi: 10.1021/acs.joc.0c01738 |
|
(e) Zeng, F.-L.; Zhu, H.-L.; Chen, X.-L.; Qu, L.-B.; Yu, B. Green Chem. 2021, 23, 3677.
doi: 10.1039/D1GC00938A |
|
[5] |
(a) Zhao, F.; Tan, Q.; Wang, D.; Chen, J.; Deng, G.-J. Adv. Synth. Catal. 2019, 361, 4075.
doi: 10.1002/adsc.201900666 |
(b) Chen, L.; Xuchen, X.; Wang, F.; Yuang, Y.; Deng, G.; Liu, Y.; Liang, Y. Org. Biomol. Chem. 2021, 19, 10068.
doi: 10.1039/D1OB01989A |
|
(b) Tian, S.; Wang, C.; Xia, J.; Wan, J.-P.; Liu, Y. Adv. Synth. Catal. 2021, 363, 4627.
doi: 10.1002/adsc.202100816 |
|
(c) Zhang, L.; Nagaraju, S.; Paplal, B.; Lin, Y.; Liu, S. Eur. J. Org. Chem. 2021, 1365.
|
|
(d) Hu, B.; Zhang, Q.; Zhao, S.; Wang, Y.; Xu, L.; Yan, S.; Yu, F. Adv. Synth. Catal. 2019, 361, 49.
doi: 10.1002/adsc.201801138 |
|
[6] |
(a) Xu, Z.; Yang, X.; Yin, S.; Qiu, R. Top. Curr. Chem. 2020, 378, 42.
|
(b) Khan, B.; Dutta, H. S.; Koley, D. Asian J. Org. Chem. 2018, 7, 1270.
doi: 10.1002/ajoc.201800276 |
|
[7] |
(a) Guo, X.; Li, P.; Wang, Q.; Wang, Q.; Wang, L. Org. Chem. Front. 2022, 9, 3192.
doi: 10.1039/D1QO01912K |
(b) Wu, W.; Wu, M.; Yoshikai, N. Synthesis 2021, 53, 3144.
doi: 10.1055/a-1337-5416 |
|
(b) Zhang, Y.; Wen, C.; Li, J. Org. Biomol. Chem. 2018, 16, 1912.
doi: 10.1039/C7OB03059B |
|
(c) Mondal, S.; Hajra, A. Org. Biomol. Chem. 2018, 16, 2846.
doi: 10.1039/C8OB00537K |
|
(d) Zhao, L.; Li, P.; Xie, X.; Wang, L. Org. Chem. Front. 2018, 5, 1689.
doi: 10.1039/C8QO00229K |
|
[8] |
(a) Lin, X.; Zeng, C.; Liu, C.; Fang, Z.; Guo, K. Org. Biomol. Chem. 2021, 19, 1352.
doi: 10.1039/D0OB02055A |
(b) Wang, Y.; Wang, Y.; Jiang, K.; Zhang, Q.; Li, D. Org. Biomol. Chem. 2016, 14, 10180.
doi: 10.1039/C6OB02079H |
|
(c) Du, Y.; Liu, Y.; Wan, J.-P. J. Org. Chem. 2018, 83, 3403.
doi: 10.1021/acs.joc.8b00068 |
|
(d) Hou, J.; Wang, K.; Zhang, C.; Wei, T.; Bai, R.; Xie, Y. Eur. J. Org. Chem. 2020, 6382.
|
|
(e) Li, Y.; Zhu, L.; Cao, X.; Au, C.-T.; Qiu, R.; Yin, S.-F. Adv. Synth. Catal. 2017, 359, 2864.
doi: 10.1002/adsc.201700391 |
|
[9] |
(a) Dou, Y.; Xie, Z.; Sun, Z.; Fang, H.; Shen, C.; Zhang, P.; Zhu, Q. ChemCatChem 2016, 8, 3570.
doi: 10.1002/cctc.201600874 |
(b) Sheng, L.; Shen, D.; Zhu, J.; Wu, G.; Fan, G.; Wu, X.; Du, K. Tetrahedron 2021, 85, 132033.
doi: 10.1016/j.tet.2021.132033 |
|
(c) Ji, D.; He, X.; Xu, Y.; Xu, Z.; Bian, Y.; Liu, W.; Zhu, Q.; Xu, Y. Org. Lett. 2016, 18, 4478.
doi: 10.1021/acs.orglett.6b01980 |
|
[10] |
(a) Xia, C.; Wang, K.; Xu, J.; Shen, C.; Sun, D.; Li, H.; Wang, G.; Zhang, P. Org. Biomol. Chem. 2017, 15, 531.
doi: 10.1039/C6OB02375D |
(b) Wen, C.; Zhong, R.; Qin, Z.; Zhao, M.; Li, J. Org. Biomol. Chem. 2020, 56, 9529.
|
|
(c) Mondal, S.; Hajra, A. J. Org. Chem. 2018, 83, 11392.
doi: 10.1021/acs.joc.8b01635 |
|
[11] |
(a) Li, J.-M.; Weng, J.; Lu, G.; Chan, A. S. C. Tetrahedron Lett. 2016, 57, 2121.
|
(b) Chen, G.; Zhang, X.; Zeng, Z.; Peng, W.; Liang, Y.; Liu, J. ChemistrySelect 2017, 2, 1979.
doi: 10.1002/slct.201700235 |
|
(c) Liu, X.; Zhang, H.; Yang, F.; Wang, B. Org. Biomol. Chem. 2019, 17, 7564.
doi: 10.1039/C9OB01357A |
|
(d) Liang, S.; Manolikakes, G. M. Adv. Synth. Catal. 2016, 358, 2371.
doi: 10.1002/adsc.201600388 |
|
[12] |
Yu, Q.; Yang, Y.; Wan, J.-P.; Liu, Y. J. Org. Chem. 2018, 83, 11385.
doi: 10.1021/acs.joc.8b01658 |
[13] |
Kumar, V.; Banert, K.; Ray, D.; Saha, B. Org. Biomol. Chem. 2019, 17, 10245.
doi: 10.1039/C9OB02235J |
[14] |
(a) Fu, L.; Wan, J.-P.; Zhou, Y.; Liu, Y. Chem. Commun. 2022, 58, 1808.
doi: 10.1039/D1CC06768K |
(b) Luo, T.; Wu, H.; Liao, L.-h.; Wan, J.-P.; Liu, Y. J. Org. Chem. 2021, 86, 15785.
doi: 10.1021/acs.joc.1c01851 |
|
(c) Luo, T.; Tian, S.; Wan, J.-P.; Liu, Y. Curr. Org. Chem. 2021, 25, 1180.
|
|
[15] |
(a) Pang, X.; Xiang, L.; Yang, X.; Yan, R. Adv. Synth. Catal. 2016, 358, 321.
doi: 10.1002/adsc.201500943 |
(b) Yang, Y.; Zhang, S.; Tang, L.; Hu, Y.; Zha, Z.; Wang, Z. Green Chem. 2016, 18, 26093.
|
|
(c) Yang, F.-L.; Tian, S.-K. Angew. Chem., Int. Ed. 2013, 52, 4929.
doi: 10.1002/anie.201301437 |
|
[16] |
Lin, Y.-M.; Lu, G.-P.; Wang, G.-X.; Yi, W.-B. Adv. Synth. Catal. 2016, 358, 4100.
doi: 10.1002/adsc.201600846 |
[17] |
Chen, L.; Pu, J.; Liu, P.; Dai, B. J. Chem. Res. 2018, 42, 456.
doi: 10.3184/174751918X15350179602459 |
[1] | 付雅彤, 孙超凡, 张丹, 金成国, 陆居有. 巢式-碳硼烷硼氢键官能化反应研究进展[J]. 有机化学, 2024, 44(2): 438-447. |
[2] | 张剑, 梁万洁, 杨艺, 闫法超, 刘会. 联烯胺化合物的区域选择性双官能团化[J]. 有机化学, 2024, 44(2): 335-348. |
[3] | 陈宛婷, 钟雄威, 邢佳乐, 吴昌书, 高杨. C—N轴手性化合物的不对称催化合成研究进展[J]. 有机化学, 2024, 44(2): 349-377. |
[4] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[5] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[6] | 张莹珍, 江丹丹, 李娟华, 王菁菁, 刘昆明, 刘晋彪. 高选择性硒代半胱氨酸荧光探针的构建策略及成像[J]. 有机化学, 2024, 44(1): 41-53. |
[7] | 王婧怡, 刘金羽, 陈东升, 陈华燕, 谢欣, 南发俊. 新型选择性半胱氨酰白三烯受体1 (CysLT1R)拮抗剂的设计合成及构效关系研究[J]. 有机化学, 2024, 44(1): 259-276. |
[8] | 金玉坤, 任保轶, 梁福顺. 可见光介导的三氟甲基的选择性C-F键断裂及其在偕二氟类化合物合成中的应用[J]. 有机化学, 2024, 44(1): 85-110. |
[9] | 张俊杰, 徐学涛. (S)-(–)-Xylopinine和(S)-(+)-Laudanosine的不对称合成[J]. 有机化学, 2023, 43(9): 3297-3303. |
[10] | 王兢睿, 冯永奎, 王能中, 黄年玉, 姚辉. 钯催化立体选择性合成硝基烷类β-碳糖苷[J]. 有机化学, 2023, 43(9): 3216-3225. |
[11] | 徐伟, 翟宏斌, 程斌, 汪太民. 可见光诱导的钯催化Heck反应[J]. 有机化学, 2023, 43(9): 3035-3054. |
[12] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[13] | 张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106. |
[14] | 归春明, 周潼瑶, 王海峰, 严琼姣, 汪伟, 黄锦, 陈芬儿. 可见光氧化还原催化炔基化反应的研究进展[J]. 有机化学, 2023, 43(8): 2647-2663. |
[15] | 赵瑜, 张凯, 白育斌, 张琰图, 史时辉. 无金属条件下可见光催化与溴盐协同促进烯烃的氢硅化反应研究[J]. 有机化学, 2023, 43(8): 2837-2847. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||