有机化学 ›› 2023, Vol. 43 ›› Issue (2): 629-635.DOI: 10.6023/cjoc202206047 上一篇 下一篇
研究论文
刘桂杰, 付正强, 陈飞, 徐彩霞*(), 李敏*(), 刘宁*()
收稿日期:
2022-09-08
修回日期:
2022-09-29
发布日期:
2022-11-07
基金资助:
Guijie Liu, Zhengqiang Fu, Fei Chen, Caixia Xu(), Min Li(), Ning Liu()
Received:
2022-09-08
Revised:
2022-09-29
Published:
2022-11-07
Contact:
*E-mail: Supported by:
文章分享
该工作发展了一类二齿N-杂环卡宾(NHC)-吡啶锰配合物催化CO2和环氧化物偶联反应的方法. 锰配合物和四丁基碘化铵(TBAI)构成的二元催化体系对环氧化物和CO2合成环状碳酸酯的反应表现出了较高的活性. 该二元催化体系适用于广泛的底物范围, 例如端环氧化物和高位阻的内环氧化物. 通过紫外-可见光谱、红外光谱和高分辨质谱的研究对反应机理进行了阐述.
刘桂杰, 付正强, 陈飞, 徐彩霞, 李敏, 刘宁. N-杂环卡宾-吡啶锰配合物/四丁基碘化铵催化CO2和环氧化物合成环状碳酸酯[J]. 有机化学, 2023, 43(2): 629-635.
Guijie Liu, Zhengqiang Fu, Fei Chen, Caixia Xu, Min Li, Ning Liu. N-Heterocyclic Carbene-Pyridine Manganese Complex/ Tetrabutylammonium Iodide Catalyzed Synthesis of Cyclic Carbonate from CO2 and Epoxide[J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 629-635.
Entry | Catalyst (mol%) | Co-catalyst (mol%) | CO2 | T/℃ | Time/h | Yield/% |
---|---|---|---|---|---|---|
1 | Mn-1 (0.15) | TBAB (1.5) | balloon | 30 | 24 | 31 |
2 | Mn-2 (0.15) | TBAB (1.5) | balloon | 30 | 24 | 37 |
3 | Mn-3 (0.15) | TBAB (1.5) | balloon | 30 | 24 | 30 |
4 | Mn-4 (0.15) | TBAB (1.5) | balloon | 30 | 24 | 18 |
5 | Mn-5 (0.15) | TBAB (1.5) | balloon | 30 | 24 | 33 |
6 | Mn-2 (0.15) | TBAI (1.5) | balloon | 30 | 24 | 43 |
7 | Mn-2 (0.15) | TBAC (1.5) | balloon | 30 | 24 | 34 |
8 | Mn-2 (0.15) | TOAB (1.5) | balloon | 30 | 24 | 30 |
9 | Mn-2 (0.15) | PPNCl (1.5) | balloon | 30 | 24 | 38 |
10 | Mn-2 (0.15) | TBAA (1.5) | balloon | 30 | 24 | 36 |
11 | Mn-2 (0.15) | TOPB (1.5) | balloon | 30 | 24 | 38 |
12 | Mn-2 (0.3) | TBAI (1.5) | balloon | 30 | 24 | 60 |
13 | Mn-2 (0.45) | TBAI (1.5) | balloon | 30 | 24 | 76 |
14 | Mn-2 (0.3) | TBAI (1.5) | 0.5 MPa | 30 | 24 | 64 |
15 | Mn-2 (0.3) | TBAI (1.5) | 1.0 MPa | 30 | 24 | 67 |
16 | Mn-2 (0.3) | TBAI (1.5) | 1.0 MPa | 40 | 24 | 72 |
17 | Mn-2 (0.3) | TBAI (1.5) | 1.0 MPa | 60 | 24 | 79 |
18 | Mn-2 (0.3) | TBAI (1.5) | 1.0 MPa | 80 | 12 | 98 |
19 | Mn-2 (0.3) | TBAI (1.5) | 1.0 MPa | 80 | 6 | 90 |
20 | Mn-2 (0.3) | TBAI (3.0) | 1.0 MPa | 80 | 6 | 92 |
21 | Mn-2 (0) | TBAI (1.5) | 1.0 MPa | 80 | 12 | 40 |
22 | Mn-2 (0.3) | TBAI (0) | 1.0 MPa | 80 | 12 | 0 |
Entry | Catalyst (mol%) | Co-catalyst (mol%) | CO2 | T/℃ | Time/h | Yield/% |
---|---|---|---|---|---|---|
1 | Mn-1 (0.15) | TBAB (1.5) | balloon | 30 | 24 | 31 |
2 | Mn-2 (0.15) | TBAB (1.5) | balloon | 30 | 24 | 37 |
3 | Mn-3 (0.15) | TBAB (1.5) | balloon | 30 | 24 | 30 |
4 | Mn-4 (0.15) | TBAB (1.5) | balloon | 30 | 24 | 18 |
5 | Mn-5 (0.15) | TBAB (1.5) | balloon | 30 | 24 | 33 |
6 | Mn-2 (0.15) | TBAI (1.5) | balloon | 30 | 24 | 43 |
7 | Mn-2 (0.15) | TBAC (1.5) | balloon | 30 | 24 | 34 |
8 | Mn-2 (0.15) | TOAB (1.5) | balloon | 30 | 24 | 30 |
9 | Mn-2 (0.15) | PPNCl (1.5) | balloon | 30 | 24 | 38 |
10 | Mn-2 (0.15) | TBAA (1.5) | balloon | 30 | 24 | 36 |
11 | Mn-2 (0.15) | TOPB (1.5) | balloon | 30 | 24 | 38 |
12 | Mn-2 (0.3) | TBAI (1.5) | balloon | 30 | 24 | 60 |
13 | Mn-2 (0.45) | TBAI (1.5) | balloon | 30 | 24 | 76 |
14 | Mn-2 (0.3) | TBAI (1.5) | 0.5 MPa | 30 | 24 | 64 |
15 | Mn-2 (0.3) | TBAI (1.5) | 1.0 MPa | 30 | 24 | 67 |
16 | Mn-2 (0.3) | TBAI (1.5) | 1.0 MPa | 40 | 24 | 72 |
17 | Mn-2 (0.3) | TBAI (1.5) | 1.0 MPa | 60 | 24 | 79 |
18 | Mn-2 (0.3) | TBAI (1.5) | 1.0 MPa | 80 | 12 | 98 |
19 | Mn-2 (0.3) | TBAI (1.5) | 1.0 MPa | 80 | 6 | 90 |
20 | Mn-2 (0.3) | TBAI (3.0) | 1.0 MPa | 80 | 6 | 92 |
21 | Mn-2 (0) | TBAI (1.5) | 1.0 MPa | 80 | 12 | 40 |
22 | Mn-2 (0.3) | TBAI (0) | 1.0 MPa | 80 | 12 | 0 |
[1] |
(a) Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709.
doi: 10.1021/cr4002758 |
(b) Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Angew. Chem., Int. Ed. 2016, 55, 7296.
doi: 10.1002/anie.201507458 |
|
[2] |
(a) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382.
doi: 10.1039/C8CS00281A |
(b) Lu, X.-B.; Ren, W.-M.; Wu, G.-P. Acc. Chem. Res. 2012, 45, 1721.
doi: 10.1021/ar300035z |
|
(c) Song, Q.-W.; Zhou, Z.-H.; He, L.-N. Green Chem. 2017, 19, 3707.
doi: 10.1039/C7GC00199A |
|
(d) He, X.; Qiu, L.-Q.; Wang, W.-J.; Chen, K.-H.; He, L.-N. Green Chem. 2020, 22, 7301.
doi: 10.1039/D0GC02743J |
|
(e) Song, L.; Jiang, Y.-X.; Zhang, Z.; Gui, Y.-Y.; Zhou, X.-Y.; Yu, D.-G. Chem. Commun. 2020, 56, 8355.
doi: 10.1039/D0CC00547A |
|
(f) Ran, C.-K.; Chen, X.-W.; Gui, Y.-Y.; Liu, J.; Song, L.; Ren, K.; Yu, D.-G. Sci. China: Chem. 2020, 63, 1336.
|
|
(g) You, Y.; Mita, T. Asian J. Org. Chem. 2022, 11, e202200082.
|
|
[3] |
(a) Guo, L.; Lamb, K. J.; North, M. Green Chem. 2021, 23, 77.
doi: 10.1039/D0GC03465G |
(b) Claver, C.; Yeamin, M. B.; Reguero, M.; Masdeu-Bultó, A. M. Green Chem. 2020, 22, 7665.
doi: 10.1039/D0GC01870H |
|
[4] |
(a) Andrea, K. A.; Butler, E. D.; Brown, T. R.; Anderson, T. S.; Jagota, D.; Rose, C.; Lee, E. M.; Goulding, S. D.; Murphy, J. N.; Kerton, F. M.; Kozak, C. M. Inorg. Chem. 2019, 58, 11231.
doi: 10.1021/acs.inorgchem.9b01909 pmid: 31369254 |
(b) Büttner, H.; Grimmer, C.; Steinbauer, J.; Werner, T. ACS Sustainable Chem. Eng. 2016, 4, 4805.
doi: 10.1021/acssuschemeng.6b01092 pmid: 31369254 |
|
(c) Della Monica, F.; Buonerba, A.; Paradiso, V.; Milione, S.; Grassi, A.; Capacchione, C. Adv. Synth. Catal. 2019, 361, 283.
doi: 10.1002/adsc.201801240 pmid: 31369254 |
|
(d) Paradiso, V.; Della Monica, F.; Lamparelli, D. H.; D'Aniello, S.; Rieger, B.; Capacchione, C. Catal. Sci. Technol. 2021, 11, 4702.
doi: 10.1039/D1CY00622C pmid: 31369254 |
|
(e) Seong, E. Y.; Kim, J. H.; Kim, N. H.; Ahn, K.-H.; Kang, E. J. ChemSusChem 2019, 12, 409.
doi: 10.1002/cssc.201802563 pmid: 31369254 |
|
[5] |
(a) Whiteoak, C. J.; Kielland, N.; Laserna, V.; Escudero-Adán, E. C.; Martin, E.; Kleij, A. W. J. Am. Chem. Soc. 2013, 135, 1228.
doi: 10.1021/ja311053h |
(b) Maquilón, C.; Limburg, B.; Laserna, V.; Garay-Ruiz, D.; González-Fabra, J.; Bo, C.; Martínez Belmonte, M.; Escudero-Adán, E. C.; Kleij, A. W. Organometallics 2020, 39, 1642.
doi: 10.1021/acs.organomet.9b00773 |
|
(c) Saltarini, S.; Villegas-Escobar, N.; Martínez, J.; Daniliuc, C. G.; Matute, R. A.; Gade, L. H.; Rojas, R. S. Inorg. Chem. 2021, 60, 1172.
doi: 10.1021/acs.inorgchem.0c03290 |
|
(d) Liu, J.; Yang, G.; Liu, Y.; Zhang, D.; Hu, X.; Zhang, Z. Green Chem. 2020, 22, 4509.
doi: 10.1039/D0GC00458H |
|
[6] |
(a) Takaishi, K.; Nath, B. D.; Yamada, Y.; Kosugi, H.; Ema, T. Angew. Chem., Int. Ed. 2019, 58, 9984.
doi: 10.1002/anie.201904224 |
(b) Alonso de la Peña, M.; Merzoud, L.; Lamine, W.; Tuel, A.; Chermette, H.; Christ, L. J. CO2 Util. 2021, 44, 101380.
|
|
(c) Chen, J.; Wu, X.; Ding, H.; Liu, N.; Liu, B.; He, L. ACS Sustainable Chem. Eng. 2021, 9, 16210.
doi: 10.1021/acssuschemeng.1c05469 |
|
(d) Lang, X.-D.; Yu, Y. C.; He, L.-N. J. Mol. Catal. A: Chem. 2016, 420, 208.
doi: 10.1016/j.molcata.2016.04.018 |
|
[7] |
(a) Jiang, X.; Gou, F.; Chen, F.; Jing, H. Green Chem. 2016, 18, 3567.
doi: 10.1039/C6GC00370B |
(b) Schoepff, L.; Monnereau, L.; Durot, S.; Jenni, S.; Gourlaouen, C.; Heitz, V. ChemCatChem 2020, 12, 5826.
doi: 10.1002/cctc.202001176 |
|
[8] |
Muthuramalingam, S.; Sankaralingam, M.; Velusamy, M.; Mayilmurugan, R. Inorg. Chem. 2019, 58, 12975.
doi: 10.1021/acs.inorgchem.9b01908 pmid: 31535857 |
[9] |
(a) Castro-Osma, J. A.; Lamb, K. J.; North, M. ACS Catal. 2016, 6, 5012.
doi: 10.1021/acscatal.6b01386 |
(b) Kiriratnikom, J.; Laiwattanapaisarn, N.; Vongnam, K.; Thavornsin, N.; Sae-ung, P.; Kaeothip, S.; Euapermkiati, A.; Namuangruk, S.; Phomphrai, K. Inorg. Chem. 2021, 60, 6147.
doi: 10.1021/acs.inorgchem.0c03732 |
|
[10] |
Longwitz, L.; Steinbauer, J.; Spannenberg, A.; Werner, T. ACS Catal. 2018, 8, 665.
doi: 10.1021/acscatal.7b03367 |
[11] |
Baalbaki, H. A.; Roshandel, H.; Hein, J. E.; Mehrkhodavandi, P. Catal. Sci. Technol. 2021, 11, 2119.
doi: 10.1039/D0CY02028A |
[12] |
Fernández-Baeza, J.; Sánchez-Barba, L. F.; Lara-Sánchez, A.; Sobrino, S.; Martínez-Ferrer, J.; Garcés, A.; Navarro, M.; Rodríguez, A. M. Inorg. Chem. 2020, 59, 12422.
doi: 10.1021/acs.inorgchem.0c01532 pmid: 32811145 |
[13] |
Xin, X.; Shan, H.; Tian, T.; Wang, Y.; Yuan, D.; You, H.; Yao, Y. ACS Sustainable Chem. Eng. 2020, 8, 13185.
doi: 10.1021/acssuschemeng.0c01736 |
[14] |
(a) Jiang, X.; Gou, F.; Qi, C. J. CO2 Util. 2019, 29, 134.
|
(b) Milani, J. L. S.; Meireles, A. M.; Cabral, B. N.; de Almeida Bezerra, W.; Martins, F. T.; daSilva Martins, D. C.; das Chagas, R. P. J. CO2 Util. 2019, 30, 100.
|
|
(c) Bai, D.; Wang, X.; Song, Y.; Li, B.; Zhang, L.; Yan, P.; Jing, H. Chin. J. Catal. 2010, 31, 176.
doi: 10.1016/S1872-2067(09)60044-9 |
|
(d) Cuesta-Aluja, L.; Castilla, J.; Masdeu-Bultó, A. M.; Henriques, C. A.; Calvete, M. J. F.; Pereira, M. M. J. Mol. Catal. A: Chem. 2016, 423, 489.
doi: 10.1016/j.molcata.2015.10.025 |
|
[15] |
(a) Jutz, F.; Grunwaldt, J.-D.; Baiker, A. J. Mol. Catal. A: Chem. 2008, 279, 94.
doi: 10.1016/j.molcata.2007.10.010 |
(b) Jutz, F.; Grunwaldt, J.-D.; Baiker, A. J. Mol. Catal. A: Chem. 2009, 297, 63.
doi: 10.1016/j.molcata.2008.10.009 |
|
[16] |
Srivastava, R.; Bennur, T. H.; Srinivas, D. J. Mol. Catal. A: Chem. 2005, 226, 199.
doi: 10.1016/j.molcata.2004.10.034 |
[17] |
Tiffner, M.; Gonglach, S.; Haas, M.; Schöfberger, W.; Waser, M. Chem. Asian J. 2017, 12, 1048.
doi: 10.1002/asia.201700354 |
[18] |
Lu, J.; Ma, X.; Singh, V.; Zhang, Y.; Wang, P.; Feng, J.; Ma, P.; Niu, J.; Wang, J. Inorg. Chem. 2018, 57, 14632.
doi: 10.1021/acs.inorgchem.8b02321 |
[19] |
Man, M. L.; Lam, K. C.; Sit, W. N.; Ng, S. M.; Zhou, Z.; Lin, Z.; Lau, C. P. Chem.-Eur. J. 2006, 12, 1004.
pmid: 16245376 |
[20] |
Fu, Z.; Wang, X.; Tao, S.; Bu, Q.; Wei, D.; Liu, N. J. Org. Chem. 2021, 86, 2339.
doi: 10.1021/acs.joc.0c02478 |
[21] |
Hugar, K. M.; Kostalik IV, H. A.; Coates, G. W. J. Am. Chem. Soc. 2015, 137, 8730.
doi: 10.1021/jacs.5b02879 |
[22] |
(a) Darensbourg, D. J.; Yarbrough, J. C. J. Am. Chem. Soc. 2002, 124, 6335.
pmid: 12693242 |
(b) Darensbourg, D. J.; Lewis, S. J.; Rodgers, J. L.; Yarbrough, J. C. Inorg. Chem. 2003, 42, 581.
pmid: 12693242 |
|
(c) Li, F.; Xiao, L.; Xia, C.; Hu, B. Tetrahedron Lett. 2004, 45, 8307.
doi: 10.1016/j.tetlet.2004.09.074 pmid: 12693242 |
|
(d) Miao, C. X.; Wang, J. Q.; Wu, Y.; Du, Y.; He, L. N. ChemSusChem 2008, 1, 236.
doi: 10.1002/cssc.200700133 pmid: 12693242 |
|
(e) Sopeña, S.; Martin, E.; Escudero-Adán, E. C.; Kleij, A. W. ACS Catal. 2017, 7, 3532.
doi: 10.1021/acscatal.7b00475 pmid: 12693242 |
|
[23] |
Whiteoak, C. J.; Martin, E.; Belmonte, M. M.; Benet-Buchholz, J.; Kleij, A. W. Adv. Synth. Catal. 2012, 354, 469.
doi: 10.1002/adsc.201100752 |
[24] |
Navarro, M.; Sánchez-Barba, L. F.; Garcés, A.; Fernández-Baeza, J.; Fernández, I.; Lara-Sánchez, A.; Rodríguez, A. M. Catal. Sci. Technol. 2020, 10, 3265.
doi: 10.1039/D0CY00593B |
[25] |
Zhou, H.; Wang, G.-X.; Zhang, W.-Z.; Lu, X.-B. ACS Catal. 2015, 5, 6773.
doi: 10.1021/acscatal.5b01409 |
[26] |
Desens, W.; Kohrt, C.; Spannenberg, A.; Werner, T. Org. Chem. Front. 2016, 3, 156.
doi: 10.1039/C5QO00356C |
[27] |
Büttner, H.; Steinbauer, J.; Werner, T. ChemSusChem 2015, 8, 2655.
doi: 10.1002/cssc.201500612 |
[28] |
Martín, C.; Whiteoak, C. J.; Martin, E.; Martínez Belmonte, M.; Escudero-Adán, E. C.; Kleij, A. W. Catal. Sci. Technol. 2014, 4, 1615.
doi: 10.1039/C3CY01043K |
[29] |
Vagnoni, M.; Samorì, C.; Galletti, P. J. CO2 Util. 2020, 42, 101302.
|
[30] |
Chen, F.; Liu, N.; Dai, B. ACS Sustainable Chem. Eng. 2017, 5, 9065.
doi: 10.1021/acssuschemeng.7b01990 |
[31] |
Wang, J.-Q.; Dong, K.; Cheng, W.-G.; Sun, J.; Zhang, S.-J. Catal. Sci. Technol. 2012, 2, 1480.
doi: 10.1039/c2cy20103h |
[32] |
Dong, T.; Zheng, Y.-J.; Yang, G.-W.; Zhang, Y.-Y.; Li, B.; Wu, G.-P. ChemSusChem 2020, 13, 4121.
doi: 10.1002/cssc.202001117 |
[33] |
Werner, T.; Büttner, H. ChemSusChem 2014, 7, 3268.
doi: 10.1002/cssc.201402477 |
[1] | 廖旭, 王泽宇, 唐武飞, 林金清. 多孔有机聚合物用于化学固定二氧化碳的研究进展[J]. 有机化学, 2023, 43(8): 2699-2710. |
[2] | 刘露, 张曙光, 胡仁威, 赵晓晓, 崔京南, 贡卫涛. 基于多羟基柱[5]芳烃的酚醛多孔聚合物合成及CO2催化转化[J]. 有机化学, 2023, 43(8): 2808-2814. |
[3] | 张晓雨, 李欣燕, 崔冰, 邵志晖, 赵铭钦. 四氢-β-咔啉衍生物的设计、合成及抗氧化性能研究[J]. 有机化学, 2023, 43(8): 2885-2894. |
[4] | 宋姿洁, 刘俊, 白赢, 厉嘉云, 彭家建. 利用硅氢加成反应催化转化二氧化碳研究进展[J]. 有机化学, 2023, 43(6): 2068-2080. |
[5] | 张心予, 耿慧慧, 张士磊, 王卫, 陈晓蓓. 一种N-杂环卡宾催化合成氘代苯偶姻的方法[J]. 有机化学, 2023, 43(4): 1510-1516. |
[6] | 潘永周, 蒙秀金, 王迎春, 何慕雪. 电化学固定CO2构建羧酸衍生物的研究进展[J]. 有机化学, 2023, 43(4): 1416-1434. |
[7] | 苏沛锋, 倪金煜, 柯卓锋. 二氧化碳硅氢化及相关转化的均相催化体系研究进展[J]. 有机化学, 2023, 43(10): 3526-3543. |
[8] | 黄燕, 张谦, 詹乐武, 侯静, 李斌栋. 可见光诱导甲酸盐参与的烯烃氢羧化反应[J]. 有机化学, 2022, 42(8): 2568-2573. |
[9] | 徐勇, 张永兴, 胡佳, 陈宬, 原晔, Francis Verpoort. ZnO/离子液体体系催化常压二氧化碳合成β-羰基氨基甲酸酯[J]. 有机化学, 2022, 42(8): 2542-2550. |
[10] | 陈飞, 陶晟, 刘宁, 代斌. CNN型双核Cu(I)配合物室温催化固定CO2的直接羧基化反应[J]. 有机化学, 2022, 42(8): 2471-2480. |
[11] | 管怡雯, 常克俭, 孙千林, 徐信. 基于稀土金属路易斯酸碱对化学的研究进展[J]. 有机化学, 2022, 42(5): 1326-1335. |
[12] | 朱有财, 丁欣欣, 孙莉, 刘振. CO2/C2H4耦合制备丙烯酸及其衍生物的研究进展[J]. 有机化学, 2022, 42(4): 965-977. |
[13] | 李玉东, 李莹, 董亚楠, 夏春谷, 李跃辉. 锰催化的碳酸乙烯亚乙酯对喹唑啉酮的C—H烯丙基化[J]. 有机化学, 2022, 42(3): 847-853. |
[14] | 黄文斌, 邱丽琪, 任方煜, 何良年. 过渡金属催化CO2氢化反应研究进展[J]. 有机化学, 2021, 41(10): 3914-3934. |
[15] | 易雅平, 杭炜, 席婵娟. 过渡金属催化不饱和烃与有机金属试剂及CO 2的串联羧化反应研究进展[J]. 有机化学, 2021, 41(1): 80-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||