有机化学 ›› 2023, Vol. 43 ›› Issue (8): 2743-2763.DOI: 10.6023/cjoc202301005 上一篇 下一篇
综述与进展
收稿日期:
2023-01-06
修回日期:
2023-02-19
发布日期:
2023-04-07
基金资助:
Wenqian Wu, Chunxia Chen, Jinsong Peng(), Zhanyu Li()
Received:
2023-01-06
Revised:
2023-02-19
Published:
2023-04-07
Contact:
*E-mail: Supported by:
文章分享
α-氨基羰基衍生物是一类重要分子骨架, 存在于许多药物分子和天然产物分子中; 同时, 也是一类重要的有机合成中间体, 用于合成许多重要的有机化合物分子. 发展简单、高效的方法合成结构多样性的α-氨基羰基衍生物具有重要的研究意义. 总结了近几十年来羰基α-位碳氢键的直接胺化反应, 根据反应所经历的不同活化模式, 对这类反应进行了分类总结, 主要分为亲电胺化、氧化胺化、卤化物介导的胺化和电化学胺化四类反应.
吴文倩, 陈春霞, 彭进松, 李占宇. 羰基α-位胺化反应研究进展[J]. 有机化学, 2023, 43(8): 2743-2763.
Wenqian Wu, Chunxia Chen, Jinsong Peng, Zhanyu Li. Research Progress of Carbonyl α-Position Amination[J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2743-2763.
[1] |
Meltzer, P. C.; Butler, D.; Deschamps, J. R.; Madras, B. K. J. Med. Chem. 2006, 49, 1420.
doi: 10.1021/jm050797a pmid: 16480278 |
[2] |
Carroll, F. I.; Blough, B. E.; Abraham, P.; Mills, A. C.; Holleman, J. A.; Wolckenhauer, S. A.; Decker, A. M.; Landavazo, A.; McElroy, K. T.; Navarro, H. A.; Gatch, M. B.; Forster, M. J. J. Med. Chem. 2009, 52, 6768.
doi: 10.1021/jm901189z pmid: 19821577 |
[3] |
Silverstone, T. Drugs 1992, 43, 820.
pmid: 1379155 |
[4] |
Marquis, R. W.; Ru, Y.; Yamashita, D. S.; Oh, H. J.; Yen, J.; Thompson, S. K.; Carr, T. J.; Levy, M. A.; Tomaszek, T. A.; Ijames, C. F.; Smith, W. W.; Zhao, B.; Janson, C. A.; Abdel-Meguid, S. S.; DAlessio, K. J.; McQueney, M. S.; Veber, D. F. J. Bioorg. Med. Chem. 1999, 7, 581.
|
[5] |
Nchinda, A. T.; Chibale, K.; Redelinghuys, P.; Sturrock, E. D. Bioorg. Med. Chem. Lett. 2006, 16, 4612.
doi: 10.1016/j.bmcl.2006.06.003 |
[6] |
Knorr, L. J. Eur. J. Org. Chem. 1888, 1888, 357.
|
[7] |
Sorrell, T. N.; Allen, W. E. J. Org. Chem. 1994, 59, 1589.
doi: 10.1021/jo00085a056 |
[8] |
Chiba, T.; Sakagami, H.; Murata, M.; Okimoto, M. J. Org. Chem. 1995, 60, 6764.
doi: 10.1021/jo00126a027 |
[9] |
Nadkarni, D.; Hallissey, J.; Mojica, C. J. Org. Chem. 2003, 68, 594.
pmid: 12530889 |
[10] |
Williams, R. M.; Hendrix, J. A. J. Chem. Rev. 1992, 92, 889.
doi: 10.1021/cr00013a007 |
[11] |
Xu, J.; Green, A. P.; Turner, N. J. Angew. Chem., Int. Ed. 2018, 57, 16760.
doi: 10.1002/anie.v57.51 |
[12] |
Fisher, L. E.; Muchowski, J. M. Org. Prep. Proced. Int. 1990, 22, 399.
doi: 10.1080/00304949009356309 |
[13] |
Allen, L. A. T.; Raclea, R. C.; Natho, P.; Parsons, P. J. Org. Biomol. Chem. 2021, 19, 498.
doi: 10.1039/D0OB02098B |
[14] |
Li, J. Z.; Zhang, W. K.; Ge, G. P.; Zheng, H. X.; Wei, W. T. Org. Biomol. Chem. 2021, 19, 7333.
doi: 10.1039/D1OB01408K |
[15] |
Greck, C.; Drouillat, B.; Thomassigny, C. Eur. J. Org. Chem. 2004, 2004, 1377.
doi: 10.1002/ejoc.v2004:7 |
[16] |
Erdik, E. Tetrahedron. 2004, 60, 8747.
doi: 10.1016/j.tet.2004.07.001 |
[17] |
Greck, C.; Bischoff, l.; Ferreira, F.; Pinel, C.; Piveteau, E.; Genet, J. P. J. Synlett. 1993, 475.
|
[18] |
Bulman Page, P. C.; McKenzie, M. J.; Allina, S. M.; Buckle, D. R. J. Tetrahedron 2000, 56, 9683.
doi: 10.1016/S0040-4020(00)00923-6 |
[19] |
Asano, T.; Moritani, M.; Nakajima, M.; Kotani, S. Tetrahedron 2017, 73, 5975.
doi: 10.1016/j.tet.2017.08.015 |
[20] |
Evans, D. A.; Nelson, S. G. J. Am. Chem. Soc. 1997, 119, 6452.
doi: 10.1021/ja971367f |
[21] |
Juhl, K.; Jørgensen, K. A. J. Am. Chem. Soc. 2002, 124, 2420.
doi: 10.1021/ja0175486 |
[22] |
Marigo, M.; Juhl, K.; Jørgensen, K. A. J. Angew. Chem. 2003, 115, 12.
|
[23] |
Ma, S.; Jiao, N.; Zheng, Z.; Ma, Z.; Lu, Z. Org. Lett. 2004, 6, 2193.
doi: 10.1021/ol0493498 |
[24] |
Xiao, X.; Lin, L.; Lian, X.; Liu, X.; Feng, X. Org. Chem. Front. 2016, 3, 809.
doi: 10.1039/C6QO00095A |
[25] |
Comelles, J.; Pericas, A.; Moreno-Manas, M.; Vallribera, A.; Drudis-Sole, G.; Lledos, A.; Parella, T.; Roglans, A.; Garcia-Granda, S.; Roces-Fernandez, L. J. Org. Chem. 2007, 72, 2077.
pmid: 17315933 |
[26] |
Pericas, A.; Jimenez, R.; Granados, A.; Shafir, A.; Vallribera, A.; Roglans, A.; Molins, E. ChemistrySelect 2016, 1, 4305.
doi: 10.1002/slct.201600820 |
[27] |
Naganawa, Y.; Komatsu, H.; Nishiyama, H. Chem. Lett. 2015, 44, 1652.
doi: 10.1246/cl.150802 |
[28] |
Bøgevig, A.; Juhl, K.; Kumaragurubaran, N.; Zhuang, W.; Jørgensen, K. A. J. Angew. Chem., Int. Ed. 2002, 41, 10.
|
[29] |
Kumaragurubaran, N.; Juhl, K.; Zhuang, W.; Bøgevig, A.; Jørgensen, K. A. J. J. Am. Chem. Soc. 2002, 124, 6254.
pmid: 12033850 |
[30] |
Iwamura, H.; Wells, D. H.; Mathew, S. P.; Klussmann, M.; Armstrong, A.; Blackmond, D. G. J. J. Am. Chem. Soc. 2004, 126, 16312.
doi: 10.1021/ja0444177 |
[31] |
Franzen, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjær- sgaard, A.; Jørgensen, K. A. J. J. Am. Chem. Soc. 2005, 127, 18296.
doi: 10.1021/ja056120u |
[32] |
Suri, J. T.; Steiner, D. D.; Barbas, C. F. Org. Lett. 2005, 7, 3885.
doi: 10.1021/ol0512942 |
[33] |
Desmarchelier, A.; Yalgin, H.; Coeffard, V.; Moreau, X.; Greck, C. Tetrahedron Lett. 2011, 52, 4430.
doi: 10.1016/j.tetlet.2011.06.063 |
[34] |
Liu, C.; Zhu, Q.; Huang, K.; Lu, Y. Org. Lett. 2011, 13, 2638.
doi: 10.1021/ol200747x |
[35] |
Zhou, F.; Zeng, X.; Wang, C.; Zhao, X.; Zhou, J. Chem. Commun. 2013, 49, 2022.
doi: 10.1039/c3cc38819k |
[36] |
Lim, Y. J.; Kim, D. Y. B. Bull. Korean. Chem. Soc. 2013, 34, 1955.
doi: 10.5012/bkcs.2013.34.7.1955 |
[37] |
Xu, C.; Zhang, L.; Luo, S. J. Org. Chem. 2014, 79, 11517.
doi: 10.1021/jo502152w |
[38] |
List, B.; Shevchenko, G.; Pupo, G. Synlett 2015, 26, 1413.
doi: 10.1055/s-00000083 |
[39] |
Odagi, M.; Yamamoto, Y.; Nagasawa, K. Beilstein J. Org. Chem. 2016, 12, 198.
doi: 10.3762/bjoc.12.22 |
[40] |
Shang, M.; Wang, X.; Koo, S. M.; Youn, J.; Chan, J. Z.; Yao, W.; Hastings, B. T.; Wasa, M. J. Am. Chem. Soc. 2017, 139, 95.
doi: 10.1021/jacs.6b11908 pmid: 27983825 |
[41] |
Morisawa, T.; Sawamura, M.; Shimizu, Y. Org. Lett. 2019, 21, 7466.
doi: 10.1021/acs.orglett.9b02769 pmid: 31486653 |
[42] |
Morrill, L. C.; Lebl, T.; Slawina, A. M. Z.; Smith, A. D. Chem. Sci. 2012, 3, 2088.
doi: 10.1039/c2sc20171b |
[43] |
Zhang, T.; Cheng, L.; Liu, L.; Wang, D.; Chen, Y. J. Tetrahedron: Asymmetry 2010, 21, 2800.
|
[44] |
Companyo, X.; Valero, G.; Pineda, O.; Calvet, T.; Font-Bardia, M.; Moyano, A.; Rios, R. Org. Biomol. Chem. 2012, 10, 431.
doi: 10.1039/C1OB06503C |
[45] |
Jia, L. N.; Huang, J.; Peng, L.; Wang, L. L.; Bai, J. F.; Tian, F.; He, G. Y.; Xu, X. Y.; Wang, L. X. Org. Biomol. Chem. 2012, 10, 236.
doi: 10.1039/C1OB06413D |
[46] |
Ohmatsu, K.; Ando, Y.; Nakashima, T.; Ooi, T. Chem 2016, 1, 802.
doi: 10.1016/j.chempr.2016.10.012 |
[47] |
Shen, K.; Liu, X.; Wang, G.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2011, 50, 4684.
doi: 10.1002/anie.201100758 |
[48] |
Sandoval, D.; Frazier, C. P.; Bugarin, A.; Read de Alaniz, J. J. Am. Chem. Soc. 2012, 134, 18948.
doi: 10.1021/ja310784f pmid: 23126634 |
[49] |
Murru, S.; Lott, C. S.; Fronczek, F. R.; Srivastava, R. S. Org. Lett. 2015, 17, 2122.
doi: 10.1021/acs.orglett.5b00710 pmid: 25867604 |
[50] |
Moriarty, R. M.; Vaid, R. K.; Ravikumar, V. T.; Vaid, B. K.; Hopkins, T. E. J. Tetrahedron 1988, 6, 1603.
|
[51] |
Lee, J. C.; Kim, S.; Shin, W. C. Synth. Commun. 2000, 30, 4271.
doi: 10.1080/00397910008087049 |
[52] |
Sun, Y.; Fan, R. Chem. Commun. 2010, 46, 6834.
doi: 10.1039/c0cc01911a |
[53] |
Kamble, D. A.; Karabal, P. U.; Chouthaiwale, P. V.; Sudalai, A. Tetrahedron Lett. 2012, 53, 4195.
doi: 10.1016/j.tetlet.2012.05.140 |
[54] |
Gao, W. C.; Jiang, S.; Wang, R. L.; Zhang, C. Chem. Commun. 2013, 49, 4890.
doi: 10.1039/c3cc40797g |
[55] |
Jiang, Q.; Xu, B.; Zhao, A.; Jia, J.; Liu, T.; Guo, C. J. Org. Chem. 2014, 79, 8750.
doi: 10.1021/jo5015855 pmid: 25153984 |
[56] |
Lv, Y.; Li, Y.; Xiong, T.; Lu, Y.; Liu, Q.; Zhang, Q. Chem. Commun. 2014, 50, 2367.
doi: 10.1039/c3cc48887j |
[57] |
Wang, D.; Lu, X.; Sun, S.; Yu, H.; Su, H.; Wu, Y.; Zhong, F. Eur. J. Org. Chem. 2019, 2019, 6028.
doi: 10.1002/ejoc.201900751 |
[58] |
Zhong, F.; Chen, G.; Lu, Y. Org. Lett. 2022, 24, 842.
doi: 10.1021/acs.orglett.1c04118 |
[59] |
Takeda, M.; Maejima, S.; Yamaguchi, E.; Itoh, A. Tetrahedron Lett. 2021, 77, 153251.
doi: 10.1016/j.tetlet.2021.153251 |
[60] |
Li, K.; Li, Q.; Shi, Q.; He, Y.; Yu, W.; Chang, J. Asian J. Org. Chem. 2022, 11, e202200268.
doi: 10.1002/ajoc.v11.7 |
[61] |
Yakura, T.; Yoshimoto, Y.; Ishida, C. J. Chem. Pharm. Bull. 2007, 55, 1385.
doi: 10.1248/cpb.55.1385 |
[62] |
Ton, T. M.; Himawan, F.; Chang, J. W.; Chan, P. W. Chemistry 2012, 18, 12020.
|
[63] |
Tokumasu, K.; Yazaki, R.; Ohshima, T. J. Am. Chem. Soc. 2016, 138, 2664.
doi: 10.1021/jacs.5b11773 pmid: 26859788 |
[64] |
Evans, R. W.; Zbieg, J. R.; Zhu, S.; Li, W.; MacMillan, D. W. J. Am. Chem. Soc. 2013, 135, 16074.
doi: 10.1021/ja4096472 pmid: 24107144 |
[65] |
McDonald, S. L.; Wang, Q. Chem. Commun. 2014, 50, 2535.
doi: 10.1039/C3CC49296F |
[66] |
Jia, W. G.; Li, D. D.; Dai, Y. C.; Zhang, H.; Yan, L. Q.; Sheng, E. H.; Wei, Y.; Mu, X. L.; Huang, K. W. Org. Biomol. Chem. 2014, 12, 5509.
doi: 10.1039/c4ob01027b pmid: 24948178 |
[67] |
Tran, T. V.; Le, H. T. N.; Ha, H. Q.; Duong, X. N. T.; Nguyen, L. H. T.; Doan, T. L. H.; Nguyen, H. L.; Truong, T. Catal. Sci. Technol. 2017, 7, 3453.
doi: 10.1039/C7CY00882A |
[68] |
Rossi, L. I.; Krapacher, C. R.; Granados, A. M. Mol. Catal. 2020, 493, 111058.
|
[69] |
Yu, J.; Liu, S. S.; Cui, J.; Hou, X. S.; Zhang, C. J. Org. Lett. 2012, 3, 832.
|
[70] |
Deng, Q. H.; Bleith, T.; Wadepohl, H.; Gade, L. H. J. Am. Chem. Soc. 2013, 135, 5356.
doi: 10.1021/ja402082p |
[71] |
Mudaliar, S. S.; Patel, A. P.; Patel, J. J.; Chikhalia, K. H. Tetrahedron Lett. 2018, 59, 734.
doi: 10.1016/j.tetlet.2018.01.024 |
[72] |
Lu, H.; Lang, K.; Jiang, H.; Wojtas, L.; Zhang, X. P. Chem. Sci. 2016, 7, 6934.
doi: 10.1039/C6SC02231F |
[73] |
(a) Kaiser, D.; Maulide, N. J. Org. Chem. 2016, 81, 4421.
doi: 10.1021/acs.joc.6b00675 |
(b) Tona, V.; de la Torre, A.; Padmanaban, M.; Ruider, S.; Gonzalez, L.; Maulide, N. J. Am. Chem. Soc. 2016, 138, 8348.
doi: 10.1021/jacs.6b04061 |
|
[74] |
Rezayee, N. M.; Rusbjerg, M.; Marx, M.; Linde, S. T.; Jørgensen, K. A. J. Org. Chem. 2022, 87, 1756.
doi: 10.1021/acs.joc.1c01937 |
[75] |
Wei, Y.; Lin, S.; Liang, F. Org. Lett. 2012, 14, 4202.
doi: 10.1021/ol301871s |
[76] |
Kumar, Y.; Jaiswal, Y.; Thakur, R.; Kumar, A. ChemistrySelect 2018, 3, 5614.
doi: 10.1002/slct.201801073 |
[77] |
Lamani, M.; Prabhu, K. R. Chemistry 2012, 18, 14638.
|
[78] |
Liang, S.; Zeng, C. C.; Tian, H. Y.; Sun, B. G.; Luo, X. G.; Ren, F. Z. J. Org. Chem. 2016, 81, 11565.
doi: 10.1021/acs.joc.6b01595 |
[1] | 席敏, 段超, 迟捷, 付甜, 苏小龙, 王宏社. 腐殖酸作用下Strecker反应快速高效合成α-氨基腈[J]. 有机化学, 2023, 43(9): 3312-3318. |
[2] | 曹伟地, 刘小华. 不对称催化质子化构建α-叔碳羰基化合物研究进展[J]. 有机化学, 2023, 43(3): 961-973. |
[3] | 张建涛, 邓雅文, 莫诺琳, 陈莲芬. 自由基介导的α,α-二芳基烯丙醇1,2-芳基迁移反应研究进展[J]. 有机化学, 2023, 43(2): 426-435. |
[4] | 马志伟, 陈晓培, 王川川, 王建玲, 陶京朝, 吕全建. 手性方酰胺催化环状1,3-二羰基化合物对β,γ-不饱和-α-酮酯的不对称Michael加成反应[J]. 有机化学, 2022, 42(5): 1520-1526. |
[5] | 薛飞雪, 曾建伟, 严泰山, 韩杰, 贺峥杰. P(NMe2)3介导1,2-二羰基化合物与α,β-不饱和酮的[1+4]环化反应及多取代2,3-二氢呋喃的合成[J]. 有机化学, 2022, 42(11): 3805-3815. |
[6] | 高珠鹏, 项锴, 徐学涛, 张雅婷, 朱道勇. 环状三价碘试剂参与的β-二羰基化合物的α-苯甲酰氧基化反应[J]. 有机化学, 2022, 42(11): 3766-3775. |
[7] | 赵雯辛, 黄孟君, 李胜男, 刘玉静, 刘中秋, 应安国. SnCl2@MNPs催化Biginelli反应一锅法合成3,4-二氢嘧啶-2-酮衍生物[J]. 有机化学, 2021, 41(7): 2743-2749. |
[8] | 刘嘉豪, 张世冬, 栾自鸿, 刘艳, 柯卓锋. 钌选择性催化烯丙醇无受体脱氢合成α,β-不饱和羰基化合物[J]. 有机化学, 2021, 41(11): 4361-4369. |
[9] | 万万, 刘继兵, 黄学良. 金催化选择性氧化共轭炔基炔酰胺合成4-羰基丁-2-炔酰胺[J]. 有机化学, 2021, 41(1): 376-383. |
[10] | 从屹康, 曾祥华. 纳米Cu-CuFe2O4在乙醇中催化选择性还原α,β,γ,δ-不饱和羰基化合物[J]. 有机化学, 2020, 40(8): 2411-2418. |
[11] | 全积宁, 何小雪, 严新焕, 李小青, 许响生. 叔丁基过氧化氢和碘介导的烯基化二羰基化合物的碘环化合成5-碘甲基二氢呋喃[J]. 有机化学, 2020, 40(4): 1033-1037. |
[12] | 杨胜彪, 李燕, 张前. 铜催化1-芳基-1-环醇和1,3-二羰基化合物的环化反应:合成环烷烃稠合的二氢呋喃衍生物[J]. 有机化学, 2019, 39(8): 2226-2234. |
[13] | 严兆华, 王彦梅, 金红爱, 艾城美, 田伟生. 全氟烷基磺酰氟活化羧酸和1,3-二羰基化合物之间一步O-酰基化反应[J]. 有机化学, 2019, 39(7): 2042-2047. |
[14] | 孙凯, 孙兴文, 林国强. β-氨基羰基化合物合成研究及其应用:(+)-Sedridine的全合成[J]. 有机化学, 2018, 38(1): 131-137. |
[15] | 陈燚, 胡奥晗, 杨凌毅, 李早英, 严琨. 活性羰基化合物荧光探针的研究进展[J]. 有机化学, 2017, 37(8): 1939-1951. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||