有机化学 ›› 2022, Vol. 42 ›› Issue (7): 1883-1903.DOI: 10.6023/cjoc202203006 上一篇 下一篇
研究专题
高润烨a,b, 左玲玲b,e,*(), 王芳b,e, 李传莹a,*(), 蒋华江b, 李品华c,d,*(), 王磊b,c,e,*()
收稿日期:
2022-03-01
修回日期:
2022-03-26
发布日期:
2022-08-09
通讯作者:
左玲玲, 李传莹, 李品华, 王磊
基金资助:
Runye Gaoa,b, Lingling Zuob,e(), Fang Wangb,e, Chuanying Lia(), Huajiang Jiangb, Pinhua Lic,d(), Lei Wangb,c,e()
Received:
2022-03-01
Revised:
2022-03-26
Published:
2022-08-09
Contact:
Lingling Zuo, Chuanying Li, Pinhua Li, Lei Wang
Supported by:
文章分享
在无外加光敏化剂条件下, 实现近紫外及可见光诱导的有机合成反应, 引起了人们的极大兴趣和关注. 由于在反应体系中不需外加任何光敏化剂, 使得反应体系更加简单易行, 也为可见光诱导的有机反应预示了未来发展方向. 综述了近年来在外加无光敏化剂条件下, 可见光促进的有机合成反应. 包括: 底物/产物为吸光物质实现的有机光合成反应; 电子给体受体(EDA)配合物为吸光物质实现的有机光合成反应; 可见光照射弱化学键的均裂实现的有机光合成反应; 其它无外加光催化剂体系实现的有机光合成反应.
高润烨, 左玲玲, 王芳, 李传莹, 蒋华江, 李品华, 王磊. 无外加光催化剂下可见光促进的可控有机反应进展[J]. 有机化学, 2022, 42(7): 1883-1903.
Runye Gao, Lingling Zuo, Fang Wang, Chuanying Li, Huajiang Jiang, Pinhua Li, Lei Wang. Recent Advances in Controllable Organic Reactions Induced by Visible Light without External Photocatalyst[J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 1883-1903.
[1] |
Ciamician, G. Science 1912, 36, 385.
pmid: 17836492 |
[2] |
(a) Norrish, R. G. W.; Bamford, C. H. Nature 1936, 138, 1016.
doi: 10.1038/1381016a0 |
(b) Norrish, R. G. W.; Bamford, C. H. Nature 1937, 140, 195.
|
|
(c) Yang, N. C.; Yang, D.-D. H. J. Am. Chem. Soc. 1958, 80, 2913.
|
|
[3] |
Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
doi: 10.1126/science.1161976 pmid: 18772399 |
[4] |
(a) Chen, Y.-Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China Chem. 2019, 62, 24.
doi: 10.1007/s11426-018-9399-2 pmid: 18772399 |
(b) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
doi: 10.1021/acs.chemrev.0c00030 pmid: 18772399 |
|
(c) Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Xiao, W.-J.; Chen, J.-R. Acc. Chem. Res. 2020, 53, 1066
doi: 10.1021/acs.accounts.0c00090 pmid: 18772399 |
|
(d) Lei, T.; Zhou, C.; Huang, M.-Y.; Zhao, L.-M.; Yang, B.; Ye, C.; Xiao, H.; Meng, Q.-Y.; Ramamurthy, V.; Tung, C.-H.; Wu, L.-Z. Angew. Chem., Int. Ed. 2017, 56, 15407.
doi: 10.1002/anie.201708559 pmid: 18772399 |
|
(e) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
doi: 10.1126/science.1161976 pmid: 18772399 |
|
(f) Genzink, M. J.; Kidd, J. B.; Swords, W. B.; Yoon, T. P. Chem. Rev. 2022, 122, 1654.
doi: 10.1021/acs.chemrev.1c00467 pmid: 18772399 |
|
(g) Allen, A. R.; Noten, E. A.; Stephenson, C. R. J. Chem. Rev. 2022, 122, 2695.
doi: 10.1021/acs.chemrev.1c00388 pmid: 18772399 |
|
(h) Wang, H.; Gao, X.; Lv, Z.; Abdelilah, T.; Lei, A. Chem. Rev. 2019, 119, 6769.
doi: 10.1021/acs.chemrev.9b00045 pmid: 18772399 |
|
(i) Zhang, M.; Xie, J.; Zhu, C. Nat. Commun. 2018, 9, 3517.
doi: 10.1038/s41467-018-06019-1 pmid: 18772399 |
|
[5] |
Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
doi: 10.1021/acs.chemrev.6b00018 |
[6] |
(a) Wei, Y.; Zhou, Q.-Q.; Tan, F.; Lu, L.-Q.; Xiao, W.-J. Synthesis 2019, 51, 3021.
doi: 10.1055/s-0037-1611812 |
(b) Liu, W.; Li, C.-J. Synlett 2017, 28, 2714.
doi: 10.1055/s-0036-1590900 |
|
(c) Li, L.; Mu, X.; Liu, W.; Wang, Y.; Mi, Z.; Li, C.-J. J. Am. Chem. Soc. 2016, 138, 5809.
doi: 10.1021/jacs.6b02782 |
|
(d) Masuda, Y.; Ishida, N.; Murakami, M. J. Am. Chem. Soc. 2015, 137, 14063.
doi: 10.1021/jacs.5b10032 |
|
(e) Sato, Y.; Kawaguchi, S.; Nomoto, A.; Ogawa, A. Angew. Chem., Int. Ed. 2016, 55, 9700.
doi: 10.1002/anie.201603860 |
|
[7] |
Yang, W.; Yang, S.; Li, P.; Wang, L. Chem. Commun. 2015, 51, 7520.
doi: 10.1039/C5CC00878F |
[8] |
Sun, M.; Wang, L.; Li, L.; Sun, M.; Huo, J.; Li, P. Org. Chem. Front. 2021, 8, 4230.
doi: 10.1039/D1QO00592H |
[9] |
Wang, B.; Zou, L.; Wang, L.; Sun, M.; Li, P. Chin. Chem. Lett. 2021, 32, 1229.
doi: 10.1016/j.cclet.2020.08.013 |
[10] |
Yang, S.; Wang, L.; Wang, L.; Li, H. J. Org. Chem. 2020, 85, 564.
doi: 10.1021/acs.joc.9b02646 |
[11] |
(a) Yang, S.; Li, P.; Wang, Z.; Wang, L. Org. Lett. 2017, 19, 3386.
doi: 10.1021/acs.orglett.7b01230 |
(b) Ji, W.; Li, P.; Yang, S.; Wang, L. Chem. Commun. 2017, 53, 8482.
doi: 10.1039/C7CC03693K |
|
[12] |
Zhao, L.; Li, P.; Xie, X.; Wang, L. Org. Chem. Front. 2018, 5, 1689.
doi: 10.1039/C8QO00229K |
[13] |
Ren, Y.; Meng, L.-G.; Peng, T.; Wang, L. Org. Lett. 2018, 20, 4430.
doi: 10.1021/acs.orglett.8b01714 |
[14] |
Zhang, Y.; Chen, W.; Jia, X.; Wang, L.; Li, P. Chem. Commun. 2019, 55, 2785.
doi: 10.1039/C8CC10235J |
[15] |
Zhao, L.; Li, P.; Xie, X.; Wang, L. Org. Chem. Front. 2019, 6, 87.
doi: 10.1039/C8QO01079J |
[16] |
Wang, Z.; Wang, L.; Wang, Z.; Li, P.; Zhang, Y. Chin. Chem. Lett. 2021, 32, 429.
doi: 10.1016/j.cclet.2020.02.022 |
[17] |
Zhou, C.; Li, P.; Zhu, X.; Wang, L. Org. Lett. 2015, 17, 6198.
doi: 10.1021/acs.orglett.5b03192 |
[18] |
Xu, N.; Li, P.; Xie, Z.; Wang, L. Chem. Eur. J. 2016, 22, 2236.
doi: 10.1002/chem.201504530 |
[19] |
Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052.
doi: 10.1038/s41570-017-0052 |
[20] |
Zou, L.; Li, P.; Wang, B.; Wang, L. Chem. Commun. 2019, 55, 3737.
doi: 10.1039/C9CC01014A |
[21] |
(a) Sun, M.; Wang, L.; Zhao, L.; Wang, Z.; Li, P. ChemCatChem 2020, 12, 5261.
doi: 10.1002/cctc.202000459 |
(b) Xu, J.; Zhang, H.; Zhao, J.; Ni, Z.; Zhang, P.; Shi, B.-F.; Li, W. Green Chem. 2021, 23, 2123.
doi: 10.1039/D0GC04235H |
|
(c) Huang, L.; Xu, J.; He, L.; Liang, C.; Ouyang, Y.; Yu, Y.; Li, W.; Zhang, P. Chin. Chem. Lett. 2021, 32, 3627.
doi: 10.1016/j.cclet.2021.04.016 |
|
(d) He, L.; Liang, C.; Ouyang, Y.; Li, L.; Guo, Y.; Zhang, P.; Li, W. Org. Biomol. Chem. 2022, 20, 790.
doi: 10.1039/D1OB02249K |
|
(e) Xu, J.; He, L.; Liang, C.; Yue, X.; Ouyang, Y.; Zhang, P. ACS Sustainable Chem. Eng. 2021, 9, 13663.
doi: 10.1021/acssuschemeng.1c05237 |
|
[22] |
Zou, L.; Wang, L.; Sun, L.; Xie, X.; Li, P. Chem. Commun. 2020, 56, 7933.
doi: 10.1039/D0CC02471F |
[23] |
Gao, Y.; Zhao, L. Xiang, T.; Li, P.; Wang, L. RSC Adv. 2020, 10, 10559.
doi: 10.1039/D0RA02059A |
[24] |
Zhang, W.; Bu, J.; Wang, L.; Li, P.; Li, H. Org. Chem. Front. 2021, 8, 5045.
doi: 10.1039/D1QO00739D |
[25] |
(a) Xie, X.; Pan, H.; Zhou, T.-P.; Han, M.-Y.; Wang, L.; Geng, X.; Ma, Y.; Liao, R.-Z.; Wang, Z.-M.; Yang, J.; Li, P. Org. Chem. Front. 2021, 8, 5872.
doi: 10.1039/D1QO01017D |
(b) Xie, X.; Wang, L.; Zhou, Q.; Ma, Y.; Wang, Z.-M.; Li, P. Chin. Chem. Lett. 2022, 10.1016/j.cclet.2022.03.084.
doi: 10.1016/j.cclet.2022.03.084 |
|
[26] |
Arceo, E.; Jurberg, I. D.; Álvarez-Fernaández, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750.
doi: 10.1038/nchem.1727 |
[27] |
Nappi, M.; Bergonzini, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2014, 53, 4921.
doi: 10.1002/anie.201402008 |
[28] |
Kandukuri, S. R.; Bahamonde, A.; Chatterjee, I.; Jurberg, I. D.; Escudero-Adán, E. C.; Melchiorre, P. Angew. Chem., Int. Ed. 2015, 54, 1485.
doi: 10.1002/anie.201409529 |
[29] |
Bahamonde, A.; Melchiorre, P. J. Am. Chem. Soc. 2016, 138, 8019.
doi: 10.1021/jacs.6b04871 pmid: 27267587 |
[30] |
Li, Y.; Miao, T.; Li, P.; Wang, L. Org. Lett. 2018, 20, 1735.
doi: 10.1021/acs.orglett.8b00171 |
[31] |
Li, Y.; Ma, F.; Li, P.; Miao, T.; Wang, L. Adv. Synth. Catal. 2019, 361, 1606.
doi: 10.1002/adsc.201801521 |
[32] |
Shi, W.; Ma, F.; Li, P.; Wang, L.; Miao, T. J. Org. Chem. 2020, 85, 13808.
doi: 10.1021/acs.joc.0c01916 |
[33] |
(a) Yao, L.; Zhu, D.; Wang, L.; Liu, J.; Zhang, Y.; Li, P. Chin. Chem. Lett. 2021, 32, 4033.
doi: 10.1016/j.cclet.2021.06.005 |
(b) Zeng, F.-L.; Xie, K.-C.; Liu, Y.-T.; Wang, H.; Yin, P.-C.; Qu, L.-B.; Chen, X.-L.; Yu, B. Green Chem. 2022, 24, 1732.
doi: 10.1039/D1GC04218A |
|
(c) Li, X.; Cui, W.; Deng, Q.; Song, X.; Lv, J.; Yang, D. Green Chem. 2022, 24, 1302.
doi: 10.1039/D1GC04184C |
|
(d) Tong, J.; Li, H.; Zhu, Y.; Liu, P.; Sun, P. Green Chem. 2022, 24, 1995.
doi: 10.1039/D1GC04703E |
|
[34] |
(a) Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374.
doi: 10.1002/anie.201503479 |
(b) Huang, H.; Zhang, G.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 7872.
doi: 10.1002/anie.201502369 |
|
[35] |
Ji, W.; Tan, H.; Wang, M.; Li, P.; Wang, L. Chem. Commun. 2016, 52, 1462.
doi: 10.1039/C5CC08253F |
[36] |
Yang, S.; Tan, H.; Ji, W.; Zhang, X.; Li, P.; Wang, L. Adv. Synth. Catal. 2017, 359, 443.
doi: 10.1002/adsc.201600721 |
[37] |
Ni, K.; Meng, L.-G.; Wang, K.; Wang, L. Org. Lett. 2018, 20, 2245.
doi: 10.1021/acs.orglett.8b00586 |
[38] |
Ni, K.; Meng, L.-G.; Ruan, H.; Wang, L. Chem. Commun. 2019, 55, 8438.
doi: 10.1039/C9CC04090K |
[39] |
Xie, X.; Liu, J.; Wang, L.; Wang, M. Eur. J. Org. Chem. 2020, 1534.
|
[40] |
Zhu, X.; Li, P.; Shi, Q.; Wang, L. Green Chem. 2016, 18, 6373.
doi: 10.1039/C6GC01487A |
[41] |
Shi, Q.; Li, P.; Zhang, Y.; Wang, L. Org. Chem. Front. 2017, 4, 1322.
doi: 10.1039/C7QO00152E |
[42] |
Ye, R.; Ruan, H.; Xu, H.; Li, Z.; Meng, L.-G.; Wang, L. Org. Chem. Front. 2021, 8, 5345.
doi: 10.1039/D1QO01082D |
[43] |
Ruan, H.; Meng, L.-G.; Zhu, L.; Wang, L. Adv. Synth. Catal. 2019, 361, 3217.
doi: 10.1002/adsc.201900140 |
[44] |
Wang, Z.; Li, X.; Wang, L.; Li, P. Tetrahedron 2019, 75, 1044.
doi: 10.1016/j.tet.2019.01.013 |
[45] |
Wang, Z.; Wang, L.; Wang, Z.; Li, P. Asian J. Org. Chem. 2019, 8, 1448.
doi: 10.1002/ajoc.201900333 |
[46] |
Ni, S.; Cao, J.; Mei, H.; Han, J.; Li, S.; Pan, Y. Green Chem. 2016, 18, 3935.
doi: 10.1039/C6GC01027J |
[47] |
Zhao, B.; Zhang, Z.; Ge, Y.; Li, P.; Miao, T.; Wang, L. Org. Chem. Front. 2021, 8, 975.
doi: 10.1039/D0QO01487G |
[48] |
Xie, Z.; Li, P.; Hu, Y.; Xu, N.; Wang, L. Org. Biomol. Chem. 2017, 15, 4205.
doi: 10.1039/C7OB00779E |
[49] |
Xu, N.; Zhang, Y.; Chen, W.; Li, P.; Wang, L. Adv. Synth. Catal. 2018, 360, 1199.
doi: 10.1002/adsc.201701548 |
[50] |
Mei, Y.; Zhao, L.; Liu, Q.; Ruan, S.; Wang, L.; Li, P. Green Chem. 2020, 22, 2270.
doi: 10.1039/D0GC00009D |
[1] | 李路瑶, 贺忠文, 张振国, 贾振华, 罗德平. 三芳基碳正离子在有机合成中的应用[J]. 有机化学, 2024, 44(2): 421-437. |
[2] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
[3] | 周然, 袁春梅, 张桃, 毛飘, 刘燚, 孟开妮, 幸惠, 薛伟. 含喹唑啉酮的查尔酮衍生物的设计、合成及生物活性研究[J]. 有机化学, 2023, 43(9): 3196-3209. |
[4] | 李阳, 袁锦鼎, 赵頔. 低共熔溶剂1,3-二甲基脲/L-(+)-酒石酸中(E)-2-苯乙烯基喹啉-3-羧酸类衍生物的绿色合成[J]. 有机化学, 2023, 43(9): 3268-3276. |
[5] | 徐光利, 许静, 徐海东, 崔香, 舒兴中. 过渡金属催化烯烃和炔烃合成1,3-共轭二烯化合物研究进展[J]. 有机化学, 2023, 43(6): 1899-1933. |
[6] | 窦谦, 汪太民, 房丽晶, 翟宏斌, 程斌. 光诱导铁催化在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1386-1415. |
[7] | 白林盛, 洪鹏, 应安国. 功能化聚丙烯腈纤维促进有机反应的研究进展[J]. 有机化学, 2023, 43(4): 1241-1270. |
[8] | 莫百川, 陈春霞, 彭进松. 木质素及其衍生物负载金属催化剂在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1215-1240. |
[9] | 纪健, 刘进华, 管丛, 陈绪文, 赵芸, 刘顺英. 原位生成的磺酸催化N-磺酰基-1,2,3-三氮唑与醇偶联高区域选择性合成N2-取代1,2,3-三氮唑[J]. 有机化学, 2023, 43(3): 1168-1176. |
[10] | 马彪, 章淼淼, 李占宇, 彭进松, 陈春霞. 无过渡金属催化的Suzuki-Type交叉偶联反应研究进展[J]. 有机化学, 2023, 43(2): 455-470. |
[11] | 程飞, 孙琪雯, 卢江溶, 王兴兰, 张吉泉. 芳基二硫醚作为自由基硫试剂构建C—S键研究进展[J]. 有机化学, 2023, 43(11): 3728-3744. |
[12] | 李硕, 王明亮, 周来运, 王兰芝. 磁性纳米负载对甲苯磺酸催化串联合成稠合多环的1,5-苯并氧氮杂䓬类化合物[J]. 有机化学, 2023, 43(11): 3977-3988. |
[13] | 乃比江•赛米, 张蕾, 买地娜•沙拉木, 曾竟, 阿布都热西提•阿布力克木. 硫代磺酸酯和磺酰卤的绿色合成研究[J]. 有机化学, 2023, 43(1): 236-243. |
[14] | 陈泗林, 杨芸辉, 陈超, 王从洋. 过渡金属催化的酮羰基导向C—H键官能化反应进展[J]. 有机化学, 2023, 43(1): 1-16. |
[15] | 张建涛, 张聪, 郑梓栋, 周鹏, 刘卫兵. 亚砜叶立德参与构建五/六元氮杂环的反应研究进展[J]. 有机化学, 2022, 42(9): 2745-2759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||