有机化学 ›› 2023, Vol. 43 ›› Issue (8): 2720-2742.DOI: 10.6023/cjoc202212017 上一篇 下一篇
综述与进展
收稿日期:
2022-12-13
修回日期:
2023-02-23
发布日期:
2023-04-13
基金资助:
Xiaona Yang, Hongyu Guo(), Rong Zhou()
Received:
2022-12-13
Revised:
2023-02-23
Published:
2023-04-13
Contact:
*E-mail: Supported by:
文章分享
有机硅化合物具有重要用途, 被广泛应用于材料科学与药物化学等领域. 因此, 有机硅试剂参与的化学转化一直倍受关注. 近年来, 可见光催化迅速发展, 为有机合成化学提供了新的机遇. 在光氧化还原体系下, 有机硅试剂可以经由氢原子转移(Hydrogen atom transfer, HAT)或单电子转移(Single electron transfer, SET)过程转化为硅自由基或碳自由基进行反应, 具有条件温和、选择性好和原子经济性高等优势. 根据反应类型不同, 主要综述了有机硅试剂作为硅自由基前体参与的烯(炔)烃硅氢化反应、烯(炔)烃双官能化反应、氮杂芳烃的硅基化反应, 以及有机硅化合物作为碳自由基前体参与的亲核加成反应、Minisci反应、均裂取代反应和过渡金属介导的交叉偶联反应.
杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742.
Xiaona Yang, Hongyu Guo, Rong Zhou. Progress in Visible-Light Promoted Transformations of Organosilicon Compounds[J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2720-2742.
[1] |
Brook, M. A. Silicon in Organic, Organometallic and Polymer Chemistry, John Wiley & Sons, New York, 2000.
|
[2] |
(a) Franz, A. K.; Wilson, S. O. J. Med. Chem. 2013, 56, 388.
doi: 10.1021/jm3010114 |
(b) Li, X.-Y.; Sun, L.; Wu, L.-H. Chin. J. Soil Sci. 2014, 45, 193. (in Chinese)
doi: 10.1111/ejs.1994.45.issue-2 |
|
( 李晓艳, 孙立, 吴良欢, 土壤通报, 2014, 45, 193.)
|
|
[3] |
(a) Nakao, Y.; Hiyama, T. Chem. Soc. Rev. 2011, 40, 4893.
doi: 10.1039/c1cs15122c |
(b) Luo, H.; Zhang, Z.; Liu, H.; Liu, J. Chin. J. Org. Chem. 2015, 35, 802. (in Chinese)
doi: 10.6023/cjoc201410012 |
|
( 罗海清, 张志鹏, 刘海东, 柳辉金, 有机化学, 2015, 35, 802.)
doi: 10.6023/cjoc201410012 |
|
[4] |
(a) Murray, P. R. D.; Cox, J. H.; Chiappini, N. D.; Roos, C. B.; McLoughlin, E. A.; Hejna, B. G.; Nguyen, S. T.; Ripberger, H. H.; Ganley, J. M.; Tsui, E.; Shin, N. Y.; Koronkiewicz, B.; Qiu, G.; Knowles, R. R. Chem. Rev. 2022, 122, 2017.
doi: 10.1021/acs.chemrev.1c00374 |
(b) Holmberg-Douglas, N.; Nicewicz, D. A. Chem. Rev. 2022, 122, 1925.
doi: 10.1021/acs.chemrev.1c00311 |
|
(c) Buglioni, L.; Raymenants, F.; Slattery, A.; Zondag, S. D. A.; Noël, T. Chem. Rev. 2022, 122, 2752.
doi: 10.1021/acs.chemrev.1c00332 |
|
(d) Coppola, G. A.; Pillitteri, S.; Van der Eycken, E. V.; You, S.-L.; Sharma, U. K. Chem. Soc. Rev. 2022, 51, 2313.
doi: 10.1039/D1CS00510C |
|
(e) Chang, L.; An, Q.; Duan, L.; Feng, K.; Zuo, Z. Chem. Rev. 2022, 122, 2429.
doi: 10.1021/acs.chemrev.1c00256 |
|
(f) Capaldo, L.; Ravelli, D.; Fagnoni, M. Chem. Rev. 2022, 122, 1875.
doi: 10.1021/acs.chemrev.1c00263 |
|
(g) Cheung, K. P. S.; Sarkar, S.; Gevorgyan, V. Chem. Rev. 2022, 122, 1543.
doi: 10.1021/acs.chemrev.1c00403 |
|
(h) Kwon, K.; Simons, R. T.; Nandakumar, M.; Roizen, J. L. Chem. Rev. 2022, 122, 2353.
doi: 10.1021/acs.chemrev.1c00444 |
|
(i) Xu, J.; Cao, J.; Wu, X.; Wang, H.; Yang, X.; Tang, X.; Toh, R. W.; Zhou, R.; Yeow, E. K. L.; Wu, J. J. Am. Chem. Soc. 2021, 143, 13266.
doi: 10.1021/jacs.1c05994 |
|
(j) Zhou, R.; Liu, H.; Tao, H.; Yu, X.; Wu, J. Chem. Sci. 2017, 8, 4654.
doi: 10.1039/C7SC00953D |
|
[5] |
(a) Ren, L.-Q.; Li, N.; Ke, J.; He, C. Org. Chem. Front. 2022, 9, 6400.
doi: 10.1039/D2QO01387H |
(b) Li, J.-S.; Wu, J. ChemPhotoChem 2018, 2, 839.
doi: 10.1002/cptc.v2.10 |
|
[6] |
Qrareya, H.; Dondi, D.; Ravelli, D.; Fagnoni, M. ChemCatChem 2015, 7, 3350.
doi: 10.1002/cctc.201500562 |
[7] |
Zhou, R.; Goh, Y. Y.; Liu, H.; Tao, H.; Li, L.; Wu, J. Angew. Chem., Int. Ed. 2017, 56, 16621.
doi: 10.1002/anie.201711250 |
[8] |
Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25.
doi: 10.1039/a804291h |
[9] |
Wan, Y.; Zhu, J.; Yuan, Q.; Wang, W.; Zhang, Y. Org. Lett. 2021, 23, 1406.
doi: 10.1021/acs.orglett.1c00065 pmid: 33502205 |
[10] |
Cai, Y.; Zhao, W.; Wang, S.; Liang, Y.; Yao, Z.-J. Org. Lett. 2019, 21, 9836.
doi: 10.1021/acs.orglett.9b03679 |
[11] |
Zhu, J.; Cui, W.-C.; Wang, S.; Yao, Z.-J. J. Org. Chem. 2018, 83, 14600.
doi: 10.1021/acs.joc.8b02409 |
[12] |
Cui, W. C.; Zhao, W.; Gao, M.; Liu, W.; Wang, S.; Liang, Y.; Yao, Z. J. Chem.-Eur. J. 2019, 25, 16506.
doi: 10.1002/chem.v25.72 |
[13] |
Zhu, J.; Cui, W.-C.; Wang, S.; Yao, Z.-J. Org. Lett. 2018, 20, 3174.
doi: 10.1021/acs.orglett.8b00909 |
[14] |
Liang, H.; Ji, Y.-X.; Wang, R.-H.; Zhang, Z.-H.; Zhang, B. Org. Lett. 2019, 21, 2750.
doi: 10.1021/acs.orglett.9b00701 pmid: 30931573 |
[15] |
Xu, N.-X.; Li, B.-X.; Wang, C.; Uchiyama, M. Angew. Chem., Int. Ed. 2020, 59, 10639.
doi: 10.1002/anie.v59.26 |
[16] |
Zhong, M.; Pannecoucke, X.; Jubault, P.; Poisson, T. Chem.-Eur. J. 2021, 27, 11818.
doi: 10.1002/chem.v27.46 |
[17] |
Takemura, N.; Sumida, Y.; Ohmiya, H. ACS Catal. 2022, 12, 7804.
doi: 10.1021/acscatal.2c01964 |
[18] |
Arai, R.; Nagashima, Y.; Koshikawa, T.; Tanaka, K. J. Org. Chem. 2022, 10.1021/acs.joc.2c01885.
doi: 10.1021/acs.joc.2c01885 |
[19] |
Wan, Y.; Zhao, Y.; Zhu, J.; Yuan, Q.; Wang, W.; Zhang, Y. Green Chem. 2023, 25, 256.
doi: 10.1039/D2GC03577D |
[20] |
Liu, R.; Chia, S. P. M.; Goh, Y. Y.; Cheo, H. W.; Fan, B.; Li, R.; Zhou, R.; Wu, J. Eur. J. Org. Chem. 2020, 2020, 1459.
doi: 10.1002/ejoc.v2020.10 |
[21] |
Yu, X.; Lübbesmeyer, M.; Studer, A. Angew. Chem., Int. Ed. 2021, 60, 675.
doi: 10.1002/anie.v60.2 |
[22] |
Hou, J.; Ee, A.; Cao, H.; Ong, H. W.; Xu, J. H.; Wu, J. Angew. Chem., Int. Ed. 2018, 57, 17220.
doi: 10.1002/anie.v57.52 |
[23] |
Zheng, M.; Hou, J.; Hua, L. L.; Tang, W. Y.; Zhan, L. W.; Li, B. D. Org. Lett. 2021, 23, 5128.
doi: 10.1021/acs.orglett.1c01658 |
[24] |
Neogi, S.; Kumar Ghosh, A.; Mandal, S.; Ghosh, D.; Ghosh, S.; Hajra, A. Org. Lett. 2021, 23, 6510.
doi: 10.1021/acs.orglett.1c02322 |
[25] |
Zheng, W.; Xu, Y.; Luo, H.; Feng, Y.; Zhang, J.; Lin, L. Org. Lett. 2022, 24, 7145.
doi: 10.1021/acs.orglett.2c02835 |
[26] |
Ploger, S.; Studer, A. Org. Lett. 2022, 24, 8568.
doi: 10.1021/acs.orglett.2c03644 |
[27] |
Zhang, Z.; Hu, X. ACS Catal. 2019, 10, 777.
doi: 10.1021/acscatal.9b04916 |
[28] |
(a) Lu, B.; Falck, J. R. Angew. Chem., Int. Ed. 2008, 47, 7508.
doi: 10.1002/anie.v47:39 pmid: 25514197 |
(b) Cheng, C.; Hartwig, J. F. Science 2014, 343, 853.
doi: 10.1126/science.1248042 pmid: 25514197 |
|
(c) Cheng, C.; Hartwig, J. F. J. Am. Chem. Soc. 2015, 137, 592.
doi: 10.1021/ja511352u pmid: 25514197 |
|
(d) Devaraj, K.; Sollert, C.; Juds, C.; Gates, P. J.; Pilarski, L. T. Chem. Commun. 2016, 52, 5868.
doi: 10.1039/C6CC00803H pmid: 25514197 |
|
[29] |
(a) Klare, H. F. T.; Oestreich, M.; Ito, J.-i.; Nishiyama, H.; Ohki, Y.; Tatsumi, K. J. Am. Chem. Soc. 2011, 133, 3312.
doi: 10.1021/ja111483r |
(b) Wübbolt, S.; Oestreich, M. Angew. Chem., Int. Ed. 2015, 54, 15876.
doi: 10.1002/anie.v54.52 |
|
(c) Chen, Q.-A.; Klare, H. F. T.; Oestreich, M. J. Am. Chem. Soc. 2016, 138, 7868.
doi: 10.1021/jacs.6b04878 |
|
(d) Bähr, S.; Oestreich, M. Angew. Chem., Int. Ed. 2017, 56, 52.
doi: 10.1002/anie.201608470 |
|
[30] |
(a) Toutov, A. A.; Liu, W.-B.; Betz, K. N.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H. Nature 2015, 518, 80.
doi: 10.1038/nature14126 pmid: 28462580 |
(b) Banerjee, S.; Yang, Y.-F.; Jenkins, I. D.; Liang, Y.; Toutov, A. A.; Liu, W.-B.; Schuman, D. P.; Grubbs, R. H.; Stoltz, B. M.; Krenske, E. H.; Houk, K. N.; Zare, R. N. J. Am. Chem. Soc. 2017, 139, 6880.
doi: 10.1021/jacs.6b13032 pmid: 28462580 |
|
[31] |
(a) Proctor, R. S. J.; Phipps, R. J. Angew. Chem., Int. Ed. 2019, 58, 13666.
doi: 10.1002/anie.v58.39 |
(b) Dong, J.; Liu, Y.; Wang, Q. Chin. J. Org. Chem. 2021, 41, 3771. (in Chinese)
doi: 10.6023/cjoc202104024 |
|
( 董建洋, 刘玉秀, 汪清民, 有机化学, 2021, 41, 3771.)
|
|
(c) Meng, W.; Xu, K.; Guo, B.; Zeng, C. Chin. J. Org. Chem. 2021, 41, 2621. (in Chinese)
doi: 10.6023/cjoc202102001 |
|
( 孟薇, 徐坤, 郭兵兵, 曾程初, 有机化学, 2021, 41, 2621.)
doi: 10.6023/cjoc202102001 |
|
[32] |
Liu, S.; Pan, P.; Fan, H.; Li, H.; Wang, W.; Zhang, Y. Chem. Sci. 2019, 10, 3817.
doi: 10.1039/C9SC00046A |
[33] |
Rammal, F.; Gao, D.; Boujnah, S.; Hussein, A. A.; Lalevée, J.; Gaumont, A.-C.; Morlet-Savary, F.; Lakhdar, S. ACS Catal. 2020, 10, 13710.
doi: 10.1021/acscatal.0c03726 |
[34] |
Dai, C.; Zhan, Y.; Liu, P.; Sun, P. Green. Chem. 2021, 23, 314.
doi: 10.1039/D0GC03697H |
[35] |
Fan, X.; Xiao, P.; Jiao, Z.; Yang, T.; Dai, X.; Xu, W.; Tan, J. D.; Cui, G.; Su, H.; Fang, W.; Wu, J. Angew. Chem., Int. Ed. 2019, 58, 12580.
doi: 10.1002/anie.v58.36 |
[36] |
Zhou, R.; Ma, L.; Yang, X.; Cao, J. Org. Chem. Front. 2021, 8, 426.
doi: 10.1039/D0QO01299H |
[37] |
Zhou, R.; Li, J.; Cheo, H. W.; Chua, R.; Zhan, G.; Hou, Z.; Wu, J. Chem. Sci. 2019, 10, 7340.
doi: 10.1039/C9SC02818H |
[38] |
Cao, J.; Yang, X.; Ma, L.; Lu, K.; Zhou, R. Green Chem. 2021, 23, 8988.
doi: 10.1039/D1GC02805G |
[39] |
Gan, Q.-C.; Song, Z.-Q.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2022, 24, 5192.
doi: 10.1021/acs.orglett.2c02022 |
[40] |
Silvi, M.; Verrier, C.; Rey, Y. P.; Buzzetti, L.; Melchiorre, P. Nat. Chem. 2017, 9, 868.
doi: 10.1038/nchem.2748 |
[41] |
Uygur, M.; Danelzik, T.; García Mancheño, O. Chem. Commun. 2019, 55, 2980.
doi: 10.1039/C8CC10239B |
[42] |
Khatun, N.; Kim, M. J.; Woo, S. K. Org. Lett. 2018, 20, 6239.
doi: 10.1021/acs.orglett.8b02721 |
[43] |
Schäfers, F.; Dutta, S.; Kleinmans, R.; Mück-Lichtenfeld, C.; Glorius, F. ACS Catal. 2022, 12, 12281.
doi: 10.1021/acscatal.2c03960 |
[44] |
Ghiazza, C.; Khrouz, L.; Billard, T.; Monnereau, C.; Tlili, A. Eur. J. Org. Chem. 2020, 2020, 1559.
doi: 10.1002/ejoc.v2020.10 |
[45] |
(a) Corcé, V.; Chamoreau, L.-M.; Derat, E.; Goddard, J.-P.; Ollivier, C.; Fensterbank, L. Angew. Chem., Int. Ed. 2015, 54, 11414.
doi: 10.1002/anie.v54.39 |
(b) Yoshida, J.-I.; Tamao, K.; Kakui, T.; Kurita, A.; Murata, M.; Yamada, K.; Kumada, M. Organometallics 1982, 1, 369.
doi: 10.1021/om00062a023 |
|
[46] |
Nishigaichi, Y.; Suzuki, A.; Saito, T.; Takuwa, A. Tetrahedron Lett. 2005, 46, 5149.
doi: 10.1016/j.tetlet.2005.05.124 |
[47] |
Patel, N. R.; Kelly, C. B.; Siegenfeld, A. P.; Molander, G. A. ACS Catal. 2017, 7, 1766.
doi: 10.1021/acscatal.6b03665 pmid: 28367354 |
[48] |
(a) Phelan, J. P.; Lang, S. B.; Compton, J. S.; Kelly, C. B.; Dykstra, R.; Gutierrez, O.; Molander, G. A. J. Am. Chem. Soc. 2018, 140, 8037.
doi: 10.1021/jacs.8b05243 pmid: 30350660 |
(b) Milligan, J. A.; Phelan, J. P.; Polites, V. C.; Kelly, C. B.; Molander, G. A. Org. Lett. 2018, 20, 6840.
doi: 10.1021/acs.orglett.8b02968 pmid: 30350660 |
|
(c) Luo, W.; Yang, Y.; Fang, Y.; Zhang, X.; Jin, X.; Zhao, G.; Zhang, L.; Li, Y.; Zhou, W.; Xia, T.; Chen, B. Adv. Synth. Catal. 2019, 361, 4215.
doi: 10.1002/adsc.v361.18 pmid: 30350660 |
|
(d) Luo, W.; Fang, Y.; Zhang, L.; Xu, T.; Liu, Y.; Li, Y.; Jin, X.; Bao, J.; Wu, X.; Zhang, Z. Eur. J. Org. Chem. 2020, 2020, 1778.
doi: 10.1002/ejoc.202000134 pmid: 30350660 |
|
(e) Milligan, J. A.; Burn, K. L.; Le, A. V.; Polites, V. C.; Wang, Z.-J.; Molander, G. A.; Kelly, C. B. Adv. Synth. Catal. 2020, 362, 242.
doi: 10.1002/adsc.201901051 pmid: 30350660 |
|
[49] |
Pantaine, L. R. E.; Milligan, J. A.; Matsui, J. K.; Kelly, C. B.; Molander, G. A. Org. Lett. 2019, 21, 2317.
doi: 10.1021/acs.orglett.9b00602 pmid: 30860849 |
[50] |
Cartier, A.; Levernier, E.; Corcé, V.; Fukuyama, T.; Dhimane, A.-L.; Ollivier, C.; Ryu, I.; Fensterbank, L. Angew. Chem., Int. Ed. 2019, 58, 1789.
doi: 10.1002/anie.v58.6 |
[51] |
Cartier, A.; Levernier, E.; Dhimane, A.-L.; Fukuyama, T.; Ollivier, C.; Ryu, I.; Fensterbank, L. Adv. Synth. Catal. 2020, 362, 2254.
doi: 10.1002/adsc.v362.11 |
[52] |
Ikarashi, G.; Morofuji, T.; Kano, N. Chem. Commun. 2020, 56, 10006.
doi: 10.1039/D0CC03286G |
[53] |
Wang, Z.-J.; Zheng, S.; Matsui, J. K.; Lu, Z.; Molander, G. A. Chem. Sci. 2019, 10, 4389.
doi: 10.1039/c9sc00776h pmid: 31057765 |
[54] |
Wang, F.; Wang, S.-Y. Org. Chem. Front. 2021, 8, 1976.
doi: 10.1039/D1QO00085C |
[55] |
(a) Patel, N. R.; Kelly, C. B.; Jouffroy, M.; Molander, G. A. Org. Lett. 2016, 18, 764.
doi: 10.1021/acs.orglett.6b00024 pmid: 27258090 |
(b) Patel, N. R.; Molander, G. A. J. Org. Chem. 2016, 81, 7271.
doi: 10.1021/acs.joc.6b00800 pmid: 27258090 |
|
[56] |
Lévêque, C.; Chenneberg, L.; Corcé, V.; Ollivier, C. Fensterbank, L. Chem. Commun. 2016, 52, 9877.
doi: 10.1039/C6CC04636C |
[57] |
Schirmer, T. E.; Abdellaoui, M.; Savateev, A.; Ollivier, C.; Antonietti, M.; Fensterbank, L.; König, B. Org. Lett. 2022, 24, 2483.
doi: 10.1021/acs.orglett.2c00529 |
[58] |
Lévêque, C.; Corcé, V.; Chenneberg, L.; Ollivier, C.; Fensterbank, L. Eur. J. Org. Chem. 2017, 2017, 2118.
doi: 10.1002/ejoc.201601571 |
[59] |
Levernier, E.; Corcé, V.; Rakotoarison, L.-M.; Smith, A.; Zhang, M.; Ognier, S.; Tatoulian, M.; Ollivier, C.; Fensterbank, L. Org. Chem. Front. 2019, 6, 1378.
doi: 10.1039/c9qo00092e |
[60] |
(a) Jouffroy, M.; Primer, D. N.; Molander, G. A. J. Am. Chem. Soc. 2016, 138, 475.
doi: 10.1021/jacs.5b10963 pmid: 25836634 |
(b) Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.; Kozlowski, M. C. J. Am. Chem. Soc. 2015, 137, 4896.
doi: 10.1021/ja513079r pmid: 25836634 |
[1] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[2] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[3] | 赵瑜, 张凯, 白育斌, 张琰图, 史时辉. 无金属条件下可见光催化与溴盐协同促进烯烃的氢硅化反应研究[J]. 有机化学, 2023, 43(8): 2837-2847. |
[4] | 高艳华, 张银潘, 张妍, 宋涛, 杨勇. 可见光驱动表面富含氧空位Nb2O5催化醇氧化反应[J]. 有机化学, 2023, 43(7): 2572-2579. |
[5] | 赵金晓, 魏彤辉, 柯森, 李毅. 可见光催化合成二氟烷基取代的多环吲哚化合物[J]. 有机化学, 2023, 43(3): 1102-1114. |
[6] | 韩彪, 李维双, 陈舒晗, 张泽浪, 赵雪, 张瑶瑶, 朱磊. 铜催化不饱和化合物硅加成反应的研究进展[J]. 有机化学, 2023, 43(2): 555-572. |
[7] | 赵瑜, 段玉荣, 史时辉, 白育斌, 黄亮珠, 杨晓军, 张琰图, 冯彬, 张建波, 张秋禹. 可见光促进高价碘(III)试剂参与反应的研究进展[J]. 有机化学, 2023, 43(12): 4106-4140. |
[8] | 朱佳洁, 万义, 袁启洋, 魏金莲, 张永强. 可见光/路易斯碱协同催化的三氟甲基取代烯烃脱氟硅化反应研究[J]. 有机化学, 2023, 43(10): 3623-3634. |
[9] | 曾燕, 叶飞. 不对称催化构建硅立体中心化合物的新反应体系研究进展[J]. 有机化学, 2023, 43(10): 3388-3413. |
[10] | 陈凤娟, 刘罗, 张子露, 曾伟. 可见光催化有机硅的合成研究进展[J]. 有机化学, 2023, 43(10): 3454-3469. |
[11] | 潘振涛, 刘彤, 马永敏, 颜剑波, 王亚军. 布朗斯特酸/可见光氧化还原接力催化构建喹唑啉(硫)酮[J]. 有机化学, 2022, 42(9): 2823-2831. |
[12] | 黄燕, 张谦, 詹乐武, 侯静, 李斌栋. 可见光诱导甲酸盐参与的烯烃氢羧化反应[J]. 有机化学, 2022, 42(8): 2568-2573. |
[13] | 李亚东, 吴鹏举, 杨志勇. 可见光催化苯并噁唑与α-酮酸合成芳基苯并噁唑[J]. 有机化学, 2022, 42(6): 1770-1777. |
[14] | 孙天义, 张依凡, 孟远倢, 王怡, 朱琦峰, 姜玉新, 刘石惠. 可见光-铜共催化的糖类区域选择性氧烷基化反应[J]. 有机化学, 2022, 42(5): 1414-1422. |
[15] | 潘鹏, 袁启洋, 刘石惠, 赵建宏, 张永强. 奎宁环促进的缺电性含氮芳杂环碳氢硅基化反应研究[J]. 有机化学, 2022, 42(4): 1136-1145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||