有机化学 ›› 2024, Vol. 44 ›› Issue (1): 54-69.DOI: 10.6023/cjoc202306011 上一篇    下一篇

综述与进展

可见光促进惰性碳-氢键对羰基的加成反应进展

童红恩, 郭宏宇*(), 周荣*()   

  1. 太原理工大学化学学院 太原 030024
  • 收稿日期:2023-06-13 修回日期:2023-08-03 发布日期:2023-09-15
  • 基金资助:
    山西省自然科学基金(202203021222117)

Progress on Visible-Light Promoted Addition Reactions of Inert C—H Bonds to Carbonyls

Hong'en Tong, Hongyu Guo(), Rong Zhou()   

  1. College of Chemistry, Taiyuan University of Technology, Taiyuan 030024
  • Received:2023-06-13 Revised:2023-08-03 Published:2023-09-15
  • Contact: *E-mail: guohongyu@tyut.edu.cn; E-mail: zhourong@tyut.edu.cn
  • Supported by:
    Natural Science Foundation of Shanxi Province(202203021222117)

仲醇和叔醇是重要的有机化合物, 其结构普遍存在于具有生物活性的天然产物和药物分子中, 且可以作为上游原料制备多种高附加值化学品. 在众多合成方法中, 醛酮的亲核加成反应是合成此类化合物最有效的方法之一, 但通常需要使用预官能化底物, 不仅效率较低, 且原子经济性不高. 可见光催化的兴起, 为惰性碳-氢键的活化提供了一种温和高效的方法, 促进了惰性碳-氢键直接对醛酮加成反应的发展, 推动仲醇和叔醇的合成进入新的阶段. 根据反应机理的不同, 分别对经由还原性自由基-极性交叉、自由基-自由基交叉偶联和自由基加成机制的三类可见光诱导的惰性碳-氢键对羰基的加成反应进行了综述, 并对该领域的局限性和未来发展方向做出了简要分析.

关键词: 仲醇, 叔醇, 可见光催化, 还原性自由基-极性交叉, 自由基-自由基交叉偶联, 自由基加成

Secondary and tertiary alcohols are important structural motifs that often exist in a large number of bioactive natural products and pharmaceuticals. Moreover, they can also be used as upstream raw material for preparation of various highly valuable chemicals. Among the existing synthetic methodologies for preparation of these compounds, the nucleophilic addition of nucleophiles to aldehydes and ketones represents one of the most operative ways. However, pre-functionalized substrates are always needed for this protocol, resulting in low efficiency and poor atom economy. The growing area of photocatalysis has provided a mild and effective approach for inert C—H bond activation. As a result, the photocatalytic straight addition of inert C—H bond to carbonyls has been developed, which affords the synthesis of secondary and tertiary alcohols in a new manner. The visible-light induced addition reaction of inert C—H bond to carbonyls was classified by three different mechanisms: reductive radical-polar crossover (RRPCO), radical-radical cross coupling as well as radical addition, and reviewed, respectively. Finally, the limitations and future developments of this research field are discussed.

Key words: secondary alcohol, tertiary alcohol, visible-light catalysis, reductive radical-polar crossover, radical-radical cross coupling, radical addition