有机化学 ›› 2024, Vol. 44 ›› Issue (1): 54-69.DOI: 10.6023/cjoc202306011 上一篇 下一篇
综述与进展
收稿日期:
2023-06-13
修回日期:
2023-08-03
发布日期:
2023-09-15
基金资助:
Hong'en Tong, Hongyu Guo(), Rong Zhou()
Received:
2023-06-13
Revised:
2023-08-03
Published:
2023-09-15
Contact:
*E-mail: Supported by:
文章分享
仲醇和叔醇是重要的有机化合物, 其结构普遍存在于具有生物活性的天然产物和药物分子中, 且可以作为上游原料制备多种高附加值化学品. 在众多合成方法中, 醛酮的亲核加成反应是合成此类化合物最有效的方法之一, 但通常需要使用预官能化底物, 不仅效率较低, 且原子经济性不高. 可见光催化的兴起, 为惰性碳-氢键的活化提供了一种温和高效的方法, 促进了惰性碳-氢键直接对醛酮加成反应的发展, 推动仲醇和叔醇的合成进入新的阶段. 根据反应机理的不同, 分别对经由还原性自由基-极性交叉、自由基-自由基交叉偶联和自由基加成机制的三类可见光诱导的惰性碳-氢键对羰基的加成反应进行了综述, 并对该领域的局限性和未来发展方向做出了简要分析.
童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69.
Hong'en Tong, Hongyu Guo, Rong Zhou. Progress on Visible-Light Promoted Addition Reactions of Inert C—H Bonds to Carbonyls[J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 54-69.
[1] |
(a) Klingler, F. D. Acc. Chem. Res. 2007, 40, 1367.
doi: 10.1021/ar700100e |
(b) Hjerrild, P.; Tørring, T.; Poulsen, T. B. Nat. Prod. Rep. 2020, 37, 1043.
doi: 10.1039/D0NP00009D |
|
(c) Li, Z.; Yang, H.; Liu, J.; Huang, Z.; Chen, F. Chem. Rec. 2021, 21, 1611.
doi: 10.1002/tcr.v21.7 |
|
[2] |
(a) Pang, X.; Su, P.-F.; Shu, X.-Z. Acc. Chem. Res. 2022, 55, 2491.
doi: 10.1021/acs.accounts.2c00381 |
(b) Reed-Berendt, B. G.; Latham, D. E.; Dambatta, M. B.; Morrill, L. C. ACS Cent. Sci. 2021, 7, 570.
doi: 10.1021/acscentsci.1c00125 |
|
(c) Sun, K.; Shan, H.; Lu, G.-P.; Cai, C.; Beller, M. Angew. Chem., Int. Ed. 2021, 60, 25188.
doi: 10.1002/anie.v60.48 |
|
(d) Trincado, M.; Bösken, J.; Grützmacher, H. Coord. Chem. Rev. 2021, 443, 213967.
doi: 10.1016/j.ccr.2021.213967 |
|
(e) Ward, D. J.; Saccomando, D. J.; Walker, G.; Mansell, S. M. Catal. Sci. Technol. 2023, 13, 2638.
doi: 10.1039/D2CY01690G |
|
(f) Yang, Q.; Wang, Q.; Yu, Z. Chem. Soc. Rev. 2015, 44, 2305.
doi: 10.1039/C4CS00496E |
|
[3] |
Li, J. J. Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications, 5th ed., Springer International Publishing, Cham, 2014, pp. 21-22.
|
[4] |
(a) Hatano, M.; Miyamoto, T.; Ishihara, K. Curr. Org. Chem. 2007, 11, 127.
doi: 10.2174/138527207779316453 |
(b) Hatano, M.; Ishihara, K. Synthesis 2008, 2008, 1647.
doi: 10.1055/s-2008-1067046 |
|
[5] |
(a) Zhou, F.; Li, C.-J. Nat. Commun. 2014, 5, 4254.
doi: 10.1038/ncomms5254 |
(b) Yang, Y.; Perry, I. B.; Lu, G.; Liu, P.; Buchwald, S. L. Science 2016, 353, 144.
doi: 10.1126/science.aaf7720 |
|
(c) Nguyen, K. D.; Park, B. Y.; Luong, T.; Sato, H.; Garza, V. J.; Krische, M. J. Science 2016, 354, aah5133.
|
|
[6] |
Wang, H.; Dai, X.-J.; Li, C.-J. Nat. Chem. 2017, 9, 374.
doi: 10.1038/nchem.2677 |
[7] |
(a) Yamashita, Y.; Yasukawa, T.; Yoo, W.-J.; Kitanosono, T.; Kobayashi, S. Chem. Soc. Rev. 2018, 47, 4388.
doi: 10.1039/C7CS00824D |
(b) Bian, Y.-J.; Qin, Y.; Xiao, L.-W.; Li, J.-T. Chin. J. Org. Chem. 2006, 26, 1165 (in Chinese).
|
|
(边延江, 秦英, 肖立伟, 李记太, 有机化学, 2006, 26, 1165.)
|
|
[8] |
(a) Hummel, J. R.; Boerth, J. A.; Ellman, J. A. Chem. Rev. 2017, 117, 9163.
doi: 10.1021/acs.chemrev.6b00661 |
(b) Gu, Q.; Wu, Z.-J.; You, S.-L. Bull. Chem. Soc. Jpn. 2021, 94, 641.
doi: 10.1246/bcsj.20200352 |
|
(c) Yang, L.; Huang, H. Chem. Rev. 2015, 115, 3468.
doi: 10.1021/cr500610p |
|
(d) Zhang, X.-S.; Chen, K.; Shi, Z.-J. Chem. Sci. 2014, 5, 2146.
doi: 10.1039/C3SC53115E |
|
[9] |
(a) Pitre, S. P.; Overman, L. E. Chem. Rev. 2022, 122, 1717.
doi: 10.1021/acs.chemrev.1c00247 |
(b) Srivastava, V.; Singh, P. K.; Tivari, S.; Singh, P. P. Org. Chem. Front. 2022, 9, 1485.
doi: 10.1039/D1QO01602D |
|
[10] |
(a) Bellotti, P.; Huang, H.-M.; Faber, T.; Glorius, F. Chem. Rev. 2023, 123, 4237.
doi: 10.1021/acs.chemrev.2c00478 |
(b) Chang, L.; Wang, S.; An, Q.; Liu, L.; Wang, H.; Li, Y.; Feng, K.; Zuo, Z. Chem. Sci. 2023, 14, 6841.
doi: 10.1039/D3SC01118F |
|
(c) Holmberg-Douglas, N.; Nicewicz, D. A. Chem. Rev. 2022, 122, 1925.
doi: 10.1021/acs.chemrev.1c00311 |
|
(d) Capaldo, L.; Ravelli, D.; Fagnoni, M. Chem. Rev. 2022, 122, 1875.
doi: 10.1021/acs.chemrev.1c00263 |
|
(e) Ye, Z.; Lin, Y.-M.; Gong, L. Eur. J. Org. Chem. 2021, 2021, 5545.
doi: 10.1002/ejoc.v2021.40 |
|
(f) Revathi, L.; Ravindar, L.; Fang, W.-Y.; Rakesh, K. P.; Qin, L.-H. Adv. Synth. Catal. 2018, 360, 4652.
doi: 10.1002/adsc.v360.24 |
|
(g) Pei, P.; Zhang, F.; Yi, H.; Lei, A. Acta Chim. Sinica 2017, 75, 15 (in Chinese).
doi: 10.6023/A16080417 |
|
(裴鹏昆, 张凡, 易红, 雷爱文, 化学学报, 2017, 75, 15.)
|
|
(h) Qin, Q.; Jiang, H.; Hu, Z.; Ren, D.; Yu, S. Chem. Rec. 2017, 17, 754.
doi: 10.1002/tcr.v17.8 |
|
(i) Liu, W.; Zheng, X.; Zeng. J.; Cheng, P. Chin. J. Org. Chem. 2017, 37, 1 (in Chinese).
|
|
(刘薇, 郑昕宇, 曾建国, 程辟, 有机化学, 2017, 37, 1.)
|
|
(j) Protti, S.; Fagnoni, M.; Ravelli, D. ChemCatChem 2015, 7, 1516.
doi: 10.1002/cctc.v7.10 |
|
[11] |
Huang, H.-M.; Bellotti, P.; Glorius, F. Acc. Chem. Res. 2022, 55, 1135.
doi: 10.1021/acs.accounts.1c00799 |
[12] |
(a) Velasco-Rubio, Á.; Martínez-Balat, P.; Álvarez-Constantino, A. M.; Fañanás-Mastral, M. Chem. Commun. 2023, 59, 9424.
doi: 10.1039/D3CC02790B |
(b) Cullen, S. T. J.; Friestad, G. K. Synthesis 2021, 53, 2319.
doi: 10.1055/a-1396-8343 |
|
(c) Zhao, J.-J.; Zhang, H.-H.; Yu, S. Synthesis 2021, 53, 1706.
doi: 10.1055/a-1343-6541 |
|
(d) Leith, J.-A.; Rossolini, T.; Rogova, T.; Maitland, J. A. P.; Dixon, D. J. ACS Catal. 2020, 10, 2009.
doi: 10.1021/acscatal.9b05011 |
|
[13] |
Tsunoi, S.; Ryu, I.; Yamasaki, S.; Tanaka, M.; Sonoda, N.; Komatsu, M. Chem. Commun. 1997, 1889.
|
[14] |
(a) Sharma, S.; Singh, J.; Sharma, A. Adv. Synth. Catal. 2021, 363, 3146.
doi: 10.1002/adsc.v363.13 |
(b) Pitzer, L.; Schwarz, J. L.; Glorius, F. Chem. Sci. 2019, 10, 8285.
doi: 10.1039/C9SC03359A |
|
[15] |
Schwarz, J. L.; Schäfers, F.; Tlahuext-Aca, A.; Lückemeier, L.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 12705.
doi: 10.1021/jacs.8b08052 |
[16] |
(a) Okude, Y.; Hirano, S.; Hiyama, T.; Nozaki, H. J. Am. Chem. Soc. 1977, 99, 3179.
doi: 10.1021/ja00451a061 |
(b) Namba, K.; Wang, J.; Cui, S.; Kishi, Y. Org. Lett. 2005, 7, 5421.
doi: 10.1021/ol052085k |
|
(c) Hiyama, T.; Kimura, K.; Nozaki, H. Tetrahedron Lett. 1981, 22, 1037.
doi: 10.1016/S0040-4039(01)82859-8 |
|
(d) Wessjohann, L. A.; Scheid, G. Synthesis 1999, 1999, 1.
doi: 10.1055/s-1999-3672 |
|
[17] |
Mitsunuma, H.; Tanabe, S.; Fuse, H.; Ohkubo, K.; Kanai, M. Chem. Sci. 2019, 10, 3459.
doi: 10.1039/C8SC05677C |
[18] |
Tanabe, S.; Mitsunuma, H.; Kanai, M. J. Am. Chem. Soc. 2020, 142, 12374.
doi: 10.1021/jacs.0c04735 |
[19] |
Yahata, K.; Sakurai, S.; Hori, S.; Yoshioka, S.; Kaneko, Y.; Hasegawa, K.; Akai, S. Org. Lett. 2020, 22, 1199.
doi: 10.1021/acs.orglett.0c00096 |
[20] |
Schäfers, F.; Quach, L.; Schwarz, J. L.; Saladrigas, M.; Daniliuc, C. G.; Glorius, F. ACS Catal. 2020, 10, 11841.
doi: 10.1021/acscatal.0c03697 |
[21] |
Peng, P.; Zhong, Y.; Zhou, C.; Tao, Y.; Li, D.; Lu, Q. ACS Cent. Sci. 2023, 9, 756.
doi: 10.1021/acscentsci.2c01389 |
[22] |
Berger, A. L.; Donabauer, K.; König, B. Chem. Sci. 2019, 10, 10991.
doi: 10.1039/C9SC04987H |
[23] |
(a) Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25.
doi: 10.1039/a804291h |
(b) Le, C.; Liang, Y.; Evans, R. W.; Li, X.; MacMillan, D. W. C. Nature 2017, 547, 79.
doi: 10.1038/nature22813 |
|
[24] |
(a) Tarantino, K. T.; Liu, P.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 10022.
doi: 10.1021/ja404342j |
(b) Fournier, F.; Fournier, M. Can. J. Chem. 1986, 64, 881.
doi: 10.1139/v86-146 |
|
[25] |
Petronijević, F. R.; Nappi, M.; MacMillan, D. W. J. Am. Chem. Soc. 2013, 135, 18323.
doi: 10.1021/ja410478a |
[26] |
Pirnot, M. T.; Rankic, D. A.; Martin, D. B. C.; MacMillan, D. W. C. Science 2013, 339, 1593.
doi: 10.1126/science.1232993 |
[27] |
Ma, J.; Rosales, A. R.; Huang, X.; Harms, K.; Riedel, R.; Wiest, O.; Meggers, E. J. Am. Chem. Soc. 2017, 139, 17245.
doi: 10.1021/jacs.7b09152 |
[28] |
(a) Hu, J.; Wang, J.; Nguyen, T. H.; Zheng, N. Beilstein J. Org. Chem. 2013, 9, 1977.
doi: 10.3762/bjoc.9.234 |
(b) Chang, L.; An, Q.; Duan, L.; Feng, K.; Zuo, Z. Chem. Rev. 2021, 122, 2429.
doi: 10.1021/acs.chemrev.1c00256 |
|
(c) Shao, X.; Zheng, Y.; Ramadoss, V.; Tian, L.; Wang, Y. Org. Biomol. Chem. 2020, 18, 5994.
doi: 10.1039/D0OB01083A |
|
(d) Li, H.; Liu, Y.; Chiba, S. JACS Au 2021, 1, 2121.
doi: 10.1021/jacsau.1c00363 |
|
[29] |
Wang, C.; Qin, J.; Shen, X.; Riedel, R.; Harms, K.; Meggers, E. Angew. Chem., Int. Ed. 2016, 55, 685.
doi: 10.1002/anie.v55.2 |
[30] |
Fava, E.; Millet, A.; Nakajima, M.; Loescher, S.; Rueping, M. Angew. Chem., Int Ed. 2016, 55, 6776.
doi: 10.1002/anie.v55.23 |
[31] |
Ding, W.; Lu, L.-Q.; Liu, J.; Liu, D.; Song, H.-T.; Xiao, W.-J. J. Org. Chem. 2016, 81, 7237.
doi: 10.1021/acs.joc.6b01217 |
[32] |
Li, W.; Duan, Y.; Zhang, M.; Cheng, J.; Zhu, C. Chem Commun. 2016, 52, 7596.
doi: 10.1039/C6CC02027E |
[33] |
Xia, Q.; Tian, H.; Dong, J.; Qu, Y.; Li, L.; Song, H.; Liu, Y.; Wang, Q. Chem.-Eur. J. 2018, 24, 9269.
doi: 10.1002/chem.v24.37 |
[34] |
Wang, C.-M.; Song, D.; Xia, P.-J.; Ye, Z.-P.; Xiao, J.-A.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H. Org. Chem. Front. 2018, 5, 1608.
doi: 10.1039/C8QO00201K |
[35] |
Qin, Y.; Zhu, L.; Luo, S. Chem. Rev. 2017, 117, 9433.
doi: 10.1021/acs.chemrev.6b00657 |
[36] |
Gao, J.; Feng, J.; Du, D. Chem.-Asian J. 2020, 15, 3637.
doi: 10.1002/asia.v15.22 |
[37] |
Gandhi, H. S.; Shelef, M. Appl. Catal. 1991, 77, 175.
|
[38] |
Tan, Z.; Zhu, S.; Liu, Y.; Feng, X. Angew. Chem., Int. Ed. 2022, 61, e202203374.
|
[39] |
Li, F.; Tian, D.; Fan, Y.; Lee, R.; Lu, G.; Yin, Y.; Qiao, B.; Zhao, X.; Xiao, Z.; Jiang, Z. Nat. Commun. 2019, 10, 1774.
doi: 10.1038/s41467-019-09857-9 |
[40] |
Ye, S.; Wu, J. Acta Chim. Sinica 2019, 77, 814 (in Chinese).
doi: 10.6023/A19050170 |
(叶盛青, 吴劼, 化学学报, 2019, 77, 814.)
|
|
[41] |
Wendt, H.; Bitterlich, S. Electrochim. Acta 1992, 37, 1951.
doi: 10.1016/0013-4686(92)87108-C |
[42] |
(a) Bennett, R. W.; Wharry, D. L.; Koch, T. H. J. Am. Chem. Soc. 1980, 102, 2345.
doi: 10.1021/ja00527a036 |
(b) Russell, G. A.; Myers, C. L.; Bruni, P.; Neugebauer, F. A.; Blankespoor, R. J. Am. Chem. Soc. 1970, 92, 2762.
doi: 10.1021/ja00712a029 |
|
[43] |
Zhao, X.; Yu, X.; Liu, M.; Huo, Y.; Ji, S.; Li, X; Chen, Q. J. Org. Chem. 2023, 88, 2612.
doi: 10.1021/acs.joc.2c02766 |
[44] |
Vu, M. D.; Das, M.; Guo, A.; Ang, Z.-E.; Ðokić, M.; Soo, H. S.; Liu, X.-W. ACS Catal. 2019, 9, 9009.
doi: 10.1021/acscatal.9b02401 |
[45] |
Wang, Q.; Huang, H.; Zhu, M.; Xu, T.; Mao, G.; Deng, G.-J. Org. Lett. 2023, 25, 3800.
doi: 10.1021/acs.orglett.3c01307 |
[46] |
Han, C.; Han, G.; Rahman, M. H.; Mannodi-Kanakkithodi, A.; Sun, Y. Chem.-Eur. J. 2023, 29, e202203785.
|
[47] |
Zheng, J.; Dong, X.; Yoon, T. P. Org. Lett. 2020, 22, 6520.
doi: 10.1021/acs.orglett.0c02314 |
[48] |
Pratsch, G.; Heinrich, M. R. Radicals in Synthesis III: Modern Developments in Aryl Radical Chemistry, Springer-Verlag Berlin, Berlin, 2012, pp. 33-59.
|
[49] |
Stevens, W. R.; Ruscic, B.; Baer, T. J. Phys. Chem. A 2010, 114, 13134.
doi: 10.1021/jp107561s |
[50] |
(a) Holmberg-Douglas, N.; Onuska, N. P. R.; Nicewicz, D. A. Angew. Chem., Int. Ed. 2020, 59, 7425.
doi: 10.1002/anie.v59.19 |
(b) Chen, B.-H.; Du, Y.-D.; Shu, W. Angew. Chem., Int. Ed. 2022, 61, e202200773.
|
|
[51] |
Zhang, Y.; Ye, D.; Shen, L.; Liang, K.; Xia, C. Org. Lett. 2021, 23, 7112.
doi: 10.1021/acs.orglett.1c02510 |
[52] |
Yu, H.; Zhan, T.; Zhou, Y.; Chen, L.; Liu, X.; Feng, X. ACS Catal. 2022, 12, 5136.
doi: 10.1021/acscatal.2c00789 |
[53] |
Clerici, A.; Porta, O. J. Org. Chem. 1989, 54, 3872.
doi: 10.1021/jo00277a025 |
[54] |
Pitzer, L.; Sandfort, F.; Strieth-Kalthoff, F.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 13652.
doi: 10.1021/jacs.7b08086 |
[55] |
Peng, X.; Hirao, Y.; Yabu, S.; Sato, H.; Higashi, M.; Akai, T.; Masaoka, S.; Mitsunuma, H.; Kanai, M. J. Org. Chem. 2022, 88, 6333.
doi: 10.1021/acs.joc.2c00603 |
[1] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[2] | 张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106. |
[3] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[4] | 高艳华, 张银潘, 张妍, 宋涛, 杨勇. 可见光驱动表面富含氧空位Nb2O5催化醇氧化反应[J]. 有机化学, 2023, 43(7): 2572-2579. |
[5] | 马佳敏, 李姣兄, 孟千森, 曾祥华. 炔烃的自由基砜基化反应研究进展[J]. 有机化学, 2023, 43(6): 2040-2052. |
[6] | 赵金晓, 魏彤辉, 柯森, 李毅. 可见光催化合成二氟烷基取代的多环吲哚化合物[J]. 有机化学, 2023, 43(3): 1102-1114. |
[7] | 赵瑜, 段玉荣, 史时辉, 白育斌, 黄亮珠, 杨晓军, 张琰图, 冯彬, 张建波, 张秋禹. 可见光促进高价碘(III)试剂参与反应的研究进展[J]. 有机化学, 2023, 43(12): 4106-4140. |
[8] | 霍炳豪, 郭聪慧, 徐占辉. Mn(acac)3促进烯醇酯与亚磷酸酯的自由基氧化偶联反应合成β-酮膦酸酯[J]. 有机化学, 2023, 43(11): 3989-3996. |
[9] | 朱佳洁, 万义, 袁启洋, 魏金莲, 张永强. 可见光/路易斯碱协同催化的三氟甲基取代烯烃脱氟硅化反应研究[J]. 有机化学, 2023, 43(10): 3623-3634. |
[10] | 陈凤娟, 刘罗, 张子露, 曾伟. 可见光催化有机硅的合成研究进展[J]. 有机化学, 2023, 43(10): 3454-3469. |
[11] | 潘振涛, 刘彤, 马永敏, 颜剑波, 王亚军. 布朗斯特酸/可见光氧化还原接力催化构建喹唑啉(硫)酮[J]. 有机化学, 2022, 42(9): 2823-2831. |
[12] | 李亚东, 吴鹏举, 杨志勇. 可见光催化苯并噁唑与α-酮酸合成芳基苯并噁唑[J]. 有机化学, 2022, 42(6): 1770-1777. |
[13] | 尹艳丽, 赵筱薇, 江智勇. 可见光不对称催化合成手性氮杂芳烃衍生物[J]. 有机化学, 2022, 42(6): 1609-1625. |
[14] | 孙鑫, 屈超凡, 马超蕊, 赵筱薇, 柴国璧, 江智勇. 光氧化还原催化串联自由基加成反应构建1,4-二酮官能团化喹喔啉-2(1H)-酮衍生物[J]. 有机化学, 2022, 42(5): 1396-1406. |
[15] | 孙天义, 张依凡, 孟远倢, 王怡, 朱琦峰, 姜玉新, 刘石惠. 可见光-铜共催化的糖类区域选择性氧烷基化反应[J]. 有机化学, 2022, 42(5): 1414-1422. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||