有机化学 上一篇    下一篇

综述与进展

手性三芳基硼(Ar3B)有机共轭发光材料研究进展

李艳秋a, 贾亚薇a, 陈磅宽*,a   

  1. a北京理工大学化学与化工学院 北京市光电转换材料重点实验室 北京 102488
  • 收稿日期:2024-09-20 修回日期:2024-10-29
  • 基金资助:
    国家自然科学基金(No. 22271013 and 21772012)资助项目.

Recent Progress of Chiral Luminescent π-Conjugated Triarylboron Materials

Li Yanqiua, Jia Yaweia, Chen Pangkuan*,a   

  1. aBeijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488
  • Received:2024-09-20 Revised:2024-10-29
  • Contact: * E-mail: pangkuan@bit.edu.cn
  • Supported by:
    National Natural Science Foundation of China (No. 22271013 and 21772012).

手性π-共轭材料通常展现出优异的光物理性质以及稳定的手性特性,在有机光电材料领域具有广泛的应用。由于三芳基硼(Ar3B)独特的电子特性,将三芳基硼骨架嵌入到手性π-共轭体系中,使体系展现出优异的手性光学特性,形成手性共轭有机三芳基硼材料,在化学和材料科学领域均引起广泛关注。本文首先介绍了手性共轭有机三芳基硼材料领域的基本概念。接着,文章根据手性来源,分别从轴手性、螺旋手性、面手性以及中心手性讨论了手性共轭三芳基硼材料的合成策略、结构特性并深入探讨了这些材料在吸收、发射、荧光量子效率等手性光电性质和应用方面的最新进展,这些特性对于手性有机光电器件的性能至关重要。最后,本文对当前研究中的挑战和未来发展趋势进行了展望,合理预期了手性共轭有机三芳基硼材料的发展潜力和应用前景。

关键词: 三芳基硼, 手性, 圆偏振发光

The chiral π-conjugated materials typically exhibit excellent photophysical properties and stable chiral characteristics, which have a wide range of applications in the field of organic optoelectronic materials. Due to the unique electronic properties of triarylboron (Ar3B), incorporating this framework into chiral π-conjugated systems results in systems with superior chiroptical properties, forming chiral conjugated organic triarylboron materials, and has attracted widespread attention in both chemistry and materials science. This article first introduces the basic concepts in the field of chiral conjugated organic triarylboron materials. Then, we discuss the synthetic strategies, structural characteristics of chiral conjugated triarylboron materials based on the source of chirality, including axial chirality, helical chirality, planar chirality, and central chirality. It also delves into the latest advances in these materials' absorption spectrum, emission spectrum, fluorescence quantum efficiency, and other chiroptical optoelectronic properties, which are crucial for the performance of chiral organic optoelectronic devices. Finally, the article looks forward to the current challenges and future development trends of chiral conjugated organic triarylboron materials, reasonably anticipating the potential application of this material.

Key words: Triarylboron, Chirality, Circularly Polarized Luminescence