[1] (a) Solařová, H.; Císařová, I.; Štěpnička, P. Organometallics 2014, 33, 4131. (b) Gómez Arrayás, R.; Adrio, J.; Carretero, J. C. Angew. Chem., Int. Ed. 2006, 45, 7674. [2] (a) Hiney, R. M.; Ficks, A.; Müller-Bunz, H.; Gilheany, D. G.; Higham, L. J. Organometallic Chemistry, the Royal Society of Chemistry, London, 2011, Vol. 37, p. 27. (b) Li, X.; Robinson, K. D.; Gaspar, P. P. J. Org. Chem. 1996, 61, 7702. (c) Chatterjee, S.; George, M. D.; Salem, G.; Willis, A. C. J. Chem. Soc., Dalton Trans. 2001, 1890. (d) Herrbach, A.; Marinetti, A.; Baudoin, O.; Guénard, D.; Guéritte, F. J. Org. Chem. 2003, 68, 4897. (e) Hoge, G.; Samas, B. Tetrahedron:Asymmetry 2004, 15, 2155. (f) Clark, T.; Landis, C. Tetrahedron:Asymmetry 2004, 15, 2123. [3] Kyba, E. P.; Liu, S. T. Inorg. Chem. 1985, 24, 1613. [4] Katti, K. V.; Gali, H.; Smith, C. J.; Berning, D. E. Acc. Chem. Res. 1999, 32, 9. [5] (a) Hooper, T. N.; Huertos, M. A.; Jurca, T.; Pike, S. D.; Weller, A. S.; Manners, I. Inorg. Chem. 2014, 53, 3716. (b) Dorn, H.; Singh, R. A.; Massey, J. A.; Nelson, J. M.; Jaska, C. A.; Lough, A. J.; Manners, I. J. Am. Chem. Soc. 2000, 122, 6669. (c) Dorn, H.; Singh, R. A.; Massey, J. A.; Lough, A. J.; Manners, I. Angew. Chem., Int. Ed. 1999, 38, 3321. (d) Dorn, H.; Singh, R. A.; Massey, J. A.; Lough, A. J.; Manners, I. Angew. Chem. 1999, 111, 3540. [6] (a) Duckmanton, P. A.; Blake, A. J.; Love, J. B. Inorg. Chem. 2005, 44, 7708. (b) Meeuwissen, J.; Detz, R.; Sandee, A. J.; de Bruin, B.; Siegler, M. A.; Spek, A. L.; Reek, J. N. H. Eur. J. Inorg. Chem. 2010, 2010, 2992. (c) Škoch, K.; Císařová, I.; Štěpnička, P. Organometallics 2016, 35, 3378. [7] (a) Becker, G.; Heckmann, G.; Hübler, K.; Schwarz, W. Z. Anorg. Allg. Chem. 1995, 621, 34. (b) Becker, G.; Schwarz, W.; Seidler, N.; Westerhausen, M. Z. Anorg. Allg. Chem. 1992, 612, 72. [8] (a) Puschmann, F. F.; Stein, D.; Heift, D.; Hendriksen, C.; Gal, Z. A.; Grützmacher, H.-F.; Grützmacher, H. Angew. Chem., Int. Ed. 2011, 50, 8420. (b) Jupp, A. R.; Goicoechea, J. M. Angew. Chem., Int. Ed. 2013, 52, 10064. (c) Li, Z.; Chen, X.; Benkö, Z.; Liu, L.; Ruiz, D. A.; Peltier, J. L.; Bertrand, G.; Su, C.-Y.; Grützmacher, H. Angew. Chem., Int. Ed. 2016, 55, 6018. (d) Jupp, A. R.; Goicoechea, J. M. J. Am. Chem. Soc. 2013, 135, 19131. [9] (a) Jupp, A. R.; Trott, G.; Payen de la Garanderie, É.; Holl, J. D. G.; Carmichael, D.; Goicoechea, J. M. Chem.-Eur. J. 2015, 21, 8015. (b) Robinson, T. P.; Goicoechea, J. M. Chem.-Eur. J. 2015, 21, 5727. [10] (a) Magnall, R.; Balázs, G.; Lu, E.; Tuna, F.; Wooles, A. J.; Scheer, M.; Liddle, S. T. Angew. Chem., Int. Ed. 2019, 58, 10215. (b) Goicoechea, J. M.; Grützmacher, H. Angew. Chem., Int. Ed. 2018, 57, 16968. [11] (a) Hansmann, M. M.; Bertrand, G. J. Am. Chem. Soc. 2016, 138, 15885. (b) Liu, L.; Ruiz, D. A.; Munz, D.; Bertrand, G. Chem 2016, 1, 147. [12] Liu, L.; Ruiz, D. A.; Dahcheh, F.; Bertrand, G.; Suter, R.; Tondreau, A. M.; Grützmacher, H. Chem. Sci. 2016, 7, 2335. [13] Wu, Y.; Liu, L.; Su, J.; Zhu, J.; Ji, Z.; Zhao, Y. Organometallics 2016, 35, 1593. [14] Wu, Y.-H.; Li, Z.-F.; Wang, W.-P.; Wang, X.-C.; Quan, Z.-J. Eur. J. Org. Chem. 2017, 2017, 5546. [15] (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. [16] (a) Cui, C.-X.; Chen, H.; Li, S.-J.; Zhang, T.; Qu, L.-B.; Lan, Y. Coord. Chem. Rev. 2020, 412, 213251. (b) Faza, O. N.; López, C. S.; Álvarez, R.; de Lera, A. R. J. Am. Chem. Soc. 2006, 128, 2434. (c) Shi, F.-Q.; Li, X.; Xia, Y.; Zhang, L.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 15503. (d) Yu, Z.-X.; Wender, P. A.; Houk, K. N. J. Am. Chem. Soc. 2004, 126, 9154. (e) Li, Z.-F.; Fan, Y.; DeYonker, N. J.; Zhang, X.; Su, C.-Y.; Xu, H.; Xu, X.; Zhao, C. J. Org. Chem. 2012, 77, 6076. (f) Li, Z.-F.; Yang, X.-P.; Hui-Xue, L.; Guo, Z. Organometallics 2014, 33, 5101. (g) Zhou, T.; Xia, Y. Organometallics 2014, 33, 4230. (h) Wang, Y.; Liao, W.; Huang, G.; Xia, Y.; Yu, Z.-X. J. Org. Chem. 2014, 79, 5684. (i) Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Chem. Rev. 2012, 112, 289. (j) Hou, C.; Jiang, J.; Zhang, S.; Wang, G.; Zhang, Z.; Ke, Z.; Zhao, C. ACS Catal. 2014, 4, 2990. (k) Tsipis, C. A.; Karipidis, P. A. J. Am. Chem. Soc. 2003, 125, 2307. [17] Frisch, M. J.; Trucks, G. W.; Schlegel, G. W.; Scuseria, G. W. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013. [18] (a) Fukui, K. Acc. Chem. Res. 1981, 14, 363. (b) Fukui, K. J. Phys. Chem. 1970, 74, 4161. [19] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 4538. [20] Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. NBO 5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2001. [21] Karton, A.; O'Reilly, R. J.; Radom, L. J. Phys. Chem. A 2012, 116, 4211. [22] (a) Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2008, 130, 10187. (b) Bickelhaupt, F. M.; Houk, K. N. Angew. Chem., Int. Ed. 2017, 56, 10070. (c) Lv, X.; Zhang, X.; Sa, R.; Huang, F.; Lu, G. Org. Chem. Front. 2019, 6, 3629. (d) Ogunlana, A. A.; Bao, X. Chem. Commun. 2019, 55, 11127. |