有机化学 ›› 2020, Vol. 40 ›› Issue (12): 4101-4121.DOI: 10.6023/cjoc202004049 上一篇 下一篇
综述与进展
董子阳, 杨占会, 许家喜
收稿日期:
2020-04-29
修回日期:
2020-06-17
发布日期:
2020-07-09
通讯作者:
杨占会
E-mail:zhyang@mail.buct.edu.cn
基金资助:
Dong Ziyang, Yang Zhanhui, Xu Jiaxi
Received:
2020-04-29
Revised:
2020-06-17
Published:
2020-07-09
Supported by:
文章分享
从结构修饰与手性应用的角度,综述了关于马钱子碱的最新研究进展.马钱子碱具有多个官能团和复杂的立体结构,对其进行选择性结构修饰极具挑战性.目前已有多种方法实现了在其特定位点的选择性反应,具体包括:芳环部分的脱甲氧基五氟苯基化,酰胺部分的伯胺缩合、脱氧氰基化、脱氧还原、α-肟化等反应,叔胺部分的N-氧化、C-N或α-C-H键的形式上卡宾插入、与苯炔和酚的三组分反应、与乃春的N-胺负离子化和与卤代烃的N-烃基化等反应,C=C双键的双羟基化和氢化反应,醚键的氢化断裂反应.其修饰后的结构具有独特的生物活性和潜在的药用价值.马钱子碱本身可作为手性拆分试剂,对外消旋的羧酸、磷(膦)酸、酚、醇和药物进行拆分.此外,马钱子碱及其结构修饰产物均可作为手性助剂、手性催化剂或手性配体运用到不对称合成中.
董子阳, 杨占会, 许家喜. 马钱子碱的结构修饰和手性应用[J]. 有机化学, 2020, 40(12): 4101-4121.
Dong Ziyang, Yang Zhanhui, Xu Jiaxi. Structural Modifications and Chiral Applications of Brucine[J]. Chinese Journal of Organic Chemistry, 2020, 40(12): 4101-4121.
[1] (a) Hai, P.; Wang, C.; Luo, G. Chin. J. Pharm. 2016, 47, 1394(in Chinese). (海平, 王慧春, 骆桂法, 中国医药工业杂志, 2016, 47, 1394.) (b) Zhang, J.-J.; Yang, Y.-J.; Qi, L.-P.; Dong, Y.-Y.; Zhang, J.; Li, R.-K.; Liu, Y.-M. Rheum. Arthritis 2017, 6, 38(in Chinese). (张景姣, 杨艳娇, 祁利平, 董艳艳, 张健, 李瑞柯, 刘雅敏, 风湿病与关节炎, 2017, 6, 38.) (c) Duan, C.-X.; Guo, C.-J. Chin. J. Pharm. Anal. 2018, 38, 331(in Chinese). (段存贤, 郭承军, 药物分析杂志, 2018, 38, 331.) (d) Zhou, S.; Zhou, H.; Chen, Y.; Meng, F. Acta Chin. Med. 2018, 33, 1302(in Chinese). (周淑娟, 周红敏, 陈岩岩, 孟菲, 中医学报, 2018, 33, 1302.) (e) Liu, M.; Cui, X.; Shi, H.; Wang, X.; Chen, Z.; Niu, A.; Gao, R.; Cao, X. China Pharm. 2019, 30, 2980(in Chinese). (刘满军, 崔小敏, 石会丽, 王晓萍, 陈志永, 牛安琦, 高蓉, 曹小平, 中国药房, 2019, 30, 2980.) [2] (a) Wu, X.-J.; Ma, F.-S.; Yu, Y. Lishizhen Med. Mater. Med. Res. 2016, 27, 2145(in Chinese). (吴小娟, 马凤森, 喻炎, 时珍国医国药, 2016, 27, 2145.) (b) Yan, J.; Lin, J.-T.; Liu, Z.-Q.; Zhen, X.-Y. Chin. J. Pharm. Anal. 2020, 40, 132(in Chinese). (闫静, 林佳娣, 刘志强, 甄晓宇, 药物分析杂志, 2020, 40, 132.) (c) Dong, Z.; Yang, Z.; Xu, J. Univ. Chem. 2020, DOI:10.3866/PKU.DXHX202005056(in Chinese). (董子阳, 杨占会, 许家喜, 大学化学, 2020, DOI:10.3866/PKU. DXHX202005056.) [3] Wormley, T. Micro-chemistry of Poisons Including Their Physiological, Pathological, and Legal Relations:Adapted to the Use of the Medical Jurist, Physician, and General Chemist, Wood, W., New York, 1869. [4] Buckingham, J. Bitter Nemesis:The Intimate History of Strychnine, CRC Press, Boca Raton, USA, 2007, p. 225. [5] Frédérich, M.; Choi, Y. H.; Verpoorte, R. Planta Med. 2003, 69, 1169. [6] Malone, M. H.; St. John-Allan, K. M.; Bejar, E. J. Ethnopharmacol. 1992, 35, 295. [7] (a) Ren, J.; Zhang, X.; Chu, Z. J. Liaoning Univ. Tradit. Chin. Med. 2016, 18, 221(in Chinese). (任佳佳, 张学顺, 褚志杰, 辽宁中医药大学学报, 2016, 18, 221.) (b) Zhang, M.; Wang, C.; Wen, Q.; Fang, P.-F. Chin. J. Clin. Pharmacol. Ther. 2017, 33, 2282(in Chinese). (张敏, 王超, 温菁, 方平飞, 中国临床药理学杂志, 2017, 33, 2282.) [8] Shiba, T. Kagaku Sosetsu 1976, 14, 129. [9] (a) Yin, W.; Wang, T.-S.; Yin, F.-Z.; Cai, B.-C. J. Ethnopharmacol. 2003, 88, 205. (b) Li, G.; Zhang, C.; Li, Z. Famous Doctor 2018, 147(in Chinese). (李国璋, 张超, 李泽, 名医, 2018, 147.) (c) Li, Y.-F.; Ren, W. Chin. J. Pain Med. 2019, 25, 94(in Chinese). (李永丰, 任维, 中国疼痛医学杂志, 2019, 25, 94.) (d) Li, Y.; Zhou, J. Chin. J. Mod. Appl. Pharm. 2019, 36, 2805(in Chinese). (李阳杰, 周敬, 中国现代应用药学, 2019, 36, 2805.) (e) Shi, X.; Zhu, M.; Kang, Y.; Yang, T.; Chen, X.; Zhang, Y. Phytomedicine 2018, 241. (f) Suo, M.; Li, P.; Zhang, M.; Zhu, Y.; Xu, M.; Li, W. China Oncol. 2018, 28, 241(in Chinese). (索明珠, 李平, 张梅, 朱耀东, 徐梦冉, 李为雨, 中国癌症杂志, 2018, 28, 241.) (g) Xu, M.; Li, P. Acta Univ. Med. Anhui 2020, 55, 195(in Chinese). (徐萌, 李平, 安徽医科大学学报, 2020, 55, 195.) [10] (a) Zhang, M.; Wang, C.; Cai, H.-L.; Wen, J.; Fang, P.-F. Curr. Med. Sci. 2019, 39, 890. (b) Wu, X.; Ma, F.; Zheng, G. Pharmacol. Clin. Chin. Mater. Med. 2016, 32, 231(in Chinese). (吴小娟, 马凤森, 郑高利, 中药药理与临床, 2016, 32, 231.) (c) Li, S.; Wang, X.-P. Int. J. Nanomed. 2017, 12, 5797. (d) Qin, J.; Yang, L.; Sheng, X.; Sa, Z.; Huang, T.; Li, Q.; Gao, K.; Chen, Q.; Ma, J.; Shen, H. Oncol. Lett. 2018, 15, 6137. (e) Ma, J.-B.; Qiu, H.-W.; Rui, Q.-H.; Liao, Y.-F.; Chen, Y.-M.; Xu, J.; Zhang, Y.; Zhu, Y.; Zhao, Y.-G. Anal. Chim. Acta 2018, 1020. [11] (a) Cai, B.-C.; Hattori, M.; Namba, T. Chem. Pharm. Bull. 1990, 38, 1295. (b) Wang, D.-D.; Li, J.-S.; Cai, B.-C. Chin. Arch. Tradit. Chin. Med. 2009, 27, 435(in Chinese). (王丹丹, 李俊松, 蔡宝昌, 中华中医药学刊, 2009, 27, 435.) (c) Chen, X.; Liu, L.; Zhu, W.; Chen, H.; Guan, Y. Jiangxi J. Tradit. Chin. Med. 2018, 49, 63(in Chinese). (陈谢谢, 刘丽丽, 朱卫丰, 陈丽华, 管咏梅, 江西中医药, 2018, 49, 63.) [12] (a) Wu, F.; Li, A.; Guo, J. Pharm. Today 2017, 27, 355(in Chinese). (吴菲, 李阿荣, 郭洁文, 今日药学, 2017, 27, 355.) (b) Wang, M.; Qi, W. Acta Chin. Med. 2017, 32, 1236(in Chinese). (王明昭, 齐武强. 中医学报, 2017, 32, 1236.) (c) Nie, Y.; Cao, L.; Xu, Z.; Xin, B. World Latest Medicine Information 2018, 18, 155(in Chinese). (聂彦彦, 曹璐璐, 徐志龙, 辛波, 世界最新医学信息文摘, 2018, 18, 155.) (d) Zhang, Y.-J.; Zhang, Z.-P.; Zhai, J.-L.; Tian, L. Guangzhou Chem. Ind. 2019, 47, 121(in Chinese). (张云静, 张自品, 张雪燕, 翟佳丽, 田蕾, 广州化工, 2019, 47, 121.) [13] Liu, S.; Li, H.; Jiang, M.; Li, P. J. Instrum. Anal. 1998, 17, 5(in Chinese). (刘守清, 李慧玲, 蒋勉, 李培标, 分析测试学报, 1998, 17, 5.) [14] (a) Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas, A. W.; Wilson, D. M.; Wood, A. Nat. Chem. 2018, 10, 383. (b) Nicolaou, K. C.; Rigol, S. Angew. Chem. Int. Ed. 2019, 58, 11206. [15] (a) Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. Chem. Soc. Rev. 2017, 46, 1760. (b) White, M. C.; Zhao, J. J. Am. Chem. Soc. 2018, 140, 13988. (c) Richardson, J.; Sharman, G.; Martínez-Olid, F.; Cañellas, S.; Gomez, J. E. React. Chem. Eng. 2020, 5, 779. (d) Feng, K.; Quevedo, R. E.; Kohrt, J. T.; Oderinde, M. S.; Reilly, U.; White, M. C. Nature (London, U. K.) 2020, 580, 621. [16] (a) Mohsen, A. M. Y.; Mandour, Y. M.; Sarukhanyan, E.; Breitinger, U.; Villmann, C.; Banoub, M. M.; Breitinger, H.-G.; Dandekar, T.; Holzgrabe, U.; Sotriffer, C.; Jensen, A. A. Zlotos, D. P. J. Nat. Prod. 2016, 79, 2997. (b) Svejstrup, T. D.; Ruffoni, A.; Julia, F.; Aubert, V. M.; Leonori, D. Angew. Chem. Int. Ed. 2017, 56, 14948. (c) Wang, J.; Li, R.; Dong, Z.; Liu, P.; Dong, G. Nat. Chem. 2018, 10, 866. (d) Ruffoni, A.; Juliá, F.; Svejstrup, T. D.; McMillan, A. J.; Douglas, J. J.; Leonori, D. Nat. Chem. 2019, 11, 426. (e) Berger, F.; Plutschack, M. B.; Riegger, J.; Yu, W.; Speicher, S.; Ho, M.; Frank, N.; Ritter, T. Nature (London, U. K.) 2019, 567, 223. (f) Nishii, Y.; Ikeda, M.; Hayashi, Y.; Kawauchi, S.; Miura, M. J. Am. Chem. Soc. 2020, 142, 1621. [17] Meyer, A. U.; Slanina, T.; Yao, C.-J.; König, B. ACS Catal. 2016, 6, 369. [18] (a) Borie, C.; Mondal, S.; Arif, T.; Briand, M.; Lingua, H.; Dumur, F.; Gigmes, D.; Stocker, P.; Barbarat, B.; Robert, V.; Nicoletti, C.; Olive, D.; Maresca, M.; Nechab, M. Eur. J. Med. Chem. 2018, 148, 306. (b) Cierpiał, T.; Kiełbasiński, P.; Kwiatkowska, M.; Łyzwa, P.; Lubelska, K.; Kuran, D.; Dąbrowska, A.; Kruszewska, H.; Mielczarek, L.; Chilmonczyk, Z.; Wiktorska, K. Bioorg. Chem. 2020, 94, 103454. [19] (a) Otsuka, S.; Yorimitsu, H.; Osuka, A. Chem.-Eur. J 2015, 21, 14703. (b) Chen, W.; Hooper, T. N.; Ng, J.; White, A. J. P.; Crimmin, M. R. Angew. Chem. Int. Ed. 2017, 56, 12687. (c) Shigeno, M.; Okawa, T.; Imamatsu, M.; Nozawa-kumada, K.; Kondo, Y. Chem.-Eur. J. 2019, 25, 10294. [20] (a) Figueroa-Valverde, L.; Diaz-Cedillo, F.; Garcia-Cervera, E.; Pool-Gomez, E.; Camacho-Luis, A.; Rosas-Nexticapan, M.; Lopez-Ramos, M.; May-Gil, I.; Sarao-Alvarez, A.; Naal-Dzib, C. Asian J. Chem. 2013, 25, 6783. (b) Figueroa-Valverde, L.; Diaz-Cedillo, F.; Rosas-Nexticapa, M.; Garcia-Cervera, E.; Pool-Gomez, E.; Lopez-Ramos, M.; Hau-Heredia, L.; Sarabia-Alcocer, B. J. Chem. 2014, 757953/1-757953/10. (c) Figueroa-Valverde, L.; Diaz-Cedillo, F.; Garcia-Cervera, E.; Gomez, E. P.; Rosas-Nexticapa, M.; Lopez-Ramos, M. Asian J. Chem. 2014, 26, 4959. [21] Fuentes de Arriba, A. L.; Lenci, E.; Sonawane, M.; Formery, O.; Dixon, D. J. Angew. Chem. Int. Ed. 2017, 56, 3655. [22] (a) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902. (b) Klein, B. A.; Robertson, I. M.; Reiz, B.; Kampourakis, T.; Li, L.; Sykes, B. D. ACS Med. Chem. Lett. 2019, 10, 1007. (c) Lameira, J.; Bonatto, V.; Cianni, L.; dos Reis Rocho, F.; Leitão, A.; Montanari, C. A. Phys. Chem. Chem. Phys. 2019, 21, 24723. [23] (a) Qi, L.; Hu, K.; Yu, S.; Zhu, J.; Cheng, T.; Wang, X.; Chen, J.; Wu, H. Org. Lett. 2017, 19, 218. (b) Seo, B.; Kim, Y. G.; Lee, P. H. Org. Lett. 2016, 18, 5050. (c) Kouznetsov, V. V.; Galvis, C. E. P. Tetrahedron 2018, 74, 773. [24] Bender, T. A.; Payne, P. R.; Gagné, M. R. Nat. Chem. 2018, 10, 85. [25] Zlotos, D. P. Buller, S. Holzgrabea, U. Mohr, K. Bioorg. Med. Chem. 2003, 11, 2627. [26] Cai, B.-C.; He, Y.-W.; Zhang, Y.-Q.; Wu, H. Chin. Pharm. J. 1994, 29, 169(in Chinese). (蔡宝昌, 何亚维, 张永清, 吴皓, 中国药学杂志, 1994, 29, 169.) [27] Arnone, A.; Metrangolo, P.; Novo, B.; Resnati, G. Tetrahedron 1998, 54, 7831. [28] Jousseaume, B.; Chanson, E. Synthesis 1987, 155. [29] Chen, J.; Lü, P.; Zhou, X.-J. Chin. J. Org. Chem. 1987, 7, 459(in Chinese). (陈坚, 吕平, 周洵钧, 有机化学, 1987, 7, 459.) [30] Oh, K.; Knabe, W. E. Tetrahedron 2009, 65, 2966. [31] Hansen, S. R.; Spangler, J. E.; Hansen, J. H.; Davies, H. M. L. Org. Lett. 2012, 14, 4626. [32] He, J.; Hamann, L. G.; Davies, H. M. L.; Beckwith, R. E. J; Nat. Commun. 2015, 6, 5943. [33] Brandhofer, T.; Gini, A.; Stockerl, S.; Piekarski, D. G.; Mancheño, O. G. J. Org. Chem. 2019, 84, 12992. [34] Ross, S. P.; Hoye, T. R. Nat. Chem. 2017, 9, 523. [35] Li, J.; Cisar, J. S.; Zhou, C.-Y.; Vera, B.; Williams, H.; Rodríguez, A. D.; Cravatt, B. F.; Romo, D. Nat. Chem. 2013, 5, 510. [36] Fiori, K. W.; Du Bois, J. J. Am. Chem. Soc. 2007, 129, 562. [37] Dong, Q.; Anderson, C. E.; Ciufolini, M. A. Tetrahedron Lett. 1995, 36, 5681. [38] Maestre, L.; Dorel, R.; Pablo, O.; Escofet, I.; Sameera, W. M. C.; Álvarez, E.; Maseras, F.; Diaz-Requejo, M. M.; Echavarren, A. M.; Pérez, P. J. J. Am. Chem. Soc. 2017, 139, 2216. [39] (a) Gharagozloo, P.; Lazareno, S.; Popham, A.; Birdsall, N. J. M. J. Med. Chem. 1999, 42, 438. (b) Birdsall, N. J. M.; Farries, T.; Gharagozloo, P.; Kobayashi, S.; Lazareno, S.; Sugimoto, M. Mol. Pharmacol. 1999, 55, 778. [40] (a) Král, V.; Pataridis, S.; Setnička, V.; Záruba, K.; Urbanová, M.; Volka, K. Tetrahedron 2005, 61, 5499. (b) Kejík, Z.; Záruba, K.; Michalík, D.; Šebek, J.; Dian, J.; Pataridis, S.; Volka, K.; Král, V. Chem. Commun. (Cambridge, U. K.) 2006, 1533. (c) Rezanka, P.; Záruba, K.; Král, V. Tetrahedron Lett. 2008, 49, 6448. (d) Záruba, K.; Králová, J.; Řezanka, P.; Poučková, P.; Veverková, L.; Král, V. Org. Biomol. Chem. 2010, 8, 3202. [41] (a) Kim, H. Y.; Shi, H.-J.; Knabe, W. E.; Oh, K. Angew. Chem. Int. Ed. 2009, 48, 7420. (b) Kim, H. Y.; Oh, K. Org. Lett. 2009, 11, 5682. (c) Kim, H. Y.; Kim, S.; Oh, K. Angew. Chem. Int. Ed. 2010, 49, 4476. [42] Van Rheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 1973. [43] Karimov, R. R.; Sharma, A.; Hartwig, J. F. ACS Cent. Sci. 2016, 2, 715. [44] (a) Eisenberger, P.; Gischig, S.; Togni, A. Chem.-Eur. J. 2006, 12, 2579. (b) Parsons, A. T.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011, 50, 9120. (c) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410. (d) Mizuta, S.; Galicia-López, O.; Engle, K. M.; Verhoog, S.; Wheelhouse, K.; Rassias, G.; Gouverneur, V. Chem.-Eur. J. 2012, 18, 8583. (e) Shimizu, R.; Egami, H.; Hamashima, Y.; Sodeoka, M. Angew. Chem. Int. Ed. 2012, 51, 4577. (f) Wang, F.; Qi, X.; Liang, Z.; Chen, P.; Liu, G. Angew. Chem. Int. Ed. 2014, 53, 1881. [45] Lichosyt, D.; Zhang, Y.; Hurej, K.; Dydio, P. Nat. Catal. 2019, 2, 114. [46] Wren, H.; Williams, H. J. Chem. Soc., Trans. 1916, 109, 572. [47] Abderhalden, E.; Faust, W.; Haase, E. Z. Physiol. Chem. 1934, 228, 187. [48] Toki, K. Bull. Chem. Soc. Jpn. 1958, 31, 333. [49] (a) Toda, F.; Tanaka, K.; Ueda, H. Tetrahedron Lett. 1981, 22, 4669. (b) Toda, F.; Tanaka, K.; Mori, K. Chem. Lett. 1983, 827. [50] Tanner, D. D.; Ruo, T. C. S.; Meintzer, C. P. J. Org. Chem. 1985, 50, 2573. [51] Jaen, J. C. e-EROS Encycl. Reagents Org. Synth. 2001, doi. org/10. 1002/047084289X. rb334. [52] (a) Hagishita, S.; Kuriyama, K.; Hayashi, M.; Nakano, Y.; Shingu, K.; Nakagawa, M. Bull. Chem. Soc. Jpn. 1971, 44, 496. (b) Warr, R. J.; Willis, A. C.; Wild, S. B. Inorg. Chem. 2008, 47, 9351. [53] (a) Yoshida, S.; Kasai, M.; Kimura, T.; Akiba, T.; Takahashi, T.; Sakamoto, S. Org. Process Res. Dev. 2012, 16, 654. (b) Moritomo, A.; Yamada, H.; Matsuzawa-Nomura, T.; Watanabe, T.; Itahana, H.; Oku, M.; Akuzawa, S.; Okada, M. Bioorg. Med. Chem. 2014, 22, 6026. [54] (a) Holzwarth, R.; Bartsch, R.; Cherkaoui, Z.; Solladié, G. Chem.-Eur. J. 2004, 10, 3931. (b) Holzwarth, R.; Bartsch, R.; Cherkaoui, Z.; Solladié, G. Eur. J. Org. Chem. 2005, 3536. (c) Tsunoda, Y.; Fukuta, K.; Imamura, T.; Sekiya, R.; Furuyama, T.; Kobayashi, N.; Haino, T. Angew. Chem. Int. Ed. 2014, 53, 7243. [55] (a) Polavarapu, P. L.; Petrovic, A. G.; Vick, S. E.; Wulff, W. D.; Ren, H.; Ding, Z.; Staples, R. J. Org. Chem. 2009, 74, 5451. (b) Yang, Z. Univ. Chem. 2020, 35, 185(in Chinese). (杨占会, 大学化学, 2020, 35, 185) [56] Záruba, K.; Král, V. Tetrahedron:Asymmetry 2002, 13, 2567. [57] (a) Tanaka, K.; Oda, S.; Nishihote, S.; Hirayama, D.; Urbanczyk-Lipkowska, Z. Tetrahedron:Asymmetry 2009, 20, 2612. (b) Sundar, M. S.; Bedekar, A. V. RSC Adv. 2016, 6, 46258. [58] Röehrich, T.; Abu Thaher, B.; Manicone, N.; Otto, H.-H. Monatsh. Chem. 2004, 135, 979. [59] Piwowarczyk, K.; Zawadzka, A.; Roszkowski, P.; Szawkalo, J.; Leniewski, A.; Maurin, J. K.; Kranz, D.; Czarnocki, Z. Tetrahedron:Asymmetry 2008, 19, 309. [60] Doyle, M. P.; Morgan, J. P.; Fettinger, J. C.; Zavalij, P. Y.; Colyer, J. T.; Timmons, D. J.; Carducci, M. D. J. Org. Chem. 2005, 70, 5291. [61] White, J. D.; Shaw, S. Org. Lett. 2011, 13, 2488. [62] Carlier, P. R.; Zhang, Y. Org. Lett. 2007, 9, 1319. [63] Mo, F.; Dong, G. Science (Washington, DC, U. S.) 2014, 345, 68. [64] Chen, J.; Kilpatrick, B.; Oliver, A. G.; Wulff, J. E. J. Org. Chem. 2015, 80, 8979. [65] Chen, J.; Sun, X.; Oliver, A. G.; Wulff, J. E. Can. J. Chem. 2017, 95, 234. [66] Zhu, J.; Yuan, Y.; Wang, S.; Yao, Z.-J. ACS Omega 2017, 2, 4665. [67] Kenyon, J. Org. Synth. 1926, 6, 68. [68] Hartmann, R. W.; Batzl, C.; Pongratz, T. M.; Mannschreck, A. J. Am. Chem. Soc. 1992, 35, 2210. [69] (a) Poupaert, J. H.; Cavalier, R.; Claesen, M. H.; Dumont, P. A. J. Med. Chem. 1975, 18, 1268. (b) Riedner, J.; Vogel, P. Tetrahedron:Asymmetry 2004, 15, 2657. [70] Laursen, J. B.; Jorgensen, C. G.; Nielsen, J. Bioorg. Med. Chem. 2003, 11, 723. [71] Ashcroft, C. P.; Challenger, S.; Clifford, D.; Derrick, A. M.; Hajikarimian, Y.; Slucock, K.; Silk, T. V.; Thomson, N. M.; Williams, J. R. Org. Process Res. Dev. 2005, 9, 663. [72] Dung, P. T.; Trung, T. Q.; Kim, K. H. Arch. Pharmacal Res. 2009, 32, 1425. [73] Kuo, L. Y.; Glazier, S. K. Inorg. Chem. 2012, 51, 328. [74] (a) Movassaghi, M.; Piizzi, G.; Siegel, D. S.; Piersanti, G. Angew. Chem. Int. Ed. 2006, 45, 5859. (b) Hazin, K.; Patrick, B. O.; Gates, D. P. Inorg. Chem. 2019, 58, 188. [75] (a) Matsumoto, K.; Uchida, T. Chem. Lett. 1981, 1673. (b) Ikemoto, T.; Nagata, T.; Yamano, M.; Ito, T.; Mizuno, Y.; Tomimatsu, K. Tetrahedron Lett. 2004, 45, 7757. [76] Kano, T.; Ohyabu, Y.; Saito, S.; Yamamoto, H. J. Am. Chem. Soc. 2002, 124, 5365. [77] (a) Marckwald, W. Ber. 1904, 37, 349. (b) Toussaint, O.; Capdevielle, P.; Maumy, M. Tetrahedron Lett. 1987, 28, 539. [78] (a) Drabowicz, J.; Legędź, S.; Mikołajczyk, M. J. Chem. Soc., Chem. Commun. 1985, 23, 1670. (b) Drabowicz, J.; Legędź, S.; Mikołajczyk, M. Tetrahedron 1988, 44, 5243. [79] Spek, A. L.; Voorbergen, P.; Schat, G.; Blomberg. C.; Bickelhaupt, F. J. Organomet. Chem. 1974, 77, 147. [80] (a) Kolesińska, B.; Kamiński, Z. J. Org. Lett. 2009, 11, 765. (b) Kolesińska, B.; Kasperowicz, K.; Sochacki, M.; Mazur, A.; Jankowski, S.; Kamiński, Z. J. Tetrahedron Lett. 2010, 51, 20. [81] Kinoshita, H.; Ihoriya, A.; Ju-Ichi, M.; Kimachi, T. Synlett 2010, 2330. [82] Nicolaou, K. C.; Liu, G.; Beabout, K.; McCurry, M. D.; Shamoo, Y. J. Am. Chem. Soc. 2017, 139, 3736. |
[1] | 王化坤, 任晓龙, 宣宜宁. 卤盐催化的α,β-环氧羧酸酯与异氰酸酯[3+2]环加成反应研究[J]. 有机化学, 2024, 44(1): 251-258. |
[2] | 于士航, 刘嘉威, 安碧玉, 边庆花, 王敏, 钟江春. 黑腹尼虎天牛接触性信息素的不对称合成[J]. 有机化学, 2024, 44(1): 301-308. |
[3] | 王玉超, 刘晋彪, 何智涛. 钯催化共轭二烯的不对称氢官能团化[J]. 有机化学, 2023, 43(8): 2614-2627. |
[4] | 宋亭谕, 李冉, 黄利华, 贾世琨, 梅光建. N—N单键阻转异构体的催化不对称合成[J]. 有机化学, 2023, 43(6): 1977-1990. |
[5] | 罗诚, 尹艳丽, 江智勇. P-手性膦氧化物的不对称合成研究进展[J]. 有机化学, 2023, 43(6): 1963-1976. |
[6] | 蒙玲, 汪君. 硫代黄烷酮类衍生物的合成研究进展[J]. 有机化学, 2023, 43(3): 873-891. |
[7] | 张怀远, 许诺, 唐蓉萍, 石星丽. 手性高价碘试剂诱导的不对称去芳构化反应研究进展[J]. 有机化学, 2023, 43(11): 3784-3805. |
[8] | 匡鑫, 丁昌华, 吴奕晨, 王鹏. 手性烯丙基硅烷的催化对映选择性合成[J]. 有机化学, 2023, 43(10): 3367-3387. |
[9] | 濮留洋, 李芷悦, 李利民, 马玉翠, 马民, 胡胜全, 吴正治. 秋水仙碱及其天然类似物(–)-N-乙酰秋水酚甲醚的不对称合成[J]. 有机化学, 2023, 43(1): 313-319. |
[10] | 毛沅浩, 高延峰, 苗志伟. 过渡金属催化不对称环化反应合成七元环化合物研究进展[J]. 有机化学, 2022, 42(7): 1904-1924. |
[11] | 李响, 张依凡, 陆凯琳, 刘石惠, 张永强. 基于莪术醇胺氟化结构修饰的三维天然产物片段库的构建[J]. 有机化学, 2022, 42(7): 2124-2133. |
[12] | 姚婷, 李佳燕, 王佳明, 赵常贵. 氮杂环卡宾催化构筑含七元环结构的研究进展[J]. 有机化学, 2022, 42(4): 925-944. |
[13] | 王立花, 公绪顺, 雷婷, 江世智. 黄烷酮的不对称合成研究进展[J]. 有机化学, 2022, 42(3): 758-769. |
[14] | 苏艺雯, 邹有全, 肖文精. 光催化去消旋化的研究进展[J]. 有机化学, 2022, 42(10): 3201-3212. |
[15] | 滕明瑜, 韩涛, 黄恩和, 叶龙武. 金属卡宾参与的对映选择性去对称化反应研究进展[J]. 有机化学, 2022, 42(10): 3295-3301. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||