有机化学 ›› 2021, Vol. 41 ›› Issue (1): 185-205.DOI: 10.6023/cjoc202006010 上一篇 下一篇
所属专题: 热点论文虚拟合集
综述与进展
收稿日期:
2020-06-08
修回日期:
2020-07-13
发布日期:
2020-08-06
通讯作者:
刘平, 孙培培
作者简介:
基金资助:
Jie Zhanga, Ping Liua,*(), Peipei Suna,*()
Received:
2020-06-08
Revised:
2020-07-13
Published:
2020-08-06
Contact:
Ping Liu, Peipei Sun
Supported by:
文章分享
含氧及含氮杂环化合物广泛应用于医药、化工及材料等领域, 其合成方法一直备受关注. 近年来, 自由基加成串联环化策略被认为是构筑含氧及含氮杂环化合物的简洁、高效方法之一. 根据杂环种类的不同进行分类, 综述了近年来基于自由基加成环化历程合成各类含氧及含氮杂环化合物的研究进展.
张杰, 刘平, 孙培培. 自由基加成环化合成含氧或含氮杂环化合物的研究进展[J]. 有机化学, 2021, 41(1): 185-205.
Jie Zhang, Ping Liu, Peipei Sun. Synthesis of Oxygen- or Nitrogen-Containing Heterocyclic Compounds via Radical Addition Cascade Cyclization[J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 185-205.
[1] |
(a) Cabrele C.; Reiser O. J. Org. Chem. 2016, 81, 10109.
|
(b) Yu J.-T.; Pan C. Chem. Commun. 2016, 52, 2220.
|
|
(c) Kobayashi J.; Kubota T. Nat. Prod. Rep. 2009, 26, 936.
|
|
[2] |
http://njardarson.lab.arizona.edu/content/top-pharmaceuticalspos- ter.
|
[3] |
(a) Xuan J.; Studer A. Chem. Soc. Rev. 2017, 46, 4329.
|
(b) Wille U. Chem. Rev. 2013, 113, 813.
|
|
[4] |
Anastas P.; Eghbali N. Chem. Soc. Rev. 2010, 39, 301.
|
[5] |
(a) Srikrishna D.; Godugu C.; Dubey P.K. Mini -Rev. Med. Chem. 2018, 18, 113.
|
(b) Hu Y.-Q.; Xu Z.; Zhang S.; Wu X.; Ding J.-W.; Lv Z.-S.; Feng L.-S. Eur. J. Med. Chem. 2017, 136, 122.
|
|
[6] |
Mi X.; Wang C.; Huang M.; Zhang J.; Wu Y.; Wu Y. Org. Lett. 2014, 16, 3356.
|
[7] |
Li Y.; Lu Y.; Qiu G.; Ding Q. Org. Lett. 2014, 16, 4240.
|
[8] |
Chen L.; Wu L.; Duan W.; Wang T.; Li L.; Zhang K.; Zhu J.; Peng Z.; Xiong F. J. Org. Chem. 2018, 83, 8607.
|
[9] |
Wei W.; Wen J.; Yang D.; Guo M.; Wang Y.; You J.; Wang H. Chem. Commun. 2015, 51, 768.
|
[10] |
Yang W.; Yang S.; Li P.; Wang L. Chem. Commun. 2015, 51, 7520.
|
[11] |
Zeng Y.-F.; Tan D.-H.; Chen Y.; Lv W.-X.; Liu X.-G.; Li Q.; Wang H. Org. Chem. Front. 2015, 2, 1511.
|
[12] |
Mi X.; Wang C.; Huang M.; Wu Y.; Wu Y. J. Org. Chem. 2015, 80, 148.
|
[13] |
Yan K.; Yang D.; Wei W.; Wang F.; Shuai Y.; Li Q.; Wang. H.J. Org. Chem. 2015, 80, 1550.
|
[14] |
Wu W.; An Y.; Li J.; Yang S.; Zhu Z.; Jiang H. Org. Chem. Front. 2017, 4, 1751.
|
[15] |
Fu W.; Zhu M.; Zou G.; Xu C.; Wang Z.; Ji B. J. Org. Chem. 2015, 80, 4766.
|
[16] |
Qiu G.; Liu T.; Ding Q. Org. Chem. Front. 2016, 3, 510.
|
[17] |
Ni S.; Cao J.; Mei H.; Han J.; Li S.; Pan Y. Green Chem. 2016, 18, 3935.
|
[18] |
Mantovani A.C.; Goulart T.A.C.; Back D.F.; Menezes P.H.; Zeni G. J. Org. Chem. 2014, 79, 10526.
|
[19] |
Yu Y.; Zhuang S.; Liu P.; Sun P. J. Org. Chem. 2016, 81, 11489.
|
[20] |
Hua J.; Fang Z.; Xu J.; Bian M.; Liu C.; He W.; Zhu N.; Yang Z.; Guo K. Green Chem. 2019, 21, 4706.
|
[21] |
(a) McKee T.C.; Bokesch H.R.; McCormick J.L.; Rashid M.A.; Spielvogel D.; Gustafson K.R.; Alavanja M.M.; Cardellina, II, J.H.; Boyd, M.R.J. Nat. Prod. 1997, 60, 431.
|
(b) Emami S.; Ghanbarimasir Z. Eur. J. Med. Chem. 2015, 93, 539.
|
|
(c) Tímár T.; Eszenyi T.; Sebök P. J. Heterocycl. Chem. 2000, 37, 1389.
|
|
[22] |
Goh K.K.K.; Kim S.; Zard S.Z. Org. Lett. 2013, 15, 4818.
|
[23] |
Zhao J.; Li P.; Li X.; Xia C.; Li F. Chem. Commun. 2016, 52, 3661.
|
[24] |
Jhuang H.-S.; Reddy D.M.; Chen T.-H.; Lee C.-F. Asian J. Org. Chem. 2016, 5, 1452.
|
[25] |
Yang W.C.; Dai P.; Luo K.; Ji Y.-G.; Wu L. Adv. Synth. Catal. 2017, 359, 2390.
|
[26] |
Jung S.; Kim J.; Hong S. Adv. Synth. Catal. 2017, 359, 3945.
|
[27] |
Tang L.; Yang Z.; Chang X.; Jiao J.; Ma X.; Rao W.; Zhou Q.; Zheng L. Org. Lett. 2018, 20, 6520.
|
[28] |
(a) Xiao Y.-M.; Liu Y.; Mai W.-P.; Mao P.; Yuan J.-W.; Yang L.-R. ChemistrySelect 2019, 4, 1939.
|
[29] |
(a) Krake S.H.; Martinez P.D.G.; McLaren J.; Ryan E.; Chen G.; White K.; Charman S.A.; Campbell S.; Willis P.; Dias L.C. Eur. J. Med. Chem. 2017, 126, 929.
|
(b) Hasegawa F.; Niidome K.; Migihashi C.; Murata M.; Negoro T.; Matsumoto T.; Kato K.; Fujii A. Bioorg. Med. Chem. Lett. 2014, 24, 4266.
|
|
(c) Zhang Z.; Huber G.W. Chem. Soc. Rev. 2018, 47, 1351.
|
|
(d) Montagnon T.; Tofi M.; Vassilikogiannakis G. Acc. Chem. Res. 2008, 41, 1001.
|
|
[30] |
Yang Y.; Yao J.; Zhang Y. Org. Lett. 2013, 15, 3206.
|
[31] |
Tang S.; Liu K.; Long Y.; Qi X.; Lan Y.; Lei A. Chem. Commun. 2015, 51, 8769.
|
[32] |
Ren Y.; Meng L.-G.; Peng T.; Wang L. Org. Lett. 2018, 20, 4430.
|
[33] |
Deng G.; Li M.; Yu K.; Liu C.; Liu Z.; Duan S.; Chen W.; Yang X.; Zhang H.; Walsh P.J. Angew. Chem., Int. Ed. 2019, 58, 2826.
|
[34] |
(a) Locuson, II, C.W.; Suzuki, H.; Rettie, A.E.; Jones, J.P.J. Med. Chem. 2004, 47, 6768.
|
(b) Jutabha P.; Quade B.; Iwen T.J.; Frick M.M.; Ross I.R.; Rice P.J.; Anzai N.; Endou H. J. Med. Chem. 2011, 54, 2701.
|
|
(c) Theodossiou T.A.; Galanou M.C.; Paleos C.M. J. Med. Chem. 2008, 51,6067.
|
|
[35] |
Xuan J.; Studer A. Chem. Soc. Rev. 2017, 46, 4329.
|
[36] |
Hu M.; Song R.-J.; Li J.-H. Angew. Chem., Int. Ed. 2015, 54, 608.
|
[37] |
Hu M.; Liu B.; Ouyang X.-H.; Song R.-J.; Li J.-H. Adv. Synth. Catal. 2015, 357, 3332.
|
[38] |
Wu W.; Yi S.; Huang W.; Luo D.; Jiang H. Org. Lett. 2017, 19, 2825.
|
[39] |
Jana S.; Verma A.; Kadu R.; Kumar S. Chem. Sci. 2017, 8, 6633.
|
[40] |
Zhang J.; Cheng S.; Cai Z.; Liu P.; Sun P. J. Org. Chem. 2018, 83, 9344.
|
[41] |
Xia X.-F.; He W.; Zhang G.-W.; Wang D. Org. Chem. Front. 2019, 6, 342.
|
[42] |
Pratap R.; Ram V.J. Chem. Rev. 2014, 114, 10476.
|
[43] |
(a) Liu W.; Cao H.; Xin J.; Jin L.; Lei A. Chem. Eur. J. 2011, 17, 3588.
|
(b) Villamizar M.C.O.; Zubkov F.I.; Galvis C.E.P.; Méndez L.Y.V.; Kouznetsov V.V. Org. Chem. Front. 2017, 4, 1736.
|
|
(c) Guo D.-D.; Li B.; Wang D.-Y.; Gao Y.-R.; Guo S.-H.; Pan G.-F.; Wang Y.-Q. Org. Lett. 2017, 19, 798.
|
|
(d) Sun C.-L.; Gu Y.-F.; Huang W.-P.; Shi Z.-J. Chem. Commun. 2011, 47, 9813.
|
|
(e) He Y.; Zhang X.; Cui L.; Wang J.; Fan X. Green Chem. 2012, 14, 3429.
|
|
[44] |
Deng Q.; Tan L.; Xu Y.; Liu P.; Sun P. J. Org. Chem. 2018, 83, 6151.
|
[45] |
Ji L.; Deng Q.; Liu P.; Sun P. Org. Biomol. Chem. 2019, 17, 7715.
|
[46] |
(a) Krane B.D.; Fagbule M.O.; Shamma M., Gözler B. J. Nat. Prod. 1984, 47, 1.
|
(b) Bernardo P.H.; Wan K.F.; Sivaraman T.; Xu J.; Moore F.K.; Hung A.W.; Mok H.Y.K.; Yu V.C.; Chai C.L.L. J. Med. Chem. 2008, 51, 6699.
|
|
(c) Zhu S.; Ruchelman A.L.; Zhou N.; Liu A.; Liu L.; LaVoiea E.J. Bioorg. Med. Chem. 2005, 13, 6782.
|
|
(d) Zhang J.; Lakowicz J.R. J. Phys. Chem. B. 2005, 109, 8701.
|
|
(e) Stevens N.; O'Connor N.; Vishwasrao H.; Samaroo D.; Kandel E.R.; Akins D.L.; Drain C.M.; Turro N.J. J. Am. Chem. Soc. 2008, 130, 7182.
|
|
[47] |
(a) Read M.L.; Gundersen. L. L.;J. Org. Chem. 2013, 78, 1311.
|
(b) Wu Y.; Wong S.M.; Mao F.; Chan T.L.; Kwong F.Y. Org. Lett. 2012, 14, 5306.
|
|
(c) Peng J.; Chen T.; Chen C.; Li B. J. Org. Chem. 2011, 76, 9507.
|
|
(d) Zhou Y.; Dong J.; Zhang F.; Gong Y. J. Org. Chem. 2011, 76, 588.
|
|
(e) Cá N.D.; Motti E.; Mega A.; Catellani M. Adv. Synth. Catal. 2010, 352, 1451.
|
|
(f) Maestri G.; Larraufie M.H.; Derat E.; Ollivier C.; Fenster- bank L.; Lacote E.; Malacria M. Org. Lett. 2010, 12, 5692.
|
|
[48] |
Tobisu M.; Koh K.; Furukawa T.; Chatani N. Angew. Chem., Int. Ed. 2012, 51, 11363.
|
[49] |
(a) Zhang B.; Mück-Lichtenfeld C.; Daniliuc C.G.; Studer A. Angew. Chem., Int. Ed. 2013, 52, 10792.
|
(b) Lübbesmeyer M.; Leifert D.; Schäfer H.; Studer A. Chem. Commun. 2018, 54, 2240.
|
|
[50] |
Cheng Y.; Jiang H.; Zhang Y.; Yu S. Org. Lett. 2013, 15, 5520.
|
[51] |
Wang Q.; Dong X.; Xiao T.; Zhou L. Org. Lett. 2013, 15, 4846.
|
[52] |
Xiao T.; Li L.; Lin G.; Wang Q.; Zhang P.; Mao Z.-W.; Zhou L. Green Chem. 2014, 16, 2418.
|
[53] |
Sun X.; You S. Org. Lett. 2014, 16, 2938.
|
[54] |
Zhang B.; Studer A. Org. Lett. 2014, 16, 3990.
|
[55] |
Leifert D.; Daniliuc C.G.; Studer A. Org. Lett. 2013, 15, 6286.
|
[56] |
Liu J.; Fan C.; Yin H.; Qin C.; Zhang G.; Zhang X.; Yi H.; Lei A. Chem. Commun. 2014, 50, 2145.
|
[57] |
Jin Y.; Yang H.; Fu H. Org. Lett. 2016, 18, 6400.
|
[58] |
Guo A.; Han J.-B.; Tang X.-Y. Org. Lett. 2018, 20, 2351.
|
[59] |
Zhang B.; Daniliuc C.G.; Studer A. Org. Lett. 2014, 16, 250.
|
[60] |
Wang L.; Zhu H.; Guo S.; Cheng J.; Yu J.-T. Chem. Commun. 2014, 50, 10864.
|
[61] |
Feng X.; Zhu H.; Wang L.; Jiang Y.; Cheng J.; Yu J.-T. Org. Biomol. Chem. 2014, 12, 9257.
|
[62] |
Pan C.; Han J.; Zhang H.; Zhu C. J. Org. Chem. 2014, 79, 5374.
|
[63] |
Wang Y.-F.; Lonca G.H.; Runig M.L.; Chiba S. Org. Lett. 2014, 16, 4272.
|
[64] |
Mackay E.G.; Studer A. Chem. -Eur. J. 2016, 22, 13455.
|
[65] |
Sun X.; Yu S. Chem. Commun. 2016, 52, 10898.
|
[66] |
Qin H.-T.; Wu S.-W.; Liu J.-L.; Liu F. Chem. Commun. 2017, 53, 1696.
|
[67] |
(a) Yang J.-C.; Zhang J.-J.; Guo L.-N. Org. Biomol. Chem. 2016, 14, 9806.
|
(b) Yang J.-C.; Zhang J.-Y.; Zhang J.-J.; Duan X.-H.; Guo L.-N. J. Org. Chem. 2018, 83, 1598.
|
|
(c) Tang Y.-Q.; Yang J.-C.; Wang L.; Fan M.; Guo L.-N. Org. Lett. 2019, 21, 5178.
|
|
[68] |
Tang J.; Sivaguru P.; Ning Y.; Zanoni G.; Bi X. Org. Lett. 2017, 19, 4026.
|
[69] |
Mao L.-L.; Zheng D.-G.; Zhu X.-H.; Zhou A.-X.; Yang S.-D. Org. Chem. Front. 2018, 5, 232.
|
[70] |
Li X.; Fang X.; Zhuang S.; Liu P.; Sun P. Org. Lett. 2017, 19, 3580.
|
[71] |
Liu X.; Wu Z.; Zhang Z.; Liu P.; Sun P. Org. Biomol. Chem. 2018, 16, 414.
|
[72] |
Yu Y.; Cai Z.; Yuan W.; Liu P.; Sun P. J. Org. Chem. 2017, 82, 8148.
|
[73] |
Yu Y.; Yuan W.; Huang H.; Cai Z.; Liu P.; Sun P. J. Org. Chem. 2018, 83, 1654.
|
[74] |
Zhang C.; Pi J.; Chen S.; Liu P.; Sun P. Org. Chem. Front. 2018, 5, 793.
|
[75] |
Zhang C.; Pi J.; Wang L.; Liu P.; Sun P. Org. Biomol. Chem. 2018, 16, 9223.
|
[76] |
(a) Adsule S.; Barve V.; Chen D.; Ahmed F.; Dou Q.P.; Padhye S.; Sarkar F.H. J. Med. Chem. 2006, 49, 7242.
|
(b) Hayat F.; Moseley E.; Salahuddin A.; Van Zyl R.L.; Azam A. Eur. J. Med. Chem. 2011, 46, 1897.
|
|
(c) Sayed K.E.; Al-Said M.S.; El-Feraly F.S.; Ross S.A. J. Nat. Prod. 2000, 63, 995.
|
|
[77] |
Manske R.H. Chem. Rev. 1942, 30, 113.
|
[78] |
(a) O'Dell D.K.; Nicholas K.M. J. Org. Chem. 2003, 68, 6427.
|
(b) Xiao F.; Chen Y.; Liu Y.; Wang J. Tetrahedron 2008, 64, 2755.
|
|
(c) Zhang X.; Yao T.-L.; Campo M.A.; Larock R.C. Tetrahedron 2010, 66, 1177.
|
|
[79] |
Zhang L.; Chen S.; Gao Y.; Zhang P.; Wu Y.; Tang G.; Zhao Y. Org. Lett. 2016, 18, 1286.
|
[80] |
Wu Z.-G.; Liang X.; Zhou J.; Yu L.; Wang Y.; Zheng Y.-X.; Li Y.-F.; Zuo J.-L.; Pan Y. Chem. Commun. 2017, 53, 6637.
|
[81] |
Deng Q.; Xu Y.; Liu P.; Tan L.; Sun P. Org. Chem. Front. 2018, 5, 19.
|
[82] |
Xiao T.; Li L.; Xie Y.; Mao Z.-W.; Zhou L. Org. Lett. 2016, 18, 1004.
|
[83] |
Sun D.; Yin K.; Zhang R. Chem. Commun. 2018, 54, 1335.
|
[84] |
Dong X.; Xu Y.; Liu J.; Hu Y.; Xiao T.; Zhou L. Chem. -Eur. J. 2013, 19, 16928.
|
[85] |
Wang Q.; Huang J.; Zhou L. Adv. Synth. Catal. 2015, 357, 2479.
|
[86] |
Wei W.-T.; Teng F.; Li Y.; Song R.-J.; Li J.-H. Org. Lett. 2019, 21, 6285.
|
[87] |
(a) Joseph B.; Darro F.; Behard A.; Lesur B.; Collignon F.; Decaestecker C.; Frydman A.; Guillaumet G.; Kiss R. J. Med. Chem. 2002, 45, 2543.
|
(b) Huang L.-J.; Hsieh M.-C.; Teng C.-M.; Lee K.-H.; Kuo S.-C. Biorg. Med. Chem. 1998, 6, 1657.
|
|
(c) Desos P.; Lepagnol J.M.; Morain P.; Lestage P.; Cordi A.A. J. Med. Chem. 1996, 39, 197.
|
|
[88] |
(a) Katritzky A.R.; Rachwal S.; Rachwal B. Tetrahedron 1996, 52, 15031.
|
(b) Kadnikov D.V.; Larock R.C. J. Org. Chem. 2004, 69, 6772.
|
|
(c) Park K.K.; Jung J.Y. Heterocycles 2005, 65, 2095.
|
|
[89] |
(a) Mai W.-P.; Wang J.-T.; Yang L.-R.; Yuan J.-W.; Xiao Y.-M.; Mao P.; Qu L.-B. Org. Lett. 2014, 16, 204.
|
(b) Mai W.-P.; Sun G.-C.; Wang J.-T.; Song G.; Mao P.; Yang L.-R.; Yuan J.-W.; Xiao Y.-M.; Qu L.-B. J. Org. Chem. 2014, 79, 8094.
|
|
[90] |
Zhou S.-L.; Guo L.-N.; Wang S.; Duan X.-H. Chem. Commun. 2014, 50, 3589.
|
[91] |
Gao F.; Yang C.; Gao G.-L.; Zheng L.; Xia W. Org. Lett. 2015, 17, 3478.
|
[92] |
Zhang H.; Gu Z.; Li Z.; Pan C.; Li W.; Hu H.; Zhu C. J. Org. Chem. 2016, 81, 2122.
|
[93] |
Wu J.; Zhang J.-Y.; Gao P.; Xu S.-L.; Guo L.-N. J. Org. Chem. 2018, 83, 1046.
|
[94] |
Qiu J.-K.; Jiang B.; Zhu Y.-L.; Hao W.-J.; Wang D.-C.; Sun J.; Wei P.; Tu S.-J.; Li G. J. Am. Chem. Soc. 2015, 137, 8928.
|
[95] |
Ouyang X.-H.; Song R.-J.; Liu Yu.; Hu M.; Li J.-H. Org. Lett. 2015, 17, 6038.
|
[96] |
Li Y.; Liu B.; Song R.-J.; Wang Q.-A.; Li J.-H. Adv. Synth. Catal. 2016, 358, 1219.
|
[97] |
Zhu Y.-L.; Wang D.-C.; Jiang B.; Hao W.-J.; Wei P.; Wang A.-F.; Qiu J.-K.; Tu S.-J. Org. Chem. Front. 2016, 3, 385.
|
[98] |
Li Y.; Pan G.-H.; Hu M.; Liu B.; Song R.-J.; Li J.-H. Chem. Sci. 2016, 7, 7050.
|
[99] |
Meng Q.; Chen F.; Yu W.; Han B. Org. Lett. 2017, 19, 5186.
|
[100] |
Yu J.-X.; Niu S.; Hu M.; Xiang J.-N.; Li J.-H. Chem. Commun. 2019, 55, 6727.
|
[101] |
(a) Vernekar S.K.V.; Liu Z.; Nagy E.; Miller L.; Kirby K.A.; Wilson D.J.; Kankanala J.; Sarafianos S.T.; Parniak M.A.; Wang Z. J. Med. Chem. 2015, 58, 651.
|
(b) Chen Y.-L.; Tang J.; Kesler M.J.; Sham Y.Y.; Vince R.; Geraghty R.J.; Wang Z. Bioorg. Med. Chem. 2012, 20, 467.
|
|
(c) Pettit G.R. J. Nat. Prod. 1996, 59, 812.
|
|
[102] |
Zhou W.; Ni S.; Mei H.; Han J.; Pan Y. Org. Lett. 2015, 17, 2724.
|
[103] |
Qian P.; Du B.; Jiao W.; Mei H.; Han J.; Pan Y. Beilstein J. Org. Chem. 2016, 12, 301.
|
[104] |
Xu Z.-Q.; Wang C.; Li L.; Duan L.; Li Y.-M. J. Org. Chem. 2018, 83, 9718.
|
[105] |
Zou L.; Li P.; Wang B.; Wang L. Green Chem. 2019, 21, 3362.
|
[106] |
(a) Li L.; Deng M.; Zheng S.-C.; Xiong Y.-P.; Tan B.; Liu X.-Y. Org. Lett. 2014, 16, 504.
|
(b) Zheng L.; Yang C.; Xu Z.; Gao F.; Xia W. J. Org. Chem. 2015, 80, 5730.
|
|
[107] |
Zhao W.; Xie P.; Zhang M.; Niu B.; Bian Z.; Pittman Jr C.; Zhou A. Org. Biomol. Chem. 2014, 12, 7690.
|
[108] |
Tang S.; Deng Y.-L.; Li J.; Wang W.-X.; Wang Y.-C.; Li Z.-Z.; Yuan L.; Chen S.-L.; Sheng R.-L. Chem. Commun. 2016, 52, 4470.
|
[109] |
Wu J.; Gao Y.; Zhao X.; Zhang L.; Chen W.; Tang G.; Zhao Y. RSC Adv. 2016, 6, 303.
|
[110] |
(a) Li X.; Zhuang S.; Fang X.; Liu P.; Sun P. Org. Biomol. Chem. 2017, 15, 1821.
|
(b) Liu X.; Cong T.; Liu P.; Sun P. Org. Biomol. Chem. 2016, 14, 9416.
|
|
[111] |
(a) Singh G.S.; Desta Z.Y. Chem. Rev. 2012, 112, 6104.
|
(b) Millemaggi A.; Taylor R.J.K. Eur. J. Org. Chem. 2010, 4527.
|
|
[112] |
Wei W.-T.; Zhou M.-B.; Fan J.-H.; Liu W.; Song R.-J.; Liu Y.; Hu M.; Xie P.; Li J.-H. Angew. Chem., Int. Ed. 2013, 52, 3638.
|
[113] |
Li Y.-M.; Sun M.; Wang H.-L.; Tian Q.-P.; Yang S.-D. Angew. Chem., Int. Ed. 2013, 52, 3972.
|
[114] |
Wang F.-X.; Tian S.-K. J. Org. Chem. 2015, 80, 12697.
|
[115] |
Shi L.; Yang X.; Wang Y.; Yang H.; Fu H. Adv. Synth. Catal. 2014, 356, 1021.
|
[116] |
Wang C.; Chen Q.; Guo Q.; Liu H.; Xu Z.; Liu Y.; Wang M.; Wang R. J. Org. Chem. 2016, 81, 5782. Org. Biomol. Chem. 2017, 15, 1821.
|
[117] |
Dai Q.; Yu J.; Jiang Y.; Guo S.; Yang H.; Cheng J. Chem. Commun. 2014, 50, 3865.
|
[118] |
Lu M.-Z.; Loh T.-P. Org. Lett. 2014, 16, 4698.
|
[119] |
(a) Li Z.; Zhang Y.; Zhang L.; Liu Z.-Q. Org. Lett. 2014, 16, 382.
|
(b) Li X.; Han M.-Y.; Wang B.; Wang L.; Wang M. Org. Biomol. Chem. 2019, 17, 6612.
|
|
[120] |
Xia D.; Li Y.; Miao T.; Li P.; Wang L. Green Chem. 2017, 19, 1732.
|
[121] |
Fu W.; Xu F.; Fu Y.; Zhu M.; Yu J.; Xu C.; Zou D. J. Org. Chem. 2013, 78, 12202.
|
[122] |
Zhang M.-Z.; Sheng W.-B.; Jiang Q.; Tian M.; Yin Y.; Guo C.-C. J. Org. Chem. 2014, 79, 10829.
|
[123] |
Shen T.; Yuan Y.; Song S.; Jiao N. Chem. Commun. 2014, 50, 4115.
|
[124] |
Biswas P.; Mandal S.; Guin J. Org. Lett. 2020, 22, 4294.
|
[125] |
Zhao J.; Li P.; Xu Y.; Shi Y.; Li F. Org. Lett. 2019, 21, 9386.
|
[126] |
(a) Zheng X.; Huang P.-Q. Prog. Chem. 2018, 30, 528. (in Chinese)
|
( 郑啸, 黄培强, 化学进展, 2018, 30, 528.).
|
|
(b) Lin G.-J.; Zheng X.; Huang P.-Q. Chem. Commun. 2011, 47, 1545.
|
|
(c) Rao C.N.; Lentz D.; Reissig H.-U. Angew. Chem., Int. Ed. 2015, 54, 2750.
|
|
(d) Yuan Y.; Dong W.; Gao X.; Xie X.; Curran D.P.; Zhang Z. Chin. J. Chem. 2018, 36, 1035.
|
|
(e) Qian X.; Xiong P.; Xu H.-C. Acta Chim. Sinica. 2019, 77, 879. (in Chinese)
|
|
( 钱向阳, 熊鹏, 徐海超, 化学学报, 2019, 77, 879.).
|
[1] | 张素珍, 张文文, 杨慧, 顾庆, 游书力. 铑催化2-烯基苯酚与炔烃的对映体选择性螺环化反应[J]. 有机化学, 2023, 43(8): 2926-2933. |
[2] | 陈玉琢, 孙红梅, 王亮, 胡方芝, 李帅帅. 基于α-氢迁移策略构建杂环骨架的研究进展[J]. 有机化学, 2023, 43(7): 2323-2337. |
[3] | 黄芬, 罗维纬, 周俊. 基于C—H键断裂的多氯烷基化反应研究进展[J]. 有机化学, 2023, 43(7): 2368-2390. |
[4] | 田钰, 张娟, 高文超, 常宏宏. 二甲亚砜作为甲基化试剂在有机合成中的应用[J]. 有机化学, 2023, 43(7): 2391-2406. |
[5] | 孙李星, 孙婷婷, 王海清, 吴淑芳, 王小烨, 刘天雅, 张宇辰. Lewis酸催化下3-烷基-2-吲哚烯与α,β-不饱和N-磺酰基亚胺的[2+4]环化反应[J]. 有机化学, 2023, 43(6): 2178-2188. |
[6] | 任志军, 罗维纬, 周俊. 银介导的N-芳基丙烯酰胺串联环化反应研究进展[J]. 有机化学, 2023, 43(6): 2026-2039. |
[7] | 李靖鹏, 黄顺桃, 杨棋, 李伟强, 刘腾, 黄超. 利用连续流动技术合成(Z)-N-乙烯基取代N,O-缩醛[J]. 有机化学, 2023, 43(4): 1550-1558. |
[8] | 南江, 黄冠杰, 胡岩, 王波. 钌催化喹唑啉酮与碳酸亚乙烯酯的C—H [4+2]环化反应[J]. 有机化学, 2023, 43(4): 1537-1549. |
[9] | 赵金晓, 魏彤辉, 柯森, 李毅. 可见光催化合成二氟烷基取代的多环吲哚化合物[J]. 有机化学, 2023, 43(3): 1102-1114. |
[10] | 曾成富, 何媛, 李清, 董琳. Ir(III)催化新型三组分串联三氟乙氧基化反应并一锅法构建复杂酰胺化合物[J]. 有机化学, 2023, 43(3): 1115-1123. |
[11] | 王海清, 杨爽, 张宇辰, 石枫. 邻羟基苄醇参与的催化不对称反应研究进展[J]. 有机化学, 2023, 43(3): 974-999. |
[12] | 李硕, 王明亮, 周来运, 王兰芝. 磁性纳米负载对甲苯磺酸催化串联合成稠合多环的1,5-苯并氧氮杂䓬类化合物[J]. 有机化学, 2023, 43(11): 3977-3988. |
[13] | 侯学会, 李议慧, 张庆玲, 刘俊桃, 陈亚静. 1,4-吡啶硫内鎓盐在有机合成中的研究与应用[J]. 有机化学, 2023, 43(11): 3844-3860. |
[14] | 南宁, 吴双, 秦景灏, 李金恒. 基于硅烷化启动的环化反应研究进展[J]. 有机化学, 2023, 43(10): 3414-3453. |
[15] | 桑田, 贾帆, 何静, 李春天, 刘岩, 刘平. I2催化β-酮腈与1H-吡唑-5-胺的环化反应[J]. 有机化学, 2023, 43(1): 195-201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||