有机化学 ›› 2023, Vol. 43 ›› Issue (6): 2178-2188.DOI: 10.6023/cjoc202210037 上一篇 下一篇
研究论文
孙李星a, 孙婷婷a, 王海清a, 吴淑芳a, 王小烨c, 刘天雅b,*(), 张宇辰a,*()
收稿日期:
2022-10-29
修回日期:
2022-12-10
发布日期:
2022-12-28
作者简介:
基金资助:
Lixing Suna, Tingting Suna, Haiqing Wanga, Shufang Wua, Xiaoye Wangc, Tianya Liub,*(), Yuchen Zhanga,*()
Received:
2022-10-29
Revised:
2022-12-10
Published:
2022-12-28
Contact:
E-mail: About author:
Supported by:
文章分享
通过Lewis酸催化下3-烷基-2-吲哚烯与α,β-不饱和N-磺酰基亚胺的[2+4]环化反应, 以中等至良好的收率、极好的非对映选择性, 合成了具有潜在抗肿瘤活性的吲哚衍生哌啶类化合物. 该工作解决了3-烷基-2-吲哚烯参与的[2+4]环化反应中的挑战性问题, 丰富了3-烷基-2-吲哚烯化学的研究内容. 此外, 该反应为高原子经济性合成含吲哚母核的哌啶衍生物提供了新方法.
孙李星, 孙婷婷, 王海清, 吴淑芳, 王小烨, 刘天雅, 张宇辰. Lewis酸催化下3-烷基-2-吲哚烯与α,β-不饱和N-磺酰基亚胺的[2+4]环化反应[J]. 有机化学, 2023, 43(6): 2178-2188.
Lixing Sun, Tingting Sun, Haiqing Wang, Shufang Wu, Xiaoye Wang, Tianya Liu, Yuchen Zhang. Lewis Acid-Catalyzed [2+4] Cyclization of 3-Alkyl-2-vinylindoles with α,β-Unsaturated N-Sulfonyl Ketimines[J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2178-2188.
Entry | LA | Solvent | drb | Yieldc/% |
---|---|---|---|---|
1 | Cu(OTf)2 | CH3CN | >95:5 | 39 |
2 | Mg(OTf)2 | CH3CN | — | N.R. |
3 | Fe(OTf)3 | CH3CN | >95:5 | 57 |
4 | ZnCl2 | CH3CN | — | Trace |
5 | Y(OTf)3 | CH3CN | — | Trace |
6 | Sc(OTf)3 | CH3CN | >95:5 | 76 |
7 | Yb(OTf)3 | CH3CN | — | Trace |
8 | Zn(OTf)2 | CH3CN | — | N.R. |
9 | Sc(OTf)3 | DCE | 83:17 | 53 |
10 | Sc(OTf)3 | THF | — | Trace |
11 | Sc(OTf)3 | Acetone | — | Trace |
12 | Sc(OTf)3 | AcOEt | >95:5 | 56 |
13 | Sc(OTf)3 | toluene | 75:25 | 21 |
Entry | LA | Solvent | drb | Yieldc/% |
---|---|---|---|---|
1 | Cu(OTf)2 | CH3CN | >95:5 | 39 |
2 | Mg(OTf)2 | CH3CN | — | N.R. |
3 | Fe(OTf)3 | CH3CN | >95:5 | 57 |
4 | ZnCl2 | CH3CN | — | Trace |
5 | Y(OTf)3 | CH3CN | — | Trace |
6 | Sc(OTf)3 | CH3CN | >95:5 | 76 |
7 | Yb(OTf)3 | CH3CN | — | Trace |
8 | Zn(OTf)2 | CH3CN | — | N.R. |
9 | Sc(OTf)3 | DCE | 83:17 | 53 |
10 | Sc(OTf)3 | THF | — | Trace |
11 | Sc(OTf)3 | Acetone | — | Trace |
12 | Sc(OTf)3 | AcOEt | >95:5 | 56 |
13 | Sc(OTf)3 | toluene | 75:25 | 21 |
Entry | T/℃ | n(1a):n(2a) | x | drb | Yieldc/% |
---|---|---|---|---|---|
1 | 70 | 1:2 | 1 | >95:5 | 76 |
2 | 50 | 1:2 | 1 | >95:5 | 22 |
3 | 90 | 1:2 | 1 | >95:5 | 53 |
4 | 70 | 1:1.5 | 1 | >95:5 | 22 |
5 | 70 | 1:3 | 1 | >95:5 | 72 |
6 | 70 | 1.5:1 | 1 | >95:5 | 55 |
7 | 70 | 2:1 | 1 | >95:5 | 68 |
8 | 70 | 3:1 | 1 | >95:5 | 62 |
9 | 70 | 1:2 | 0.5 | >95:5 | 71 |
10 | 70 | 1:2 | 2 | >95:5 | 70 |
11d | 70 | 1:2 | 1 | >95:5 | 68 |
Entry | T/℃ | n(1a):n(2a) | x | drb | Yieldc/% |
---|---|---|---|---|---|
1 | 70 | 1:2 | 1 | >95:5 | 76 |
2 | 50 | 1:2 | 1 | >95:5 | 22 |
3 | 90 | 1:2 | 1 | >95:5 | 53 |
4 | 70 | 1:1.5 | 1 | >95:5 | 22 |
5 | 70 | 1:3 | 1 | >95:5 | 72 |
6 | 70 | 1.5:1 | 1 | >95:5 | 55 |
7 | 70 | 2:1 | 1 | >95:5 | 68 |
8 | 70 | 3:1 | 1 | >95:5 | 62 |
9 | 70 | 1:2 | 0.5 | >95:5 | 71 |
10 | 70 | 1:2 | 2 | >95:5 | 70 |
11d | 70 | 1:2 | 1 | >95:5 | 68 |
Entry | R/R1/R2 (1) | 3 | drb | Yieldc/% |
---|---|---|---|---|
1 | Me/H/Ph (1a) | 3aa | >95:5 | 76 |
2 | Et/H/Ph (1b) | 3ba | >95:5 | 64 |
3 | Bn/H/Ph (1c) | 3ca | 78:22 | 62 |
4 | Ph/H/Ph (1d) | 3da | 85:15 | 68 |
5 | Me/5-Cl/Ph (1e) | 3ea | >95:5 | 86 |
6 | Me/5-Me/Ph (1f) | 3fa | 88:12 | 91 |
7 | Me/6-Cl/Ph (1g) | 3ga | >95:5 | 87 |
8 | Me/H/o-BrC6H4 (1h) | 3ha | 83:17 | 62 |
9 | Me/H/o-FC6H4 (1i) | 3ia | 91:9 | 61 |
10 | Me/H/m-MeOC6H4 (1j) | 3ja | 89:11 | 89 |
11 | Me/H/m-MeC6H4 (1k) | 3ka | 90:10 | 78 |
12 | Me/H/m-FC6H4 (1l) | 3la | 93:7 | 65 |
13 | Me/H/m-BrC6H4 (1m) | 3ma | 92:8 | 70 |
14 | Me/H/p-MeC6H4 (1n) | 3na | 78:22 | 75 |
Entry | R/R1/R2 (1) | 3 | drb | Yieldc/% |
---|---|---|---|---|
1 | Me/H/Ph (1a) | 3aa | >95:5 | 76 |
2 | Et/H/Ph (1b) | 3ba | >95:5 | 64 |
3 | Bn/H/Ph (1c) | 3ca | 78:22 | 62 |
4 | Ph/H/Ph (1d) | 3da | 85:15 | 68 |
5 | Me/5-Cl/Ph (1e) | 3ea | >95:5 | 86 |
6 | Me/5-Me/Ph (1f) | 3fa | 88:12 | 91 |
7 | Me/6-Cl/Ph (1g) | 3ga | >95:5 | 87 |
8 | Me/H/o-BrC6H4 (1h) | 3ha | 83:17 | 62 |
9 | Me/H/o-FC6H4 (1i) | 3ia | 91:9 | 61 |
10 | Me/H/m-MeOC6H4 (1j) | 3ja | 89:11 | 89 |
11 | Me/H/m-MeC6H4 (1k) | 3ka | 90:10 | 78 |
12 | Me/H/m-FC6H4 (1l) | 3la | 93:7 | 65 |
13 | Me/H/m-BrC6H4 (1m) | 3ma | 92:8 | 70 |
14 | Me/H/p-MeC6H4 (1n) | 3na | 78:22 | 75 |
Entry | Ar (2) | 3 | drb | Yieldc/% |
---|---|---|---|---|
1 | C6H5 (2a) | 3aa | >95:5 | 76 |
2 | o-MeOC6H4(2b) | 3ab | 93:7 | 75 |
3 | o-ClC6H4(2c) | 3ac | >95:5 | 62 |
4 | m-MeOC6H4 (2d) | 3ad | 91:9 | 76 |
5 | m-MeC6H4 (2e) | 3ae | >95:5 | 62 |
6 | p-MeOC6H4 (2f) | 3af | 88:12 | 71 |
7 | p-FC6H4 (2g) | 3ag | >95:5 | 89 |
8 | p-ClC6H4 (2h) | 3ah | >95:5 | 95 |
9 | 2-Naphthyl (2i) | 3ai | >95:5 | 71 |
10 | 3-Thienyl (2j) | 3aj | 87:13 | 80 |
11 | 5-Methyl-2-furyl (2k) | 3ak | >95:5 | 56 |
Entry | Ar (2) | 3 | drb | Yieldc/% |
---|---|---|---|---|
1 | C6H5 (2a) | 3aa | >95:5 | 76 |
2 | o-MeOC6H4(2b) | 3ab | 93:7 | 75 |
3 | o-ClC6H4(2c) | 3ac | >95:5 | 62 |
4 | m-MeOC6H4 (2d) | 3ad | 91:9 | 76 |
5 | m-MeC6H4 (2e) | 3ae | >95:5 | 62 |
6 | p-MeOC6H4 (2f) | 3af | 88:12 | 71 |
7 | p-FC6H4 (2g) | 3ag | >95:5 | 89 |
8 | p-ClC6H4 (2h) | 3ah | >95:5 | 95 |
9 | 2-Naphthyl (2i) | 3ai | >95:5 | 71 |
10 | 3-Thienyl (2j) | 3aj | 87:13 | 80 |
11 | 5-Methyl-2-furyl (2k) | 3ak | >95:5 | 56 |
[1] |
For some reviews: (a) Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem. Rev. 2010, 110, 4489.
doi: 10.1021/cr900211p pmid: 20380420 |
(b) Peng, J.-J.; Deng, Y. Q. Chin. J. Org. Chem. 2002, 22, 71.
pmid: 20380420 |
|
[2] |
For some reviews: (a) Dalpozzo, R. Chem. Soc. Rev. 2015, 44, 742.
doi: 10.1039/c4cs00209a pmid: 25316161 |
(b) Chen, J.-B.; Jia, Y.-X. Org. Biomol. Chem. 2017, 15, 3550.
doi: 10.1039/C7OB00413C pmid: 25316161 |
|
(c) Huang, G.; Yin, B. Adv. Synth. Catal. 2019, 361, 405.
doi: 10.1002/adsc.v361.3 pmid: 25316161 |
|
(d) Li, T.-Z.; Liu, S.-J.; Tan, W.; Shi, F. Chem.-Eur. J. 2020, 26, 15779.
doi: 10.1002/chem.v26.68 pmid: 25316161 |
|
(e) Zhang, H.-H.; Shi, F. Chin. J. Org. Chem. 2022, 42, 3351. (in Chinese)
doi: 10.6023/cjoc202203018 pmid: 25316161 |
|
(张洪浩, 石枫, 有机化学, 2022, 42, 3351.)
doi: 10.6023/cjoc202203018 pmid: 25316161 |
|
For some recent examples: (f) Ma, C.; Sheng, F.-T.; Wang, H.-Q.; Deng, S.; Zhang, Y.-C.; Jiao, Y.-C.; Tan, W.; Shi, F. J. Am. Chem. Soc. 2020, 142, 15686.
doi: 10.1021/jacs.0c00208 pmid: 25316161 |
|
(g) Wu, P.; Yu, L.; Gao, C.-H.; Cheng, Q.; Deng, S.; Jiao, Y.; Tan, W.; Shi, F. Fundam. Res. 2022, DOI: 10.1016/j.fmre.2022.01.002.
doi: 10.1016/j.fmre.2022.01.002 pmid: 25316161 |
|
(h) Wang, J.-Y.; Zhang, S.; Yu, X.-Y.; Wang, Y.-H.; Wan, H.-L.; Zhang, S.; Tan, W.; Shi, F. Tetrahedron Chem. 2022, 1, 100007.
doi: 10.1016/j.tchem.2022.100007 pmid: 25316161 |
|
(i) Jiang, M.; Zhou, T.; Shi, B. Chin. J. Org. Chem. 2020, 40, 4364. (in Chinese)
doi: 10.6023/cjoc202000083 pmid: 25316161 |
|
(江梦雪, 周涛, 史炳锋, 有机化学, 2020, 40, 4364.)
doi: 10.6023/cjoc202000083 pmid: 25316161 |
|
(j) Tan, W.; Shi, F. Chem. Synth. 2022, 2, 11.
doi: 10.20517/cs pmid: 25316161 |
|
[3] |
For some reviews: (a) Zhang, Y.-C.; Jiang, F.; Shi, F. Acc. Chem. Res. 2020, 53, 425.
doi: 10.1021/acs.accounts.9b00549 |
(b) Sheng, F.-T.; Wang, J.-Y.; Tan, W.; Zhang, Y.-C.; Shi, F. Org. Chem. Front. 2020, 7, 3967.
doi: 10.1039/D0QO01124J |
|
For some recent examples: (c) Hang, Q.-Q.; Wu, S.-F.; Yang, S.; Wang, X.; Zhong, Z.; Zhang, Y.-C.; Shi, F. Sci. China: Chem. 2022, 65, 1929.
|
|
(d) Sheng, F.-T.; Yang, S.; Wu, S.-F.; Zhang, Y.-C.; Shi, F. Chin. J. Chem. 2022, 40, 2151.
doi: 10.1002/cjoc.v40.18 |
|
[4] |
For a review: Tu, M.-S.; Chen, K.-W.; Wu, P.; Zhang, Y.-C.; Liu, X.-Q.; Shi, F. Org. Chem. Front. 2021, 8, 2643.
doi: 10.1039/D0QO01643H |
[5] |
For some recent examples: (a) Zhang, L.-L.; Zhang, J.-W.; Xiang, S.-H.; Guo, Z.; Tan, B. Org. Lett. 2018, 20, 6022.
doi: 10.1021/acs.orglett.8b02361 |
(b) Mei, G.-J.; Zheng, W.; Gonçalves, T. P.; Tang, X.; Huang, K.-W.; Lu, Y. iScience 2020, 23, 100873.
doi: 10.1016/j.isci.2020.100873 |
|
(c) Koay, W. L.; Mei, G.-J.; Lu, Y. Org. Chem. Front. 2021, 8, 968.
doi: 10.1039/D0QO01236J |
|
(d) Mou, C.; Zhou, L.; Song, R.; Chai, H.; Hao, L.; Chi, Y. R. Org. Lett. 2020, 22, 2542.
doi: 10.1021/acs.orglett.0c00418 |
|
[6] |
C(3)-nucleophilicity dearomative reactions of 3-alkyl-2-vinylin- doles: (a) Wang, Y.; Sun, M.; Yin, L.; Shi, F. Adv. Synth. Catal. 2025, 357, 4031.
doi: 10.1002/adsc.201500901 |
(b) Chen, K.-W.; Wang, D.-D.; Liu, S.-J.; Wang, X.; Zhang, Y.-C.; Tian, Y.-M.; Wu, Q.; Shi, F. J. Org. Chem. 2021, 86, 10427.
doi: 10.1021/acs.joc.1c01105 |
|
[7] |
[2+3] cyclizations of 3-alkyl-2-vinylindoles: (a) Tan, W.; Li, X.; Gong, Y.-X.; Ge, M.-D.; Shi, F. Chem. Commun. 2014, 50, 15901.
doi: 10.1039/C4CC07246D pmid: 30620204 |
(b) Bera, K.; Schneider, C. Chem.-Eur. J. 2016, 22, 7074.
doi: 10.1002/chem.201601020 pmid: 30620204 |
|
(c) Yin, L.; Wang, Y.; Sun, M.; Shi, F. Adv. Synth. Catal. 2016, 358, 1093.
doi: 10.1002/adsc.201501116 pmid: 30620204 |
|
(d) Zhu, Z.-Q.; Yin, L.; Wang, Y.; Shen, Y.; Li, C.; Mei, G.-J.; Shi, F. Org. Chem. Front. 2017, 4, 57.
doi: 10.1039/C6QO00446F pmid: 30620204 |
|
(e) Kallweit, I.; Schneider, C. Org. Lett. 2019, 21, 519.
doi: 10.1021/acs.orglett.8b03833 pmid: 30620204 |
|
[2+6] cyclizations of 3-alkyl-2-vinylindoles: (f) Sarkar, R.; Kallweit, I.; Schneider, C. Org. Lett. 2022, 24, 6433.
doi: 10.1021/acs.orglett.2c02548 pmid: 30620204 |
|
[8] |
[2+4] Cyclizations of 3-alkyl-2-vinylindoles: (a) Dai, W.; Jiang, X.-L.; Tao, J.-Y.; Shi, F. J. Org. Chem. 2016, 81, 185.
doi: 10.1021/acs.joc.5b02476 |
(b) Zhao, J.-J.; Sun, S.-B.; He, S.-H.; Wu, Q.; Shi, F. Angew. Chem., Int. Ed. 2015, 54, 5460.
doi: 10.1002/anie.201500215 |
|
(c) Jiang, X.-L.; Wu, S.-F.; Wang, J.-R.; Mei, G.-J.; Shi, F. Adv. Synth. Catal. 2018, 360, 4225.
doi: 10.1002/adsc.v360.21 |
|
(d) Tu, M.-S.; Liu, S.-J.; Zhong, C.; Zhang, S.; Zhang, H.; Zheng, Y.-L.; Shi, F. J. Org. Chem. 2020, 85, 5403.
doi: 10.1021/acs.joc.0c00119 |
|
(e) Sun, Y.; Wang, Z.; Wu, S.; Zhang, Y.; Shi, F. Green Synth. Catal. 2022, 3, 84.
|
|
[9] |
For some recent examples of other 2-vinylindoles: (a) Yang, W.; Wang, H.; Pan, Z.; Li, Z.; Deng, W. Chin. Chem. Lett. 2020, 31, 721.
doi: 10.1016/j.cclet.2019.09.008 |
(b) Ye, C.; Yang, W.-L.; Zhai, Y.; Deng, H.; Luo, X.; Kai, G.; Deng, W.-P. Org. Chem. Front. 2020, 7, 3393.
doi: 10.1039/D0QO00742K |
|
(c) Yang, W.-L.; Li, W.; Yang, Z.-T.; Deng, W.-P. Org. Lett. 2020, 22, 4026.
doi: 10.1021/acs.orglett.0c01406 |
|
[10] |
For some selected examples of 4-vinylindoles: (a) Caruana, L.; Fochi, M.; Franchini, M. C.; Ranieri, S.; Mazzanti, A.; Bernardi, L. Chem.-Eur. J. 2015, 21, 17578.
doi: 10.1002/chem.201502655 pmid: 26486074 |
(b) Romanini, S.; Galletti, E.; Caruana, L.; Mazzanti, A.; Himo, F.; Santoro, S.; Fochi, M.; Bernardi, L. Chem.-Eur. J. 2015, 21, 17578.
doi: 10.1002/chem.201502655 pmid: 26486074 |
|
(c) Caruanal, L.; Fochi, M.; Bernardi, L. Synlett 2017, 28, 1530.
doi: 10.1055/s-0036-1589494 pmid: 26486074 |
|
[11] |
For some selected examples of 7-vinylindoles: (a) Shi, F.; Zhang, H.-H.; Sun, X.-X.; Liang, J.; Fan, T.; Tu, S.-J. Chem.-Eur. J. 2015, 21, 3465.
doi: 10.1002/chem.v21.8 pmid: 30371094 |
(b) Mukherjee, S.; Shee, S.; Poisson, T.; Besset, T.; Biju, A. T. Org. Lett. 2018, 20, 6998.
doi: 10.1021/acs.orglett.8b02820 pmid: 30371094 |
|
[12] |
For some recent examples: (a) Li, T.-Z.; Liu, S.-J.; Sun, Y.-W.; Deng, S.; Tan, W.; Jiao, Y.; Zhang, Y.-C.; Shi, F. Angew. Chem., Int. Ed. 2021, 60, 2355.
doi: 10.1002/anie.v60.5 |
(b) Chen, K.-W.; Chen, Z.-H.; Yang, S.; Wu, S.-F.; Zhang, Y.-C.; Shi, F. Angew. Chem., Int. Ed. 2022, 61, e202116829.
|
|
(c) Liu, S.-J.; Chen, Z.-H.; Chen, J.-Y.; Ni, S.-F.; Zhang, Y.-C.; Shi, F. Angew. Chem., Int. Ed. 2022, 61, e202112226.
|
|
(d) Sheng, F.-T.; Yang, S.; Wu, S.-F.; Zhang, Y.-C.; Shi, F. Chin. J. Chem. 2022, 40, 2151.
doi: 10.1002/cjoc.v40.18 |
|
[13] |
[4+1] Cyclizations of saccharine-derived aza-dienes: Ling, Z.; Xie, F.; Gridnev, I. D.; Terada, M.; Zhang, W. Chem. Commun. 2018, 54, 9446.
doi: 10.1039/C8CC05307C |
[14] |
For some selected examples of [4+2] cyclizations of saccharine- derived aza-dienes: (a) Gu, J.; Ma, C.; Li, Q.-Z.; Du, W.; Chen, Y.-C. Org. Lett. 2014, 16, 3986.
doi: 10.1021/ol501814p |
(b) Li, C.; Jiang, K.; Chen, Y.-C. Molecules 2015, 20, 13642.
doi: 10.3390/molecules200813642 |
|
(c) An, Q.; Shen, J.; Butt, N.; Liu, D.; Liu, Y.; Zhang, W. Adv. Synth. Catal. 2015, 357, 3627.
doi: 10.1002/adsc.201500550 |
|
(d) Izquierdo, J.; Pericàs, M. A. ACS Catal. 2016, 6, 348.
doi: 10.1021/acscatal.5b02121 |
|
(e) Liang, Z.-Q.; Wang, D.-L.; Zhang, C.-L.; Ye, S. Org. Biomol. Chem. 2016, 14, 6422.
doi: 10.1039/C6OB01040G |
|
(f) Stark, D. G.; Young, C. M.; O’Riordan, T. J. C.; Slawina, A. M. Z.; Smith, A. D. Org. Biomol. Chem. 2016, 14, 8068.
doi: 10.1039/C6OB01473A |
|
(g) Wang, L.; Zhu, G.; Tang, W.; Lu, T.; Du, D. Tetrahedron 2016, 72, 6510.
doi: 10.1016/j.tet.2016.08.062 |
|
[15] |
For some recent examples of [4+2] cyclizations of saccharine- derived aza-dienes: (a) Chaithanya Kiran, I. N.; Reddy, R. S.; Lagishetti, C.; Xu, H.; Wang, Z.; He, Y. J. Org. Chem. 2017, 82, 1823.
doi: 10.1021/acs.joc.6b02667 pmid: 28019058 |
(b) Zhou, Z.; Wang, Z.-X.; Ouyang, Q.; Xiao, W.; Du, W.; Chen, Y.-C. Chem.-Eur. J. 2017, 23, 2945.
doi: 10.1002/chem.201605606 pmid: 28019058 |
|
(c) Wang, Z.; Xu, H.; Su, Q.; Hu, P.; Shao, P.-L.; He, Y.; Lu, Y. Org. Lett. 2017, 19, 3111.
doi: 10.1021/acs.orglett.7b01221 pmid: 28019058 |
|
(d) Jin, H.; Lia, E.; Huang, Y. Org. Chem. Front. 2017, 4, 2216.
doi: 10.1039/C7QO00596B pmid: 28019058 |
|
(e) Ren, X.-R.; Lin, J.-B.; Hua, X.-Q.; Xu, P.-F. Org. Chem. Front. 2019, 6, 2280.
doi: 10.1039/C9QO00357F pmid: 28019058 |
|
(f) Zhang, S.; Bacheley, L.; Young, C. M.; Stark, D. G.; O'Riordan, T.; Slawin, A. M. Z.; Smith, A. D. Asian J. Org. Chem. 2020, 9, 1562.
doi: 10.1002/ajoc.v9.10 pmid: 28019058 |
|
(g) Song, Y.; Wang, J.; Deng, S.; Liu, G.; Cheng, T. Mol. Catal. 2022, 520, 112165.
pmid: 28019058 |
[1] | 孙美娇, 谭晶, 谭玉, 彭进松, 陈春霞. 钯催化3-(2-氨基嘧啶-4-基)吲哚2位C—H键芳基化反应的研究[J]. 有机化学, 2023, 43(11): 3945-3959. |
[2] | 黄泽鑫, 尹宇强, 贾丰成, 吴安心. 吲哚及其衍生物C2—C3键断裂的反应研究进展[J]. 有机化学, 2022, 42(7): 2028-2044. |
[3] | 王榕, 徐立晨, 卢逸, 姜波, 郝文娟. 利用三氟甲基磺酸钪催化的吲哚去芳构化反应合成3,3'-双吲哚衍生物[J]. 有机化学, 2021, 41(4): 1582-1590. |
[4] | 吴燕, 田仙芝, 张海玲, 陈睿, 曹团武. 微波促进I2催化吲哚3-硒氰酸化制备3-硒氰酸吲哚衍生物[J]. 有机化学, 2020, 40(5): 1384-1387. |
[5] | 陈锦杨, 胡丽, 汪海英, 谭红绘. 碘催化吲哚衍生物与二芳基二碲醚芳碲化反应制备3-芳碲基吲哚[J]. 有机化学, 2019, 39(7): 2048-2052. |
[6] | 吴燕, 王珊, 张海玲, 陈睿, 何树华. 铯催化吲哚衍生物N-酰胺化反应制备吲哚-1-芳(烷)基甲酰胺化合物[J]. 有机化学, 2019, 39(12): 3567-3573. |
[7] | 章吕烨, 吴彬强, 陈张涛, 胡锦锦, 曾晓飞, 钟国富. 三氟甲磺酸催化的2,3'-二吲哚衍生物的合成[J]. 有机化学, 2018, 38(8): 2028-2035. |
[8] | 巫受群, 李小琴, 孟娇, 甘宜远, 田坤, 王贞超, 欧阳贵平. 2-吗啉基-1-丙基-1H-吲哚-3-取代酰腙类化合物的合成及抑菌活性[J]. 有机化学, 2018, 38(6): 1447-1453. |
[9] | 吕成伟, 刘妍杭, 周晓霞. 无溶剂熔融条件下5-[(3-吲哚基)-芳甲基]-2,2-二甲基-1,3-二噁烷-4,6-二酮类化合物的绿色合成[J]. 有机化学, 2016, 36(6): 1407-1411. |
[10] | 朱帅, 徐鲁斌, 王亮, 肖建. 基于吲哚-3-基甲醇不对称合成光学活性吲哚衍生物研究进展[J]. 有机化学, 2016, 36(6): 1229-1240. |
[11] | 赵辉, 张福维, 于海丰, 廖沛球, 刁全平, 李铁纯, 辛广, 侯冬岩. FeCl3催化的α-羟基二硫缩烯酮与吲哚的Friedel-Crafts烷基化反应[J]. 有机化学, 2015, 35(7): 1493-1499. |
[12] | 严楠, 熊云奎, 夏剑辉, 芮培欣, 雷志伟, 廖维林, 熊斌. 低共熔溶剂中新型螺环吲哚衍生物的绿色合成[J]. 有机化学, 2015, 35(2): 384-389. |
[13] | 吴玉芹, 杨永, 李立冬. 钯催化芳基取代二炔分子内[4+2]环化反应[J]. 有机化学, 2015, 35(11): 2333-2339. |
[14] | 高文涛, 兰帅, 郑宏梅, 白仁青卓玛. 含噻唑骨架的吲哚衍生物的有效合成[J]. 有机化学, 2015, 35(1): 144-151. |
[15] | 于海丰, 廖沛球, 刁全平, 李铁纯, 辛广, 韩立楠, 侯冬岩. 3-吲哚基-3-甲硫基丙烯酸酯和3-吲哚基-3-氧代丙酸酯的选择性合成[J]. 有机化学, 2014, 34(9): 1851-1856. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||