有机化学 ›› 2021, Vol. 41 ›› Issue (5): 1804-1820.DOI: 10.6023/cjoc202010004 上一篇 下一篇
综述与进展
江婷a, 蒲洪a, 段燕文a,b,c, 颜晓晖a,d, 黄勇a,c,*()
收稿日期:
2020-10-05
修回日期:
2020-11-24
发布日期:
2020-12-19
通讯作者:
黄勇
基金资助:
Ting Jianga, Hong Pua, Yanwen Duana,b,c, Xiaohui Yana,d, Yong Huanga,c,*()
Received:
2020-10-05
Revised:
2020-11-24
Published:
2020-12-19
Contact:
Yong Huang
About author:
Supported by:
文章分享
链霉菌是天然产物的重要来源, 但从土壤来源等普通生态环境筛选出的链霉菌中发现新化合物的比例有所降低. 深海、沙漠、火山或极地属于极端环境, 从中分离出的链霉菌因其特殊气候、地质或营养条件等的差异, 有可能产生较多新颖天然产物. 综述了2009年至2020年来从深海、沙漠、火山或极地链霉菌中发现的155个新天然产物, 介绍了它们的结构和生物活性.
江婷, 蒲洪, 段燕文, 颜晓晖, 黄勇. 深海、沙漠、火山、极地来源链霉菌新天然产物(2009~2020)[J]. 有机化学, 2021, 41(5): 1804-1820.
Ting Jiang, Hong Pu, Yanwen Duan, Xiaohui Yan, Yong Huang. New Natural Products of Streptomyces Sourced from Deep-Sea, Desert, Volcanic, and Polar Regions from 2009 to 2020[J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 1804-1820.
Compd. | Source | Bioactivity (MIC or IC50) | Depth/m | Region | Year |
---|---|---|---|---|---|
Caboxamycin (1) | NTK 937 | B. subtilis/S. lentus: 8~20 μmol?L –1 AGS/ HepG2/MCF-7: 28.6~29.4 μmol?L –1 | 3814 | Canary Basin | 2009[ |
Benzoxacystol (2) | NTK 935 | Inhibitory activity against glycogen synthase kinase-3β | 3814 | Canary Basin | 2011[ |
3'-hydroxycaboxamycin (3) | NTK 937 | — | 3814 | Canary Basin | 2017[ |
Ammosamides A/B (4/5) | CNR-698 | HCT-116: 320 nmol?L–1 | 1618 | Bahamas | 2009[ |
Lobophorins E/F (6/7) | SCSIO 01127 | S. aureus/E. faecalis: 8 μg/mL ( 6) SF-268/ MCF-7/H460: 2.93~6.82 μmol?L –1 (7) | 135 | South China Sea | 2011[ |
Lobophorins G (8) | MS100061 | BCG: 1.56 μg/mL B. subtilis: 3.125 μg/mL M. tuberculosisH37Rv: 16 μg/mL | NA | South China Sea | 2013[ |
Lobophorins H/I (9/10) | 12A35 | B. subtilisCMCC 63501: 1.57 μg/mL (9) 50 μg/mL ( 10) | 2134 | South China Sea | 2013[ |
Lobophorins J (11) | 12A35 | — | 2134 | South China Sea | 2015[ |
Lobophorin K (12) | M-207 | S. aureus: 40~80 μg/mL MiaPaca-2/ MCF-7/THLE-2: 6.3~34.0 μmol?L –1 | 180 | Cantabrian Sea | 2017[ |
Lobophorin L/M (13/14) | 4506 | M. luteus/B. huringiensis: 4~8 μg/mL (13) | NA | South China Sea | 2020[ |
Spiroindimicins A~D (15~18) | SCSIO 03032 | CCRF-CEM/B16/H460: 4~12 μg/mL (except 15) | 3412 | Indian Ocean | 2012[ |
Spiroindimicins G/H (19/20) | SCSIO 03032 | SF-268/MCF-7/HepG2/A549: 10.28~ 33.02 μmol?L –1 | 3412 | South China Sea | 2019[ |
Indinicins A~E (21~25) | SCSIO 03032 | SF-268/MCF-7/H460/HepG2: 9.7~ 44.6 μmol?L –1 | 3412 | Indian Ocean | 2014[ |
Indinicins F/G (26/27) | SCSIO 03032 | — | 3412 | Indian Ocean | 2019[ |
Lynamicins F/G (28/29) | SCSIO 03032 | SF-268/H460/HepG2/MCF-7: >100 μmol?L–1 | 3412 | Indian Ocean | 2014[ |
Heronamides D~F (30~32) | SCSIO 03032 | — | 3412 | Indian Ocean | 2014[ |
Dionemycin (33)/34 | SCSIO 11791 | S. aureus ATCC 29213/MRSA:0.5~2 μg/mL H460/MDA-MB-231/HCT-116/ HepG2/MCF10A: 3.1~11.2 μmol?L –1 | 1765 | South China Sea | 2020[ |
Grincamycins B~F (35~39) | SCSIO LR32 | HepG2/SW-1990/HeLa/H460/MCF-7/ B16: 1.1~31 μmol?L –1 (except 39) | 3370 | South China Sea | 2012[ |
Grincamycins G/H (40/41) | SCSIO LR32 | Jurkat T-cell: 3.0 μmol?L –1 (41) | 3370 | South China Sea | 2012[ |
Grincamycins I~K (42~44) | SCSIO LR32 | MDA?MB?435/MDA?MB?231/H460/ HCT-116/HepG2/MCF10A: 2.43~ 25.87 μmol?L –1 | 3370 | South China Sea | 2018[ |
Marfuraquinocins A~D (45~48) | SCSIO 3406 | S. aureus ATCC 29213/MRSE: 8~64 μg/mL SF268/ MCF-7/H460/HepG2: 3.6~26.9 μmol?L –1 | 3536 | South China Sea | 2013[ |
Phenaziterpenes A~B (49/50) | SCSIO 3406 | A. hydrophila ATCC 7966: 64 μg/mL (49) SF268/MCF-7/HepG2: 9.3~54.5 μmol?L–1 | 3536 | South China Sea | 2013[ |
Sungsanpin (51) | SNJ013 | Inhibitory activity against A549 | 138 | Jeju Island | 2013[ |
Strepsesquitriol (52) | SCSIO 10355 | Inhibitory activity against lipopoly saccharide induced TNFα production | 3412 | Indian Ocean | 2013[ |
Compd. | Source | Bioactivity (MIC or IC50) | Depth/m | Region | Year |
Tetroazolemycins A/B (53/54) | FXJ8.012 | K. pneumoniae/Metal ion-binding activity | NA | Indian Ocean | 2013[ |
Mycemycins C~E (55~57) | FXJ8.012 | Anti-HIV-1 reverse transcriptase activity | NA | Indian Ocean | 2015[ |
Champacyclin (58) | C42 | Erwinia amylovora: 25 μmol?L –1 | 241 | Baltic Sea | 2013[ |
Xiamenmycins C/D (59/60) | M1-94P | WI26: 15 μg/mL/30 μg/mL | 2628 | Pacific | 2013[ |
Desotamides B~D (61~63) | SCSIO ZJ46 | S. pnuemoniae NCTC 7466/S. aureus ATCC 29213/MRSE Shhs-E1: 12.5~32.0 μg/mL | 3536 | South China Sea | 2014[ |
Bafilomycins B1/C1(64/65) | NA4 | Inhibitory activities against Fusarium spp. and R. solani | 1464 | South China Sea | 2015[ |
Marformycins A~F (66~71) | SCSIO 10141 | M. luteus: 0.06~4.0 μg/mL | 1396 | South China Sea | 2014[ |
Marangucyclines A/B (72/73) | SCSIO 11594 | E. faecalisATCC29212: 64.0 μg/mL A594/CNE2/HepG2/MCF-7: 0.24~ 0.56 μmol?L –1 (73) | 2403 | South China Sea | 2015[ |
74/75 | PKU-MA01297 | — | 3202 | Indian Ocean | 2019[ |
76 | SCSIO 04496 | — | 3536 | South China Sea | 2016[ |
Tunicamycin E (77) | SCSIO S15077 | B. thuringiensis/C. albicans CMCC (F) 98001/C. albicans ATCC 96901: 0.5~ 32 μg /mL | 3536 | South China Sea | 2018[ |
Atratumycin (78) | SCSIO ZH16 | M. tuberculosis H37Ra/H37Rv: 3.8/ 14.6 μmol?L –1 | 3536 | South China Sea | 2019[ |
79/80 | OUCMBZ-4112 | — | 2206 | South China Sea | 2016[ |
81 | OUCMDZ-2167 | — | 2061 | South China Sea | 2016[ |
Butenolids 1/2 (82/83) | TP-A0873 | Peroxisome proliferator activated receptor- PPARα agonists | NA | Toyama Bay | 2014[ |
Ahpatinins Ac/Pr (84/85) | ACT232 | Aspartic protease inhibitors: 0.01~0.05 μmol?L–1 | 1174 | Sagami Bay | 2014[ |
Fradiamines A/B (86/87) | MM456M-F7 | Clostridium dif?cile: 8~32 μg/mL | 806 | Sagami Bay | 2017[ |
88~90 | M-157 | HepG2: 51.5 μmol?L –1 | 2000 | Cantabrian Sea | 2018[ |
Anthracimycin B (91) | M-169 | S. aureus MB5393/S. aureus ATCC29213/ E. faecium CL144754/E. faecalisCL144492 0.125~8.0 μmol?L –1 | 1500 | Cantabrian Sea | 2018[ |
Flaviogeranins B~D (92~94) | B9173 | S. aureus/M. smegmatis: 5.0~35.7 μg/mL A549/Hela: 0.4~50.2 μmol?L –1 | NA | Pacific Ocean | 2020[ |
Compd. | Source | Bioactivity (MIC or IC50) | Depth/m | Region | Year |
---|---|---|---|---|---|
Caboxamycin (1) | NTK 937 | B. subtilis/S. lentus: 8~20 μmol?L –1 AGS/ HepG2/MCF-7: 28.6~29.4 μmol?L –1 | 3814 | Canary Basin | 2009[ |
Benzoxacystol (2) | NTK 935 | Inhibitory activity against glycogen synthase kinase-3β | 3814 | Canary Basin | 2011[ |
3'-hydroxycaboxamycin (3) | NTK 937 | — | 3814 | Canary Basin | 2017[ |
Ammosamides A/B (4/5) | CNR-698 | HCT-116: 320 nmol?L–1 | 1618 | Bahamas | 2009[ |
Lobophorins E/F (6/7) | SCSIO 01127 | S. aureus/E. faecalis: 8 μg/mL ( 6) SF-268/ MCF-7/H460: 2.93~6.82 μmol?L –1 (7) | 135 | South China Sea | 2011[ |
Lobophorins G (8) | MS100061 | BCG: 1.56 μg/mL B. subtilis: 3.125 μg/mL M. tuberculosisH37Rv: 16 μg/mL | NA | South China Sea | 2013[ |
Lobophorins H/I (9/10) | 12A35 | B. subtilisCMCC 63501: 1.57 μg/mL (9) 50 μg/mL ( 10) | 2134 | South China Sea | 2013[ |
Lobophorins J (11) | 12A35 | — | 2134 | South China Sea | 2015[ |
Lobophorin K (12) | M-207 | S. aureus: 40~80 μg/mL MiaPaca-2/ MCF-7/THLE-2: 6.3~34.0 μmol?L –1 | 180 | Cantabrian Sea | 2017[ |
Lobophorin L/M (13/14) | 4506 | M. luteus/B. huringiensis: 4~8 μg/mL (13) | NA | South China Sea | 2020[ |
Spiroindimicins A~D (15~18) | SCSIO 03032 | CCRF-CEM/B16/H460: 4~12 μg/mL (except 15) | 3412 | Indian Ocean | 2012[ |
Spiroindimicins G/H (19/20) | SCSIO 03032 | SF-268/MCF-7/HepG2/A549: 10.28~ 33.02 μmol?L –1 | 3412 | South China Sea | 2019[ |
Indinicins A~E (21~25) | SCSIO 03032 | SF-268/MCF-7/H460/HepG2: 9.7~ 44.6 μmol?L –1 | 3412 | Indian Ocean | 2014[ |
Indinicins F/G (26/27) | SCSIO 03032 | — | 3412 | Indian Ocean | 2019[ |
Lynamicins F/G (28/29) | SCSIO 03032 | SF-268/H460/HepG2/MCF-7: >100 μmol?L–1 | 3412 | Indian Ocean | 2014[ |
Heronamides D~F (30~32) | SCSIO 03032 | — | 3412 | Indian Ocean | 2014[ |
Dionemycin (33)/34 | SCSIO 11791 | S. aureus ATCC 29213/MRSA:0.5~2 μg/mL H460/MDA-MB-231/HCT-116/ HepG2/MCF10A: 3.1~11.2 μmol?L –1 | 1765 | South China Sea | 2020[ |
Grincamycins B~F (35~39) | SCSIO LR32 | HepG2/SW-1990/HeLa/H460/MCF-7/ B16: 1.1~31 μmol?L –1 (except 39) | 3370 | South China Sea | 2012[ |
Grincamycins G/H (40/41) | SCSIO LR32 | Jurkat T-cell: 3.0 μmol?L –1 (41) | 3370 | South China Sea | 2012[ |
Grincamycins I~K (42~44) | SCSIO LR32 | MDA?MB?435/MDA?MB?231/H460/ HCT-116/HepG2/MCF10A: 2.43~ 25.87 μmol?L –1 | 3370 | South China Sea | 2018[ |
Marfuraquinocins A~D (45~48) | SCSIO 3406 | S. aureus ATCC 29213/MRSE: 8~64 μg/mL SF268/ MCF-7/H460/HepG2: 3.6~26.9 μmol?L –1 | 3536 | South China Sea | 2013[ |
Phenaziterpenes A~B (49/50) | SCSIO 3406 | A. hydrophila ATCC 7966: 64 μg/mL (49) SF268/MCF-7/HepG2: 9.3~54.5 μmol?L–1 | 3536 | South China Sea | 2013[ |
Sungsanpin (51) | SNJ013 | Inhibitory activity against A549 | 138 | Jeju Island | 2013[ |
Strepsesquitriol (52) | SCSIO 10355 | Inhibitory activity against lipopoly saccharide induced TNFα production | 3412 | Indian Ocean | 2013[ |
Compd. | Source | Bioactivity (MIC or IC50) | Depth/m | Region | Year |
Tetroazolemycins A/B (53/54) | FXJ8.012 | K. pneumoniae/Metal ion-binding activity | NA | Indian Ocean | 2013[ |
Mycemycins C~E (55~57) | FXJ8.012 | Anti-HIV-1 reverse transcriptase activity | NA | Indian Ocean | 2015[ |
Champacyclin (58) | C42 | Erwinia amylovora: 25 μmol?L –1 | 241 | Baltic Sea | 2013[ |
Xiamenmycins C/D (59/60) | M1-94P | WI26: 15 μg/mL/30 μg/mL | 2628 | Pacific | 2013[ |
Desotamides B~D (61~63) | SCSIO ZJ46 | S. pnuemoniae NCTC 7466/S. aureus ATCC 29213/MRSE Shhs-E1: 12.5~32.0 μg/mL | 3536 | South China Sea | 2014[ |
Bafilomycins B1/C1(64/65) | NA4 | Inhibitory activities against Fusarium spp. and R. solani | 1464 | South China Sea | 2015[ |
Marformycins A~F (66~71) | SCSIO 10141 | M. luteus: 0.06~4.0 μg/mL | 1396 | South China Sea | 2014[ |
Marangucyclines A/B (72/73) | SCSIO 11594 | E. faecalisATCC29212: 64.0 μg/mL A594/CNE2/HepG2/MCF-7: 0.24~ 0.56 μmol?L –1 (73) | 2403 | South China Sea | 2015[ |
74/75 | PKU-MA01297 | — | 3202 | Indian Ocean | 2019[ |
76 | SCSIO 04496 | — | 3536 | South China Sea | 2016[ |
Tunicamycin E (77) | SCSIO S15077 | B. thuringiensis/C. albicans CMCC (F) 98001/C. albicans ATCC 96901: 0.5~ 32 μg /mL | 3536 | South China Sea | 2018[ |
Atratumycin (78) | SCSIO ZH16 | M. tuberculosis H37Ra/H37Rv: 3.8/ 14.6 μmol?L –1 | 3536 | South China Sea | 2019[ |
79/80 | OUCMBZ-4112 | — | 2206 | South China Sea | 2016[ |
81 | OUCMDZ-2167 | — | 2061 | South China Sea | 2016[ |
Butenolids 1/2 (82/83) | TP-A0873 | Peroxisome proliferator activated receptor- PPARα agonists | NA | Toyama Bay | 2014[ |
Ahpatinins Ac/Pr (84/85) | ACT232 | Aspartic protease inhibitors: 0.01~0.05 μmol?L–1 | 1174 | Sagami Bay | 2014[ |
Fradiamines A/B (86/87) | MM456M-F7 | Clostridium dif?cile: 8~32 μg/mL | 806 | Sagami Bay | 2017[ |
88~90 | M-157 | HepG2: 51.5 μmol?L –1 | 2000 | Cantabrian Sea | 2018[ |
Anthracimycin B (91) | M-169 | S. aureus MB5393/S. aureus ATCC29213/ E. faecium CL144754/E. faecalisCL144492 0.125~8.0 μmol?L –1 | 1500 | Cantabrian Sea | 2018[ |
Flaviogeranins B~D (92~94) | B9173 | S. aureus/M. smegmatis: 5.0~35.7 μg/mL A549/Hela: 0.4~50.2 μmol?L –1 | NA | Pacific Ocean | 2020[ |
Compd. | Source | Activity (MIC or IC50) | Region | Time |
---|---|---|---|---|
Chaxalactins A~C (95~97) | C34 | S. aureus: <1 μg/mL L. monocytogenes/ B. subtilis: 3~6 μg/mL | Atacama | 2011[ |
Chaxamycins A~D (98~101) | C34 | S. aureusATCC 25923: 0.05 μg/mL ( 101) MRSA: <1 μg/mL ( 101) | Atacama | 2011[ |
Atacamycins A~C (102~104) | C38 | R.solanacearum/PDE-4B2 Enzyme inhibitor: 1.30~4.07 μmol?L –1/antiproliferative | Atacama | 2011[ |
Abenquines A~D (105~109) | DB634 | Enzyme inhibitor for phosphodiesterase type 4b | Atacama | 2011[ |
Luteoride D (110)/Pseurotin G (111) | C34+MR2012 | — | Atacama | 2017[ |
Asenjonamides A~C (112~114) | KNN 42.f | S. aureus/B. subtilis/E. coli/E. faecalis/M. smegmatis: 1.8~17.3 μg/mL | Atacama | 2018[ |
Chaxapeptin (115) | C58 | Inhibitory activity against A549 | Atacama | 2015[ |
Leepeptin (116) | C34T | — | Atacama | 2019[ |
Huascopeptin (117) | HST28T | — | Atacama | 2020[ |
118 | WAB9 | Pseudomonas aeruginosa IPA1: 10 μg/mL | Saharan | 2015[ |
Pyridine-2,5-diacetamide (119) | DA3-7 | E. coliATCC 10536/C.neoformansATCC 90113: 31.25 μg/mL | Saudi Arabian | 2018[ |
Grincamycins L~N (120~122) | XZHG99 T | A549/H157/MCF-7/MDA-MB-231/ HepG2: 1.92~9.12 μmol?L –1 | Color desert | 2018[ |
Compd. | Source | Activity (MIC or IC50) | Region | Time |
---|---|---|---|---|
Chaxalactins A~C (95~97) | C34 | S. aureus: <1 μg/mL L. monocytogenes/ B. subtilis: 3~6 μg/mL | Atacama | 2011[ |
Chaxamycins A~D (98~101) | C34 | S. aureusATCC 25923: 0.05 μg/mL ( 101) MRSA: <1 μg/mL ( 101) | Atacama | 2011[ |
Atacamycins A~C (102~104) | C38 | R.solanacearum/PDE-4B2 Enzyme inhibitor: 1.30~4.07 μmol?L –1/antiproliferative | Atacama | 2011[ |
Abenquines A~D (105~109) | DB634 | Enzyme inhibitor for phosphodiesterase type 4b | Atacama | 2011[ |
Luteoride D (110)/Pseurotin G (111) | C34+MR2012 | — | Atacama | 2017[ |
Asenjonamides A~C (112~114) | KNN 42.f | S. aureus/B. subtilis/E. coli/E. faecalis/M. smegmatis: 1.8~17.3 μg/mL | Atacama | 2018[ |
Chaxapeptin (115) | C58 | Inhibitory activity against A549 | Atacama | 2015[ |
Leepeptin (116) | C34T | — | Atacama | 2019[ |
Huascopeptin (117) | HST28T | — | Atacama | 2020[ |
118 | WAB9 | Pseudomonas aeruginosa IPA1: 10 μg/mL | Saharan | 2015[ |
Pyridine-2,5-diacetamide (119) | DA3-7 | E. coliATCC 10536/C.neoformansATCC 90113: 31.25 μg/mL | Saudi Arabian | 2018[ |
Grincamycins L~N (120~122) | XZHG99 T | A549/H157/MCF-7/MDA-MB-231/ HepG2: 1.92~9.12 μmol?L –1 | Color desert | 2018[ |
Compd. | Streptomyces sp. | Activity (MIC or IC50) | Region | Time |
---|---|---|---|---|
Ohmyungsamycins A/B (123/124) | SNJ042 | M. tuberculosis H37Rv: 33.3/108.3 nmol?L–1, HCT-116/A549/SNΜ-638/ MDA-MB-231: 359~816 nmol?L–1 (123) | Korean volcanic | 2013[ |
Pontemazines A/B (125/126) | ΜT1123 | Protective effect on HT-22 mouse hippocampal neuronal cells | Korean volcanic | 2015[ |
Ulleungdin (127) | KCB13F003 | Inhibitory activity against A549 | Korean volcanic | 2018[ |
Donghaesulfins A/B (128/129) | SΜD119 | Induced quinone reductase activity/ antiangiogenesis | Korean volcanic | 2019[ |
Donghaecyclinones A~C (130~132) | SUD119 | HCT116/MDA-MB231/SNU638/A549/ SK-HEP1: 6.0~28.9 μnmol?L –1 | Korean volcanic | 2020[ |
Compd. | Streptomyces sp. | Activity (MIC or IC50) | Region | Time |
---|---|---|---|---|
Ohmyungsamycins A/B (123/124) | SNJ042 | M. tuberculosis H37Rv: 33.3/108.3 nmol?L–1, HCT-116/A549/SNΜ-638/ MDA-MB-231: 359~816 nmol?L–1 (123) | Korean volcanic | 2013[ |
Pontemazines A/B (125/126) | ΜT1123 | Protective effect on HT-22 mouse hippocampal neuronal cells | Korean volcanic | 2015[ |
Ulleungdin (127) | KCB13F003 | Inhibitory activity against A549 | Korean volcanic | 2018[ |
Donghaesulfins A/B (128/129) | SΜD119 | Induced quinone reductase activity/ antiangiogenesis | Korean volcanic | 2019[ |
Donghaecyclinones A~C (130~132) | SUD119 | HCT116/MDA-MB231/SNU638/A549/ SK-HEP1: 6.0~28.9 μnmol?L –1 | Korean volcanic | 2020[ |
Compd. | Source | Activity (MIC or IC50) | Region | Time |
---|---|---|---|---|
Nitrosporeusines A/B (133/134) | NitrosporeusCQT14-24 | Inhibit H1N1 virus | Arctic | 2013[ |
135/136 | CavourensisYY01-17 | — | Antarctic | 2013[ |
Nitrosporeunols A~G (137~143) | nitrosporeus YBH10-5 | — | Arctic | 2014[ |
Arcticoside (144) C-1027 chromophore-V (145) | ART5 | MDA-MB231/HCT-116: 0.9~2.7 μmol?L –1 (94) | Arctic | 2014[ |
146~148 | 623F | — | Arctic | 2015[ |
149 | NJES13 | — | Antarctic | 2015[ |
Antartin (150) | SCO736 | A549/H1299/U87 | Antarctic | 2018[ |
Cyclamenols B~D (151~153) | OUCMDZ-4348 | N87: 10.8 μmol?L –1 (151) | Antarctic | 2019[ |
Cyclamenols E~F (154~155) | OUCMDZ-4348 | N87: 9.8 μmol?L –1 (154) | Antarctic | 2020[ |
Compd. | Source | Activity (MIC or IC50) | Region | Time |
---|---|---|---|---|
Nitrosporeusines A/B (133/134) | NitrosporeusCQT14-24 | Inhibit H1N1 virus | Arctic | 2013[ |
135/136 | CavourensisYY01-17 | — | Antarctic | 2013[ |
Nitrosporeunols A~G (137~143) | nitrosporeus YBH10-5 | — | Arctic | 2014[ |
Arcticoside (144) C-1027 chromophore-V (145) | ART5 | MDA-MB231/HCT-116: 0.9~2.7 μmol?L –1 (94) | Arctic | 2014[ |
146~148 | 623F | — | Arctic | 2015[ |
149 | NJES13 | — | Antarctic | 2015[ |
Antartin (150) | SCO736 | A549/H1299/U87 | Antarctic | 2018[ |
Cyclamenols B~D (151~153) | OUCMDZ-4348 | N87: 10.8 μmol?L –1 (151) | Antarctic | 2019[ |
Cyclamenols E~F (154~155) | OUCMDZ-4348 | N87: 9.8 μmol?L –1 (154) | Antarctic | 2020[ |
[1] |
Castro, J. F.; Razmilic, V.; Gomez-Escribano, J. P.; Andrews, B.; Asenjo, J.; Bibb, M. Antonie Van Leeuwenhoek 2018, 111, 1433.
doi: 10.1007/s10482-018-1034-8 |
[2] |
Procopio, R. E.; Silva, I. R.; Martins, M. K.; Azevedo, J. L.; Araujo, J. M. Braz. J. Infect. Dis. 2012, 16, 466.
doi: 10.1016/j.bjid.2012.08.014 |
[3] |
Berdy, J. J. Antibiot. (Tokyo) 2005, 58, 1.
doi: 10.1038/ja.2005.1 |
[4] |
Chen, S.; Kinney, W. A.; Van Lanen, S. World J. Microbiol. Biotechnol. 2017,33.
|
[5] |
Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2020, 83, 770.
doi: 10.1021/acs.jnatprod.9b01285 |
[6] |
Mogul, R.; Vaishampayan, P.; Bashir, M.; McKay, C. P.; Schubert, K.; Bornaccorsi, R.; Gomez, E.; Tharayil, S.; Payton, G.; Capra, J.; Andaya, J.; Bacon, L.; Bargoma, E.; Black, D.; Boos, K.; Brant, M.; Chabot, M.; Chau, D.; Cisneros, J.; Chu, G.; Curnutt, J.; DiMizio, J.; Engelbrecht, C.; Gott, C.; Harnoto, R.; Hovanesian, R.; Johnson, S.; Lavergne, B.; Martinez, G.; Mans, P.; Morales, E.; Oei, A.; Peplow, G.; Piaget, R.; Ponce, N.; Renteria, E.; Rodriguez, V.; Rodriguez, J.; Santander, M.; Sarmiento, K.; Scheppelmann, A.; Schroter, G.; Sexton, D.; Stephenson, J.; Symer, K.; Russo-Tait, T.; Weigel, B.; Wilhelm, M. B. Front. Microbiol. 2017, 8, 1974.
doi: 10.3389/fmicb.2017.01974 |
[7] |
Lewis, K. Cell 2020, 181, 29.
doi: S0092-8674(20)30233-6 pmid: 32197064 |
[8] |
Berdy, J. J. Antibiot. (Tokyo) 2012, 65, 385.
doi: 10.1038/ja.2012.27 |
[9] |
Hutchings, M. I.; Truman, A. W.; Wilkinson, B. Curr. Opin. Microbiol. 2019, 51, 72.
doi: 10.1016/j.mib.2019.10.008 |
[10] |
Sayed, A. M.; Hassan, M. H. A.; Alhadrami, H. A.; Hassan, H. M.; Goodfellow, M.; Rateb, M. E. J. Appl. Microbiol. 2020, 128, 630.
doi: 10.1111/jam.14386 |
[11] |
Kamjam, M.; Sivalingam, P.; Deng, Z.; Hong, K. Front. Microbiol. 2017,8.
|
[12] |
Yang, Z.; He, J.; Wei, X.; Ju, J.; Ma, J. Appl. Microbiol. Biotechnol. 2020, 104, 67.
doi: 10.1007/s00253-019-10227-0 |
[13] |
Zhao, Y.-C.; Zhu, T.-H.; Zhu, W.-M.; Chin. J. Org. Chem. 2013, 33, 1195. (in Chinese).
doi: 10.6023/cjoc201304039 |
(赵成英, 朱统汉, 朱伟明, 有机化学, 2013, 33, 1195.)
doi: 10.6023/cjoc201304039 |
|
[14] |
Rateb, M. E.; Ebel, R.; Jaspars, M. Antonie Van Leeuwenhoek 2018, 111, 1467.
doi: 10.1007/s10482-018-1030-z |
[15] |
Sivalingam, P.; Hong, K.; Pote, J.; Prabakar, K. Int. J. Microbiol. 2019,5283948.
|
[16] |
Skropeta, D. Nat. Prod. Rep. 2008, 25, 1131.
doi: 10.1039/b808743a |
[17] |
Access on December 7, MarinLit Database, RSC. Available online: http://pubs.rsc.org/marinlit/.
|
[18] |
Schupp, P. J.; Kohlert-Schupp, C.; Whitefield, S.; Engemann, A.; Rohde, S.; Hemscheidt, T.; Pezzuto, J. M.; Kondratyuk, T. P.; Park, E.-J.; Marler, L.; Rostama, B.; Wright, A. D. Nat. Prod. Commun. 2009, 4, 1717.
pmid: 20120114 |
[19] |
Skropeta, D.; Wei, L. Nat. Prod. Rep. 2014, 31, 999.
doi: 10.1039/C3NP70118B |
[20] |
Weiss, C.; Figueras, E.; Borbely, A. N.; Sewald, N. J. Pept. Sci. 2017, 23, 514.
doi: 10.1002/psc.v23.7-8 |
[21] |
Carroll, A. R.; Copp, B. R.; Davis, R. A.; Keyzers, R. A.; Prinsep, M. R. Nat. Prod. Rep. 2020, 37, 175.
doi: 10.1039/C9NP00069K |
[22] |
Song, Y.; Yang, J.; Yu, J.; Li, J.; Yuan, J.; Wong, N.-K.; Ju, J. J. Antibiot. 2020, 73, 542.
doi: 10.1038/s41429-020-0307-4 |
[23] |
Hohmann, C.; Schneider, K.; Bruntner, C.; Irran, E.; Nicholson, G.; Bull, A. T.; Jones, A. L.; Brown, R.; Stach, J. E.; Goodfellow, M.; Beil, W.; Kramer, M.; Imhoff, J. F.; Sussmuth, R. D.; Fiedler, H. P. J. Antibiot. (Tokyo) 2009, 62, 99.
doi: 10.1038/ja.2008.24 |
[24] |
Nachtigall, J.; Schneider, K.; Bruntner, C.; Bull, A. T.; Goodfellow, M.; Zinecker, H.; Imhoff, J. F.; Nicholson, G.; Irran, E.; Sussmuth, R. D.; Fiedler, H. P. J. Antibiot. (Tokyo) 2011, 64, 453.
doi: 10.1038/ja.2011.26 |
[25] |
Ueki, M.; Ueno, K.; Miyadoh, S.; Abe, K.; Shibata, K.; Taniguchi, M.; Oi, S. J. Antibiot. (Tokyo) 1993, 46, 1089.
doi: 10.7164/antibiotics.46.1089 |
[26] |
Sao, S.; Kajiura, T.; Noguchi, M.; Takehana, K.; Kobayashi, T.; Tsuji, T. J. Antibiot. 2001, 54, 102.
doi: 10.7164/antibiotics.54.102 |
[27] |
Sommer, P. S.; Almeida, R. C.; Schneider, K.; Beil, W.; Sussmuth, R. D.; Fiedler, H. P. J. Antibiot. (Tokyo) 2008, 61, 683.
doi: 10.1038/ja.2008.97 |
[28] |
Losada, A. A.; Cano-Prieto, C.; Garcia-Salcedo, R.; Brana, A. F.; Mendez, C.; Salas, J. A.; Olano, C. Microb. Biotechnol. 2017, 10, 873.
doi: 10.1111/mbt2.2017.10.issue-4 |
[29] |
Hughes, C. C.; MacMillan, J. B.; Gaudencio, S. P.; Jensen, P. R.; Fenical, W. Angew. Chem. Int. Ed. 2009, 48, 725.
doi: 10.1002/anie.v48:4 |
[30] |
Wei, R. -B. X. , T.; Li, J.; Jiang, Z.-D.; Paul, R. J.; William, F. Bioorg. Med. Chem. Lett. 1999, 9, 2003.
pmid: 10450970 |
[31] |
Wei, R. B.; Xi, T.; Li, J.; Wang, P.; Li, F. C.; Lin, Y. C.; Qin, S. Mar. Drugs 2011, 9, 359.
doi: 10.3390/md9030359 |
[32] |
Chen, C.; Wang, J.; Guo, H.; Hou, W.; Yang, N.; Ren, B.; Liu, M.; Dai, H.; Liu, X.; Song, F.; Zhang, L. Appl. Microbiol. Biotechnol. 2013, 97, 3885.
doi: 10.1007/s00253-012-4681-0 |
[33] |
Vieweg, L.; Reichau, S.; Schobert, R.; Leadlay, P. F.; Sussmuth, R. D. Nat. Prod. Rep. 2014, 31, 1554.
doi: 10.1039/c4np00015c pmid: 24965099 |
[34] |
Pan, H. Q.; Zhang, S. Y.; Wang, N.; Li, Z. L.; Hua, H. M.; Hu, J. C.; Wang, S. J. Mar. Drugs 2013, 11, 3891.
doi: 10.3390/md11103891 |
[35] |
Song, C.-F. P, H.-Q.; Hu, J.-C. Chin. J. Antibiot. 2015, 40, 721. (in Chinese).
|
(宋春凤, 潘华奇, 胡江春, 中国抗生素杂志, 2015, 40, 721.)
|
|
[36] |
Brana, A. F.; Sarmiento-Vizcaino, A.; Osset, M.; Perez-Victoria, I.; Martin, J.; de Pedro, N.; de la Cruz, M.; Diaz, C.; Vicente, F.; Reyes, F.; Garcia, L. A.; Blanco, G. Mar. Drugs 2017, 15, 144.
doi: 10.3390/md15050144 |
[37] |
Luo, M.; Tang, L.; Dong, Y.; Huang, H.; Deng, Z.; Sun, Y. Nat. Prod. Res. 2020, 27, 1.
doi: 10.1080/14786419.2011.643549 |
[38] |
Prudhomme, M. Eur. J. Med. Chem. 2003, 38, 123.
pmid: 12620658 |
[39] |
Du, Y. L.; Ryan, K. S. Curr. Opin. Chem. Biol. 2016, 31, 74.
doi: 10.1016/j.cbpa.2016.01.017 |
[40] |
Bharate, S. B.; Sawant, S. D.; Singh, P. P.; Vishwakarma, R. A. Chem. Rev. 2013, 113, 6761.
doi: 10.1021/cr300410v |
[41] |
Dowlati, A.; Posey, J.; Ramanathan, R. K.; Rath, L.; Fu, P.; Chak, A.; Krishnamurthi, S.; Brell, J.; Ingalls, S.; Hoppel, C. L.; Ivy, P.; Remick, S. C. Cancer Chemother. Pharmacol. 2009, 65, 73.
doi: 10.1007/s00280-009-1005-x |
[42] |
Fischer, T.; Stone, R. M.; Deangelo, D. J.; Galinsky, I.; Estey, E.; Lanza, C.; Fox, E.; Ehninger, G.; Feldman, E. J.; Schiller, G. J.; Klimek, V. M.; Nimer, S. D.; Gilliland, D. G.; Dutreix, C.; Huntsman-Labed, A.; Virkus, J.; Giles, F. J. J. Clin. Oncol. 2010, 28, 4339.
doi: 10.1200/JCO.2010.28.9678 |
[43] |
Stone, R. M.; Mandrekar, S.; Sanford, B. L.; Geyer, S.; Bloomfield, C. D.; Dohner, K.; Thiede, C.; Marcucci, G.; Lo-Coco, F.; Klisovic, R. B.; Wei, A.; Sierra, J.; Sanz, M. A.; Brandwein, J. M.; de Witte, T.; Niederwieser, D.; Appelbaum, F. R.; Medeiros, B. C.; Tallman, M. S.; Krauter, J.; Schlenk, R. F.; Ganser, A.; Serve, H.; Ehninger, G.; Amadori, S.; Larson, R. A.; Dohner, H. Blood 2015,126.
|
[44] |
Zhang, W.; Liu, Z.; Li, S.; Yang, T.; Zhang, Q.; Ma, L.; Tian, X.; Zhang, H.; Huang, C.; Zhang, S.; Ju, J.; Shen, Y.; Zhang, C. Org. Lett. 2012, 14, 3364.
doi: 10.1021/ol301343n |
[45] |
Liu, Z.; Ma, L.; Zhang, L.; Zhang, W.; Zhu, Y.; Chen, Y.; Zhang, W.; Zhang, C. Org. Biomol. Chem. 2019, 17, 1053.
doi: 10.1039/C8OB02775G |
[46] |
Zhang, W.; Ma, L.; Li, S.; Liu, Z.; Chen, Y.; Zhang, H.; Zhang, G.; Zhang, Q.; Tian, X.; Yuan, C.; Zhang, S.; Zhang, W.; Zhang, C. J. Nat. Prod. 2014, 77, 1887.
doi: 10.1021/np500362p |
[47] |
Carro, L.; Golinska, P.; Nouioui, I.; Bull, A. T.; Igual, J. M.; Andrews, B. A.; Klenk, H.-P.; Goodfellow, M. Int. J. Syst. Evol. Microbiol. 2019, 69, 3426.
doi: 10.1099/ijsem.0.003634 |
[48] |
Busarakam, K.; Brown, R.; Bull, A. T.; Tan, G. Y.; Zucchi, T. D.; da Silva, L. J.; de Souza, W. R.; Goodfellow, M. Antonie Van Leeuwenhoek 2016, 109, 319.
doi: 10.1007/s10482-015-0635-8 |
[49] |
Zhang, W.; Li, S.; Zhu, Y.; Chen, Y.; Chen, Y.; Zhang, H.; Zhang, G.; Tian, X.; Pan, Y.; Zhang, S.; Zhang, W.; Zhang, C. J. Nat. Prod. 2014, 77, 388.
doi: 10.1021/np400665a |
[50] |
Huang, H.; Yang, T.; Ren, X.; Liu, J.; Song, Y.; Sun, A.; Ma, J.; Wang, B.; Zhang, Y.; Huang, C.; Zhang, C.; Ju, J. J. Nat. Prod. 2012, 75, 202.
doi: 10.1021/np2008335 |
[51] |
Zhu, X.; Duan, Y.; Cui, Z.; Wang, Z.; Li, Z.; Zhang, Y.; Ju, J.; Huang, H. J. Antibiot. (Tokyo) 2017, 70, 819.
doi: 10.1038/ja.2017.17 |
[52] |
Lai, Z.; Yu, J.; Ling, H.; Song, Y.; Yuan, J.; Ju, J.; Tao, Y.; Huang, H. Planta Med. 2018, 84, 201.
doi: 10.1055/s-0043-119888 |
[53] |
Yao, Y.; Sun, S.; Cao, M.; Mao, M.; He, J.; Gai, Q.; Qin, Y.; Yao, X.; Lu, H.; Chen, F.; Wang, W.; Luo, M.; Zhang, H.; Huang, H.; Ju, J.; Bian, X. W.; Wang, Y. ACS Chem. Neurosci. 2020, 11, 2256.
doi: 10.1021/acschemneuro.0c00206 |
[54] |
Pan, H.-Q.; Zhang, S.-Y.; Wang, N.; Li, Z.-L.; Hua, H.-M.; Hu, J.-C.; Wang, S.-J. Mar. Drugs 2013, 11, 3891.
doi: 10.3390/md11103891 |
[55] |
Um, S.; Kim, Y. J.; Kwon, H.; Wen, H.; Kim, S. H.; Kwon, H. C.; Park, S.; Shin, J.; Oh, D. C. J. Nat. Prod. 2013, 76, 873.
doi: 10.1021/np300902g |
[56] |
Yang, X. W.; Peng, K.; Liu, Z.; Zhang, G. Y.; Li, J.; Wang, N.; Steinmetz, A.; Liu, Y. J. Nat. Prod. 2013, 76, 2360.
doi: 10.1021/np400923c |
[57] |
Liu, N.; Shang, F.; Xi, L.; Huang, Y. Mar. Drugs 2013, 11, 1524.
doi: 10.3390/md11051524 |
[58] |
Liu, N.; Song, F.; Shang, F.; Huang, Y. Mar. Drugs 2015, 13, 6247.
doi: 10.3390/md13106247 |
[59] |
Pesic, A.; Baumann, H. I.; Kleinschmidt, K.; Ensle, P.; Wiese, J.; Sussmuth, R. D.; Imhoff, J. F. Mar. Drugs 2013, 11, 4834.
doi: 10.3390/md11124834 |
[60] |
You, Z. Y.; Wang, Y. H.; Zhang, Z. G.; Xu, M. J.; Xie, S. J.; Han, T. S.; Feng, L.; Li, X. G.; Xu, J. Mar. Drugs 2013, 11, 4035.
doi: 10.3390/md11104035 |
[61] |
Sun, C.; Yang, Z.; Zhang, C.; Liu, Z.; He, J.; Liu, Q.; Zhang, T.; Ju, J.; Ma, J. Org. Lett. 2019, 21, 1453.
doi: 10.1021/acs.orglett.9b00208 |
[62] |
Wang, C.; Xu, Y.-J.; Huang, X.-L.; Hao, J.-J.; Zhu, W.-M.; Chin. Marine Drugs 2016, 35, 1. (in Chinese).
|
(王衬, 徐亚娟, 黄小龙, 郝杰杰, 朱伟明, 中国海洋药物, 2016, 35, 1.)
|
|
[63] |
Wang, C.; Wang, L.; Fan, J.; Sun, K.; Zhu, W. Chin. J. Org. Chem. 2017, 37, 658. (in Chinese).
doi: 10.6023/cjoc201609021 |
(王聪, 王立平, 范杰, 孙坤来, 朱伟明, 有机化学, 2017, 37, 658.)
doi: 10.6023/cjoc201609021 |
|
[64] |
Song, Y.; Li, Q.; Liu, X.; Chen, Y.; Zhang, Y.; Sun, A.; Zhang, W.; Zhang, J.; Ju, J. J. Nat. Prod. 2014, 77, 1937.
doi: 10.1021/np500399v |
[65] |
Pan, H. Q.; Yu, S. Y.; Song, C. F.; Wang, N.; Hua, H. M.; Hu, J. C.; Wang, S. J. J. Microbiol. Biotechnol. 2015, 25, 353.
doi: 10.4014/jmb.1407.07025 |
[66] |
Zhou, X.; Huang, H. B.; Li, J.; Song, Y. X.; Jiang, R. W.; Liu, J.; Zhang, S.; Hua, Y.; Ju, J. H. Tetrahedron 2014, 70, 7795.
doi: 10.1016/j.tet.2014.02.007 |
[67] |
Liu, N.; Song, F.; Shang, F.; Huang, Y. Mar. Drugs 2015, 13, 6247.
doi: 10.3390/md13106247 |
[68] |
Ma, X. -Y. W. ,G.-W.; Zhang, Z.-Y.; Geng, T.-T.; Sun, X.-X.; Yang, D.-H.; Tang, X.-X.; Ma, M. J. Chin. Chem. Pharm. Soc. 2019, 28, 835. (in Chinese).
|
(马学洋, 王贵阳, 张中义, 耿彤彤, 孙晓旭, 杨东辉, 汤熙祥, 马明, 药物科学杂志, 2019, 28, 835.)
|
|
[69] |
Bao, J.; He, F.; Li, Y.; Fang, L.; Wang, K.; Song, J.; Zhou, J.; Li, Q.; Zhang, H. J. Antibiot. (Tokyo) 2018, 71, 1018.
doi: 10.1038/s41429-018-0096-1 |
[70] |
Schmitz, J.; Gilberg, E.; Loser, R.; Bajorath, J.; Bartz, U.; Gutschow, M. Bioorg. Med. Chem. 2019, 27, 1.
|
[71] |
Takehana, Y.; Umekita, M.; Hatano, M.; Kato, C.; Sawa, R.; Igarashi, M. J. Antibiot. (Tokyo) 2017, 70, 611.
doi: 10.1038/ja.2017.26 |
[72] |
Ortiz-Lopez, F. J.; Alcalde, E.; Sarmiento-Vizcaino, A.; Diaz, C.; Cautain, B.; Garcia, L. A.; Blanco, G.; Reyes, F. Mar. Drugs 2018, 16, 371.
doi: 10.3390/md16100371 |
[73] |
Jang, K. H.; Nam, S. J.; Locke, J. B.; Kauffman, C. A.; Beatty, D. S.; Paul, L. A.; Fenical, W. Angew. Chem. Int. Ed. 2013, 52, 7822.
doi: 10.1002/anie.v52.30 |
[74] |
Rodriguez, V.; Martin, J.; Sarmiento-Vizcaino, A.; de la Cruz, M.; Garcia, L. A.; Blanco, G.; Reyes, F. Mar. Drugs 2018, 16, 406.
doi: 10.3390/md16110406 |
[75] |
Shen, X.; Wang, X.; Huang, T.; Deng, Z.; Lin, S. Biomolecules 2020, 10, 684.
doi: 10.3390/biom10050684 |
[76] |
Niu, S.; Li, S.; Chen, Y.; Tian, X.; Zhang, H.; Zhang, G.; Zhang, W.; Yang, X.; Zhang, S.; Ju, J.; Zhang, C. J. Antibiot. (Tokyo) 2011, 64, 711.
doi: 10.1038/ja.2011.78 |
[77] |
Luo, M.; Tang, G.; Ju, J.; Lu, L.; Huang, H. Nat. Prod. Res. 2016, 30, 138.
doi: 10.1080/14786419.2015.1045509 |
[78] |
Wang, T.; Jiang, Y.; Ma, K. X.; Li, Y. Q.; Huang, R.; Xie, X. S.; Wu, S. H. Chem. Biodiversity 2014, 11, 929.
doi: 10.1002/cbdv.201300321 |
[79] |
Rateb, M. E.; Houssen, W. E.; Harrison, W. T.; Deng, H.; Okoro, C. K.; Asenjo, J. A.; Andrews, B. A.; Bull, A. T.; Goodfellow, M.; Ebel, R.; Jaspars, M. J. Nat. Prod. 2011, 74, 1965.
doi: 10.1021/np200470u |
[80] |
Cha, J. W.; Lee, S. I.; Kim, M. C.; Thida, M.; Lee, J. W.; Park, J. S.; Kwon, H. C. Bioorg. Med. Chem. Lett. 2015, 25, 5083.
doi: 10.1016/j.bmcl.2015.10.019 |
[81] |
Chen, Y.; Neilson, J. W.; Kushwaha, P.; Maier, R. M.; Barberán, A. ISME J. 2020.
|
[82] |
Wyman, S. K.; Avila-Herrera, A.; Nayfach, S.; Pollard, K. S. PLoS One 2018, 13, e0205749.
doi: 10.1371/journal.pone.0205749 |
[83] |
Galand, P. E.; Pereira, O.; Hochart, C.; Auguet, J. C.; Debroas, D. ISME J. 2018, 12, 2470.
doi: 10.1038/s41396-018-0158-1 |
[84] |
Velez, P.; Espinosa-Asuar, L.; Figueroa, M.; Gasca-Pineda, J.; Aguirre-von-Wobeser, E.; Eguiarte, L. E.; Hernandez-Monroy, A.; Souza, V. Front. Microbiol. 2018, 9, 1755.
doi: 10.3389/fmicb.2018.01755 |
[85] |
Ziemert, N.; Alanjary, M.; Weber, T. Nat. Prod. Rep. 2016, 33, 988.
doi: 10.1039/c6np00025h pmid: 27272205 |
[86] |
Gomez-Escribano, J. P.; Castro, J. F.; Razmilic, V.; Chandra, G.; Andrews, B.; Asenjo, J. A.; Bibb, M. J. BMC Genomics 2015,16.
|
[87] |
Wakefield, J.; Hassan, H. M.; Jaspars, M.; Ebel, R.; Rateb, M. E. Front. Microbiol. 2017,8.
|
[88] |
Baltz, R. H. J. Ind. Microbiol. Biotechnol. 2017, 44, 573.
doi: 10.1007/s10295-016-1815-x |
[89] |
Schulz, D.; Beese, P.; Ohlendorf, B.; Erhard, A.; Zinecker, H.; Dorador, C.; Imhoff, J. F. J. Antibiot. (Tokyo) 2011, 64, 763.
doi: 10.1038/ja.2011.87 |
[90] |
Rateb, M. E.; Houssen, W. E.; Arnold, M.; Abdelrahman, M. H.; Deng, H.; Harrison, W. T.; Okoro, C. K.; Asenjo, J. A.; Andrews, B. A.; Ferguson, G.; Bull, A. T.; Goodfellow, M.; Ebel, R.; Jaspars, M. J. Nat. Prod. 2011, 74, 1491.
doi: 10.1021/np200320u |
[91] |
Nachtigall, J.; Kulik, A.; Helaly, S.; Bull, A. T.; Goodfellow, M.; Asenjo, J. A.; Maier, A.; Wiese, J.; Imhoff, J. F.; Sussmuth, R. D.; Fiedler, H. P. J. Antibiot. (Tokyo) 2011, 64, 775.
doi: 10.1038/ja.2011.96 |
[92] |
Santhanam, R.; Okoro, C. K.; Rong, X.; Huang, Y.; Bull, A. T.; Weon, H. Y.; Andrews, B. A.; Asenjo, J. A.; Goodfellow, M. Int. J. Syst. Evol. Microbiol. 2012, 62, 2680.
doi: 10.1099/ijs.0.038463-0 |
[93] |
Kurapova, A. I.; Zenova, G. M.; Sudnitsyn, I. I.; Kizilova, A. K.; Manucharova, N. A.; Norovsuren, Z.; Zvyagintsev, D. G. Microbiology 2012, 81, 98.
doi: 10.1134/S0026261712010092 |
[94] |
Meklat, A.; Sabaou, N.; Zitouni, A.; Mathieu, F.; Lebrihi, A. Appl. Environ. Microbiol. 2011, 77, 6710.
doi: 10.1128/AEM.00326-11 |
[95] |
Ibeyaima, A.; Singh, A. K.; Lal, R.; Gupta, S.; Goodfellow, M.; Sarethy, I. P. Antonie Van Leeuwenhoek 2018, 111, 2141.
doi: 10.1007/s10482-018-1106-9 pmid: 29804223 |
[96] |
Abdelkader, M. S. A.; Philippon, T.; Asenjo, J. A.; Bull, A. T.; Goodfellow, M.; Ebel, R.; Jaspars, M.; Rateb, M. E. J. Antibiot. (Tokyo) 2018, 71, 425.
doi: 10.1038/s41429-017-0012-0 |
[97] |
Bull, A. T.; Asenjo, J. A. Antonie Van Leeuwenhoek 2013, 103, 1173.
doi: 10.1007/s10482-013-9911-7 |
[98] |
Cortes-Abayay, C.; Dorador, C.; Schumann, P.; Andrews, B.; Asenjo, J.; Nouioui, I. Int. J. Syst. Evol. Microbiol. 2019, 69, 2315.
doi: 10.1099/ijsem.0.003468 |
[99] |
Okoro, C. K.; Brown, R.; Jones, A. L.; Andrews, B. A.; Asenjo, J. A.; Goodfellow, M.; Bull, A. T. Antonie Van Leeuwenhoek 2009, 95, 121.
doi: 10.1007/s10482-008-9295-2 |
[100] |
Elsayed, S. S.; Trusch, F.; Deng, H.; Raab, A.; Prokes, I.; Busarakam, K.; Asenjo, J. A.; Andrews, B. A.; van West, P.; Bull, A. T.; Goodfellow, M.; Yi, Y.; Ebel, R.; Jaspars, M.; Rateb, M. E. J. Org. Chem. 2015, 80, 10252.
doi: 10.1021/acs.joc.5b01878 |
[101] |
Gomez-Escribano, J. P.; Castro, J. F.; Razmilic, V.; Jarmusch, S. A.; Saalbach, G.; Ebel, R.; Jaspars, M.; Andrews, B.; Asenjo, J. A.; Bibb, M. J. Appl. Environ. Microbiol. 2019,85.
|
[102] |
Cortes-Albayay, C.; Jarmusch, S. A.; Trusch, F.; Ebel, R.; Andrews, B. A.; Jaspars, M.; Asenjo, J. A. J. Org. Chem. 2020, 85, 1661.
doi: 10.1021/acs.joc.9b02231 |
[103] |
Yekkour, A.; Meklat, A.; Bijani, C.; Toumatia, O.; Errakhi, R.; Lebrihi, A.; Mathieu, F.; Zitouni, A.; Sabaou, N. Lett. Appl. Microbiol. 2015, 60, 589.
doi: 10.1111/lam.12412 |
[104] |
Nithya, K.; Muthukumar, C.; Biswas, B.; Alharbi, N. S.; Kadaikunnan, S.; Khaled, J. M.; Dhanasekaran, D. Microbiol. Res. 2018, 207, 116.
doi: 10.1016/j.micres.2017.11.012 |
[105] |
Srinivas, T. N.; Anil Kumar, P.; Tank, M.; Sunil, B.; Poorna, M.; Zareena, B.; Shivaji, S. Int. J. Syst. Evol. Microbiol. 2015, 65, 2391.
doi: 10.1099/ijs.0.000269 |
[106] |
Zhang, S.; Gui, C.; Shao, M.; Kumar, P. S.; Huang, H.; Ju, J. Nat. Prod. Res. 2018, 34, 1499.
doi: 10.1080/14786419.2018.1493736 |
[107] |
Meena, B.; Anburajan, L.; Vinithkumar, N. V.; Kirubagaran, R.; Dharani, G. Microb. Pathog. 2019, 132, 129.
doi: 10.1016/j.micpath.2019.04.043 |
[108] |
Sottorff, I.; Wiese, J.; Imhoff, J. F. Int. Microbiol. 2019, 22, 377.
doi: 10.1007/s10123-019-00061-9 |
[109] |
Kelly, L. C.; Cockell, C. S.; Thorsteinsson, T.; Marteinsson, V.; Stevenson, J. Microb. Ecol. 2014, 68, 504.
doi: 10.1007/s00248-014-0432-3 |
[110] |
Santhanam, R.; Rong, X.; Huang, Y.; Andrews, B. A.; Asenjo, J. A.; Goodfellow, M. Antonie Van Leeuwenhoek 2013, 103, 367.
doi: 10.1007/s10482-012-9816-x pmid: 23011007 |
[111] |
Kay, S.; Pathom-aree, W.; Cheeptham, N. Chiang. Mai J. Sci. 2013, 40, 26.
|
[112] |
Um, S.; Choi, T. J.; Kim, H.; Kim, B. Y.; Kim, S. H.; Lee, S. K.; Oh, K. B.; Shin, J.; Oh, D. C. J. Org. Chem. 2013, 78, 12321.
doi: 10.1021/jo401974g |
[113] |
Hur, J.; Jang, J.; Sim, J.; Son, W. S.; Ahn, H. C.; Kim, T. S.; Shin, Y. H.; Lim, C.; Lee, S.; An, H.; Kim, S. H.; Oh, D. C.; Jo, E. K.; Jang, J.; Lee, J.; Suh, Y. G. Angew. Chem. Int. Ed. 2018, 57, 3069.
doi: 10.1002/anie.201711286 |
[114] |
Kim, T. S.; Shin, Y. H.; Lee, H. M.; Kim, J. K.; Choe, J. H.; Jang, J. C.; Um, S.; Jin, H. S.; Komatsu, M.; Cha, G. H.; Chae, H. J.; Oh, D. C.; Jo, E. K. Sci. Rep. 2017, 7, 3431.
doi: 10.1038/s41598-017-03477-3 |
[115] |
Wakefield, J.; Hassan, H. M.; Jaspars, M.; Ebel, R.; Rateb, M. E. Front Microbiol 2017, 8, 1284.
doi: 10.3389/fmicb.2017.01284 pmid: 28744271 |
[116] |
Bae, M.; An, J. S.; Bae, E. S.; Oh, J.; Park, S. H.; Lim, Y.; Ban, Y. H.; Kwon, Y.; Cho, J. C.; Yoon, Y. J.; Lee, S. K.; Shin, J.; Oh, D. C. Org. Lett. 2019, 21, 3635.
doi: 10.1021/acs.orglett.9b01057 |
[117] |
Bae, M.; An, J. S.; Hong, S.-H.; Bae, E. S.; Chung, B.; Kwon, Y.; Hong, S.; Oh, K.-B.; Shin, J.; Lee, S. K.; Oh, D.-C. Mar. Drugs 2020,18.
|
[118] |
Son, S.; Jang, M.; Lee, B.; Hong, Y. S.; Ko, S. K.; Jang, J. H.; Ahn, J. S. J. Nat. Prod. 2018, 81, 2205.
doi: 10.1021/acs.jnatprod.8b00449 |
[119] |
Zeng, Y.-X.; Chen, B.; Zou, Y.; Zheng, T.-L. J. Microbiol. 2008, 48, 695. (in Chinese).
doi: 10.1007/s12275-010-0320-6 |
(曾胤新, 陈波, 邹扬, 郑天凌, 微生物学报, 2008, 48, 695.)
|
|
[120] |
Tripathi, V. C.; Satish, S.; Horam, S.; Raj, S.; lal, A.; Arockiaraj, J.; Pasupuleti, M.; Dikshit, D. K. Polar Sci. 2018, 18, 147.
doi: 10.1016/j.polar.2018.04.006 |
[121] |
Tian, Y.; Li, Y. L.; Zhao, F. C. Mar. Drugs 2017,15.
|
[122] |
Silva, L. J.; Crevelin, E. J.; Souza, D. T.; Lacerda-Junior, G. V.; de Oliveira, V. M.; Ruiz, A.; Rosa, L. H.; Moraes, L. A. B.; Melo, I. S. Sci. Rep. 2020, 10, 13870.
doi: 10.1038/s41598-020-69786-2 |
[123] |
Yang, A.-G.; Si, L.-L.; Shi, Z.-P.; Tian, L.; Liu, D.; Zhou, D.-M. Proksch, P.; Lin, W.-H. Org. Lett. 2013, 15, 5366.
doi: 10.1021/ol4026809 |
[124] |
Su, S. S.; Tian, L.; Chen, G.; Li, Z. Q.; Xu, W. F.; Pei, Y. H. J. Asian Nat. Prod. Res. 2013, 15, 265.
doi: 10.1080/10286020.2012.762764 |
[125] |
Philkhana, S. C.; Jachak, G. R.; Gunjal, V. B.; Dhage, N. M.; Bansode, A. H.; Reddy, D. S. Tetrahedron Lett. 2015, 56, 1252.
doi: 10.1016/j.tetlet.2015.01.143 |
[126] |
Moon, K.; Ahn, C. H.; Shin, Y.; Won, T. H.; Ko, K.; Lee, S. K.; Oh, K. B.; Shin, J.; Nam, S. I.; Oh, D. C. Mar. Drugs 2014, 12, 2526.
doi: 10.3390/md12052526 |
[127] |
Mei, D.-H. Master's Thesis, Shanghai Ocean University, Shanghai, 2015. (in Chinese).
|
(梅东海, 硕士论文,上海海洋大学, 上海, 2015.)
|
|
[128] |
Jiang, S.-P. Master's Thesis, Shanghai Ocean University, Shanghai 2015. (in Chinese).
|
(江昇平, 硕士论文,上海海洋大学, 上海, 2015.)
|
|
[129] |
Kim, D.; Lee, E. J.; Lee, J.; Leutou, A. S.; Shin, Y. H.; Choi, B.; Hwang, J. S.; Hahn, D.; Choi, H. Chin, J.; Cho, S. J.; Hong, Y. D.; Ko, J.; Seong, C. N.; Maloney, K. N.; Oh, D. C.; Yang, I.; Hwang, H.; Nam, S. J. Mar. Drugs 2018, 16, 130.
|
[130] |
Shen, J.; Fan, Y.; Zhu, G.; Chen, H.; Zhu, W.; Fu, P. Org. Lett. 2019, 21, 4816.
doi: 10.1021/acs.orglett.9b01710 |
[131] |
Shen, J. J.; Wang, J.; Chen, H.; Wang, Y.; Zhu, W. M.; Fu, P. Org. Chem. Front. 2020, 7, 310.
doi: 10.1039/C9QO01215J |
[132] |
Liu, D.; Yang, A.; Wu, C.; Guo, P.; Proksch, P.; Lin, W. Bioorg. Med. Chem. Lett. 2014, 24, 5288.
doi: 10.1016/j.bmcl.2014.09.049 |
[133] |
Kim, D.; Lee, E. J.; Lee, J.; Leutou, A. S.; Shin, Y. H.; Choi, B.; Hwang, J. S.; Hahn, D.; Choi, H.; Chin, J.; Cho, S. J.; Hong, Y. D.; Ko, J.; Seong, C. N.; Maloney, K. N.; Oh, D. C.; Yang, I.; Hwang, H.; Nam, S. J. Mar. Drugs 2018,16.
|
[134] |
Tan, B.; Chen, S.; Zhang, Q.; Chen, Y.; Zhu, Y.; Khan, I.; Zhang, W.; Zhang, C. Org. Lett. 2020, 22, 1062.
doi: 10.1021/acs.orglett.9b04597 |
[135] |
Liu, W.; Jannu, V. G.; Liu, Z.; Zhang, Q.; Jiang, X.; Ma, L.; Zhang, W.; Zhang, C.; Zhu, Y. Org. Biomol. Chem. 2020, 18, 3649.
doi: 10.1039/D0OB00617C |
[136] |
He, J.; Wei, X.; Yang, Z.; Li, Y.; Ju, J.; Ma, J. Mar. Drugs 2020, 18, 216.
doi: 10.3390/md18040216 |
[1] | 丁卫忠, 张炳文, 薛彦青, 林雨琦, 汤志军, 王婧, 杨文超, 王晓峰, 刘文. 禾谷镰刀菌中一个新的聚酮类化合物[J]. 有机化学, 2023, 43(9): 3319-3322. |
[2] | 吴秀蓉, 肖朝江, 沈怡, 汤红霞, 朱俊逸, 姜北. 植物来源抗疟倍半萜类天然产物研究(1972~2022)[J]. 有机化学, 2023, 43(8): 2764-2789. |
[3] | 光明甲, 姜硕, 朱宝玉, 张如松, 王鲲鹏, 王明慧, 许良忠. 新型吡咯-2-甲酸及其衍生物的设计、合成和杀虫、杀螨活性[J]. 有机化学, 2023, 43(8): 2895-2904. |
[4] | 何金燕, 田富云, 吴青青, 郑月明, 陈玉婷, 许海燕, 金正盛, 詹丽, 程新强, 顾跃玲, 高召兵, 赵桂龙. 基于[3.3.3]螺桨烷的电压门控钙离子通道α2δ亚基配体的合成和生物活性研究[J]. 有机化学, 2023, 43(6): 2226-2238. |
[5] | 王启帆, 张源泉, 幸丽, 周远香, 龚晨裕, 何帮灿, 张念, 吴拥军, 薛伟. 含1,2,4-三唑并[3,4-b]-1,3,4-噻二唑杨梅素衍生物的设计、合成及生物活性研究[J]. 有机化学, 2023, 43(4): 1525-1536. |
[6] | 孙洋, 王杨, 张紫婵, 钱烨, 骆桂成, 周贝贝, 缪丽沙, 陈雨蝶, 戴红, 徐宝琳, 吴正光. 新型含1,3,4-噁二唑基团的吡唑肟衍生物的合成与生物活性[J]. 有机化学, 2023, 43(4): 1584-1590. |
[7] | 张怀远, 许诺, 唐蓉萍, 石星丽. 手性高价碘试剂诱导的不对称去芳构化反应研究进展[J]. 有机化学, 2023, 43(11): 3784-3805. |
[8] | 孔祥凯, 张逸鹏, 党菱婧, 陈文, 张洪彬. 吲哚生物碱Vindoline与Vindorosine的合成研究进展[J]. 有机化学, 2022, 42(9): 2728-2744. |
[9] | 李明琼, 黄惠彬, 陈玉婵, 李赛妮, 刘昭明, 王彦林, 章卫民, 高晓霞. 深海来源篮状菌Talaromyces indigoticus FS688中聚酮化合物及其细胞毒性[J]. 有机化学, 2022, 42(9): 2975-2980. |
[10] | 姚良才, 桂敬汉. 自由基多烯环化反应在天然产物全合成中的应用[J]. 有机化学, 2022, 42(9): 2703-2714. |
[11] | 高冉, 田伟生. 苦楝甾醇及2α,3α,20R-三羟基孕甾-16β-甲基丙烯酸酯的合成[J]. 有机化学, 2022, 42(8): 2521-2526. |
[12] | 石发胜, 王圣文, 徐欢, 路星星, 杨新玲, 孙腾达, 王长凯, 张晓鸣, 杨青, 凌云. 新型缩氨基硫脲类化合物的设计、合成及杀菌活性研究[J]. 有机化学, 2022, 42(7): 2106-2116. |
[13] | 颜雅倩, 王浩鑫, 李瑶瑶. 新多环特特拉姆酸大环内酰胺3-Hydroxycombamide I的发现[J]. 有机化学, 2022, 42(5): 1557-1561. |
[14] | 雍灿, 李芸, 毕涛, 陈国凤, 郑东霞, 王周玉, 张园园. 基于D-半乳糖衍生的小分子半乳糖凝集素抑制剂的合成及活性研究进展[J]. 有机化学, 2022, 42(5): 1307-1325. |
[15] | 罗洁, 颜雅倩, 王浩鑫, 李瑶瑶. 新多环大环内酰胺Clifednamide K的发现[J]. 有机化学, 2022, 42(4): 1224-1228. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||