有机化学 ›› 2022, Vol. 42 ›› Issue (1): 257-265.DOI: 10.6023/cjoc202105025 上一篇 下一篇
研究论文
收稿日期:
2021-05-13
修回日期:
2021-08-03
发布日期:
2021-09-02
通讯作者:
孙京, 周明东
基金资助:
Qisheng Gao, Qi Jing, Yang Chen, Jing Sun(), Mingdong Zhou()
Received:
2021-05-13
Revised:
2021-08-03
Published:
2021-09-02
Contact:
Jing Sun, Mingdong Zhou
Supported by:
文章分享
报道了一种银催化的N-苯基丙烯酰胺与N-取代草氨酸类衍生物的脱羧氨甲酰化反应, 通过分子间的氨甲酰自由基加成/环化过程, 能够以良好的产率制备一系列3,3-二取代的氨甲酰官能化的吲哚酮类化合物. 该反应具有广泛的官能团兼容性和良好的底物适用范围.
高启升, 荆祺, 陈阳, 孙京, 周明东. N-苯基丙烯酰胺与草氨酸衍生物的脱羧氨甲酰化反应研究[J]. 有机化学, 2022, 42(1): 257-265.
Qisheng Gao, Qi Jing, Yang Chen, Jing Sun, Mingdong Zhou. Decarboxylative Amidation of Acrylamides with Oxamic Acids[J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 257-265.
Entry | Catalyst (mol%) | Oxidant (equiv.) | Solvent | Yieldb/% |
---|---|---|---|---|
1 | AgNO3 (10) | K2S2O8 (2) | CH3CN | 28 |
2 | AgNO3 (10) | K2S2O8 (2) | H2O | 46 |
3 | AgNO3 (10) | K2S2O8 (2) | THF | <5 |
4 | AgNO3 (10) | K2S2O8 (2) | DCM | <5 |
5 | AgNO3 (10) | K2S2O8 (2) | DMSO | <5 |
6 | AgNO3 (10) | K2S2O8 (2) | CH3OH | 15 |
7 | AgNO3 (10) | K2S2O8 (2) | DMF | 31 |
8 | AgNO3 (10) | K2S2O8 (2) | CH3CN/H2O (V∶V=3∶1) | 46 |
9 | AgNO3 (10) | K2S2O8 (2) | CH3CN/H2O (V∶V=1∶3) | 54 |
10 | AgNO3 (10) | K2S2O8 (2) | CH3CN/H2O (V∶V=1∶1) | 60 |
11 | AgOAc (10) | K2S2O8 (2) | CH3CN/H2O (V∶V=1∶1) | 64 |
12 | Ag2O (10) | K2S2O8 (2) | CH3CN/H2O (V∶V=1∶1) | 60 |
13 | Ag2CO3 (10) | K2S2O8 (2) | CH3CN/H2O (V∶V=1∶1) | 76 |
14 | CuBr (10) | K2S2O8 (2) | CH3CN/H2O (V∶V=1∶1) | Trace |
15 | Cu(OAc)2 (10) | K2S2O8 (2) | CH3CN/H2O (V∶V=1∶1) | Trace |
16 | Ag2CO3 (10) | Na2S2O8 (2) | CH3CN/H2O (V∶V=1∶1) | 48 |
17 | Ag2CO3 (10) | (NH4)2S2O8 (2) | CH3CN/H2O (V∶V=1∶1) | 10 |
18 | Ag2CO3 (10) | TBHP (2) | CH3CN/H2O (V∶V=1∶1) | nr |
19 | Ag2CO3 (10) | K2S2O8 (1.5) | CH3CN/H2O (V∶V=1∶1) | 86 |
20 | Ag2CO3 (10) | K2S2O8 (1) | CH3CN/H2O (V∶V=1∶1) | 72 |
21 | Ag2CO3 (5) | K2S2O8 (1.5) | CH3CN/H2O (V∶V=1∶1) | 85 (82)c |
22d | Ag2CO3 (5) | K2S2O8 (1.5) | CH3CN/H2O (V∶V=1∶1) | 76 |
23e | Ag2CO3 (5) | K2S2O8 (1.5) | CH3CN/H2O (V∶V=1∶1) | 76 |
24f | Ag2CO3 (5) | K2S2O8 (1.5) | CH3CN/H2O (V∶V=1∶1) | 39 |
25 | — | K2S2O8 (1.5) | CH3CN/H2O (V∶V=1∶1) | 54 |
26 | Ag2CO3 (5) | — | CH3CN/H2O (V∶V=1∶1) | Trace |
Entry | Catalyst (mol%) | Oxidant (equiv.) | Solvent | Yieldb/% |
---|---|---|---|---|
1 | AgNO3 (10) | K2S2O8 (2) | CH3CN | 28 |
2 | AgNO3 (10) | K2S2O8 (2) | H2O | 46 |
3 | AgNO3 (10) | K2S2O8 (2) | THF | <5 |
4 | AgNO3 (10) | K2S2O8 (2) | DCM | <5 |
5 | AgNO3 (10) | K2S2O8 (2) | DMSO | <5 |
6 | AgNO3 (10) | K2S2O8 (2) | CH3OH | 15 |
7 | AgNO3 (10) | K2S2O8 (2) | DMF | 31 |
8 | AgNO3 (10) | K2S2O8 (2) | CH3CN/H2O (V∶V=3∶1) | 46 |
9 | AgNO3 (10) | K2S2O8 (2) | CH3CN/H2O (V∶V=1∶3) | 54 |
10 | AgNO3 (10) | K2S2O8 (2) | CH3CN/H2O (V∶V=1∶1) | 60 |
11 | AgOAc (10) | K2S2O8 (2) | CH3CN/H2O (V∶V=1∶1) | 64 |
12 | Ag2O (10) | K2S2O8 (2) | CH3CN/H2O (V∶V=1∶1) | 60 |
13 | Ag2CO3 (10) | K2S2O8 (2) | CH3CN/H2O (V∶V=1∶1) | 76 |
14 | CuBr (10) | K2S2O8 (2) | CH3CN/H2O (V∶V=1∶1) | Trace |
15 | Cu(OAc)2 (10) | K2S2O8 (2) | CH3CN/H2O (V∶V=1∶1) | Trace |
16 | Ag2CO3 (10) | Na2S2O8 (2) | CH3CN/H2O (V∶V=1∶1) | 48 |
17 | Ag2CO3 (10) | (NH4)2S2O8 (2) | CH3CN/H2O (V∶V=1∶1) | 10 |
18 | Ag2CO3 (10) | TBHP (2) | CH3CN/H2O (V∶V=1∶1) | nr |
19 | Ag2CO3 (10) | K2S2O8 (1.5) | CH3CN/H2O (V∶V=1∶1) | 86 |
20 | Ag2CO3 (10) | K2S2O8 (1) | CH3CN/H2O (V∶V=1∶1) | 72 |
21 | Ag2CO3 (5) | K2S2O8 (1.5) | CH3CN/H2O (V∶V=1∶1) | 85 (82)c |
22d | Ag2CO3 (5) | K2S2O8 (1.5) | CH3CN/H2O (V∶V=1∶1) | 76 |
23e | Ag2CO3 (5) | K2S2O8 (1.5) | CH3CN/H2O (V∶V=1∶1) | 76 |
24f | Ag2CO3 (5) | K2S2O8 (1.5) | CH3CN/H2O (V∶V=1∶1) | 39 |
25 | — | K2S2O8 (1.5) | CH3CN/H2O (V∶V=1∶1) | 54 |
26 | Ag2CO3 (5) | — | CH3CN/H2O (V∶V=1∶1) | Trace |
[1] |
(a) Galliford, C. V.; Scheidt, K. A. Angew. Chem. Int. Ed. 2007, 46, 8748.
doi: 10.1002/(ISSN)1521-3773 |
(b) Zhao, J.-F.; Duan, X.-H.; Peng, L.-N. Chin. J. Org. Chem. 2017, 37, 2498. (in Chinese)
|
|
(赵景峰, 段新华, 郭丽娜, 有机化学, 2017, 37, 2498.)
doi: 10.6023/cjoc201705003 |
|
(c) Mai, W.-P.; Wang, J.-T.; Yang, L.-R.; Yuan, J.-W.; Mao, P.; Xiao, Y.-P.; Qu, L.-B. Chin. J. Org. Chem. 2014, 34, 1958. (in Chinese)
doi: 10.6023/cjoc201405006 |
|
(买文鹏, 王继涛, 杨亮茹, 袁金伟, 毛璞, 肖咏梅, 屈凌波, 有机化学, 2014, 34, 1958.)
doi: 10.6023/cjoc201405006 |
|
[2] |
(a) Millemaggi, A.; Taylor, R. J. K. Eur. J. Org. Chem. 2010, 4527.
|
(b) Leptosin, D.; Takahashi, C.; Numata, A.; Ito, Y.; Matsumura, E.; Araki, H.; Iwaki, H.; Kushida, K. J. Chem. Soc., erkin Trans. 1 1994, 1859.
|
|
(c) Ma, J.; Hecht, S. M. Chem. Commun. 2004, 1190.
|
|
[3] |
(a) Wong, H.; Yu, P.; Yick, C. Pure Appl. Chem. 1999, 71, 1041.
doi: 10.1351/pac199971061041 |
(b) Rassu, G.; Zanardi, F.; Battistini, L.; Casriaghi, G. Chem. Soc. Rev. 2000, 29, 109.
doi: 10.1039/a900200f |
|
(c) Xiao, F.; Luo, Y.; Lü, W.; Tang, J. Chin. J. Org. Chem. 2009, 29, 459. (in Chinese)
|
|
(肖锋, 罗宇, 吕伟, 汤杰, 有机化学, 2009, 29, 459.)
|
|
(d) Tian, K.; Meng, J.; Gan, Y.-Y; Li, X.-Q.; Wu, S.-Q.; Chen, J.; Li, W.; Qi, Y.-Y.; Hu, W.-N.; Wang, Z.-C.; Ouyang, G.-P. Chin. J. Org. Chem. 2018, 38, 2657. (in Chinese)
doi: 10.6023/cjoc201803051 |
|
(田坤, 孟娇, 甘宜远, 李小琴, 巫受群, 陈洁, 李文, 漆亚云, 胡伟男, 王贞超, 欧阳贵平, 2018, 38, 2657.)
|
|
(e) Boddy, A.; Bull, J. Org. Chem. Front. 2021, 8, 1026.
doi: 10.1039/D0QO01085E |
|
(f) Nakao, Y. Chem. Rev. 2021, 121, 327.
doi: 10.1021/acs.chemrev.0c00301 |
|
[4] |
(a) Jossang, A.; Jossang, P.; Hadi, H.; Sévenet, T.; Bodo, B. J. Org. Chem. 1991, 56, 6527.
doi: 10.1021/jo00023a016 |
(b) Stratmann, K.; Moore, R.; Bonjouklian, R.; Deeter, J.; Patterson, G.; Stacey, S.; Smith, C.; Smitka, T. J. Am. Chem. Soc. 1994, 116, 9935.
doi: 10.1021/ja00101a015 |
|
(c) Anderton, N.; Cockrum, P.; Colegate, S.; Edgar, J.; Flower, K.; Vit, I.; Willing, R. Phytochemistry 1998, 48, 437.
doi: 10.1016/S0031-9422(97)00946-1 |
|
(d) Shi, J.; Yu, J.; Chen, X.; Xu, R. Acta Pharmacol. Sin. 2003, 24, 97.
|
|
[5] |
(a) Zhou, F.; Liu, Y.; Zhou, J. Adv. Synth. Catal. 2010, 352, 1381.
doi: 10.1002/adsc.v352:9 |
(b) Klein, J.; Taylor, R. Eur. J. Org. Chem. 2011, 6821.
|
|
(c) Xiao, Y.-L.; Zhou, Y.; Wang, J.; Wang, J.-X.; Liu, H. Chin. J. Org. Chem. 2015, 35, 2035. (in Chinese)
doi: 10.6023/cjoc201504045 |
|
(肖永龙, 周宇, 王江, 王进欣, 柳红, 有机化学, 2015, 35, 2035.)
doi: 10.6023/cjoc201504045 |
|
[6] |
(a) Cui, C. B.; Kakeya, H.; Osada, H. Tetrahedron 1996, 52, 12651.
doi: 10.1016/0040-4020(96)00737-5 pmid: 16028899 |
(b) Cui, C. B.; Kakeya, H.; Osada, H. J. Antibiot. 1996, 49, 832.
pmid: 16028899 |
|
(c) Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P.; Tomita, Y.; Parrish, D.; Deschamps, J.; Wang, S. J. Am. Chem. Soc. 2005, 127, 10130.
pmid: 16028899 |
|
(d) Yu, Q.; Guo, P.; Jian, J.; Chen, Y.; Xu, J. Chem. Commun. 2018, 54, 1125.
doi: 10.1039/C7CC08938D pmid: 16028899 |
|
[7] |
Kitamura, H.; Kato, A.; Esaki, T. Eur. J. Pharmacol. 2001, 418, 225.
pmid: 11343694 |
[8] |
(a) Abdukader;, A.; Zhang, Y.-H.; Zhang, Z.-P.; Liu, C.-J. Chin. J. Org. Chem. 2016, 36, 875. (in Chinese)
|
(阿布力米提·阿布都卡德尔, 张永红, 张增鹏, 刘晨江, 有机化学, 2016, 36, 875.)
|
|
(b) Liu, Y.-J.; Lin, L.-Q.; Han, Y.-H.; Zhang, X. Chin. J. Org. Chem. 2019, 39, 2705. (in Chinese)
|
|
(刘颖杰, 林立青, 韩莹徽, 张鑫, 有机化学, 2019, 39, 2705.)
doi: 10.6023/cjoc201904014 |
|
(c) Wang, L.-L.; Zhang, Z.-Y.; Han, H.-B.; Liu, X.-L.; Bu, Z.-W.; Wang, Q.-L. Chin. J. Org. Chem. 2021, 41, 12. (in Chinese)
doi: 10.6023/cjoc202007045 |
|
(王乐乐, 张子莹, 韩华彬, 刘雄利, 卜战伟, 王琪琳, 有机化学, 2021, 41, 12.)
doi: 10.6023/cjoc202007045 |
|
[9] |
(a) Xu, S.-M.; Chen, J.-Q.; Liu, D.; Bao, Y.; Liang, Y.-M.; Xu, P.-F. Org. Chem. Front. 2017, 4, 1331.
doi: 10.1039/C7QO00012J pmid: 24108594 |
(b) Zheng, L.-W.; Huang, H.-L.; Yang, C.; Xia, W.-J. Org. Lett. 2015, 17, 1034.
doi: 10.1021/acs.orglett.5b00144 pmid: 24108594 |
|
(c) Li, X.; Xu, X.-S.; Hu, P.-Z.; Xiao, X.-Q.; Zhou, C. J. Org. Chem. 2013, 78, 7343.
doi: 10.1021/jo401069d pmid: 24108594 |
|
(d) Shen, T.; Yuan, Y.-Z.; Song, S.; Jiao, N. Chem. Commun. 2014, 50, 4115.
doi: 10.1039/c4cc00401a pmid: 24108594 |
|
(e) Li, Y.-M.; Sun, M.; Wang, H.-L.; Tian, Q.-P.; Yang, S.-D. Angew. Chem., nt. Ed. 2013, 52, 3972.
pmid: 24108594 |
|
(f) Li, Y.-M.; Shen, Y.; Chang, K.-J.; Yang, S.-D. Tetrahedron 2014, 70, 1991.
doi: 10.1016/j.tet.2014.01.065 pmid: 24108594 |
|
(g) Xie, J.; Xu, P.; Li, H.-M.; Xue, Q.-C.; Jin, H.-G.; Cheng, Y.-X.; Zhu, C.-J. Chem. Commun. 2013, 49, 5672.
doi: 10.1039/c3cc42672f pmid: 24108594 |
|
(h) Li, Z.; Zhang, Y.; Zhang, L.; Liu, Z.-Q. Org. Lett. 2014, 16, 382.
doi: 10.1021/ol4032478 pmid: 24108594 |
|
(i) Li, Y.-H.; Wang, J.-J.; Wei, X.-H.; Yang, S.-D. Chin. J. Org. Chem. 2015, 35, 638. (in Chinese)
doi: 10.6023/cjoc201412030 pmid: 24108594 |
|
(李永红, 王君姣, 魏小红, 杨尚东, 有机化学, 2015, 35, 638.)
doi: 10.6023/cjoc201412030 pmid: 24108594 |
|
(j) Zhang, J.; Liu, P.; Sun, P.-P. Chin. J. Org. Chem. 2021, 41, 185. (in Chinese)
doi: 10.6023/cjoc202006010 pmid: 24108594 |
|
(张杰, 刘平, 孙培培, 有机化学, 2021, 41, 185.)
doi: 10.6023/cjoc202006010 pmid: 24108594 |
|
(k) Li, L.; Deng, M.; Zheng, S.-C.; Xiong, Y.-P.; Tan, B.; Liu, X.-Y. Org. Lett. 2014, 16, 504.
doi: 10.1021/ol403391v pmid: 24108594 |
|
(l) Xu, P.; Xie, J.; Xue, Q.-C.; Pan, C.-D.; Cheng, Y.-X.; Zhu, C.-J. Chem.-Eur. J. 2013, 19, 14039.
doi: 10.1002/chem.201302407 pmid: 24108594 |
|
(m) Tang, X.-J.; Thomoson, C.; Dolbier, W. Org. Lett. 2014, 16, 4594.
doi: 10.1021/ol502163f pmid: 24108594 |
|
(n) Wang, J.-Y.; Su, Y.-M.; Yin, F.; Bao, Y.; Zhang, X.; Xu, Y.-M.; Wang, X.-S. Chem. Commun. 2014, 50, 4108.
doi: 10.1039/C3CC49315F pmid: 24108594 |
|
(o) Yang, F.; Klumphu, P.; Liang, Y.-M.; Lipshutz, B. H. Chem. Commun. 2014, 50, 936.
doi: 10.1039/C3CC48131J pmid: 24108594 |
|
(p) Yin, F.; Wang, X.-S. Org. Lett. 2014, 16, 1128.
doi: 10.1021/ol403739w pmid: 24108594 |
|
(q) Matcha, K.; Narayan, R.; Antonchick, A. P. Angew. Chem., nt. Ed. 2013, 52, 7985.
pmid: 24108594 |
|
(r) Shen, T.; Yuan, Y.-Z.; Jiao, N. Chem. Commun. 2014, 50, 554.
doi: 10.1039/C3CC47336H pmid: 24108594 |
|
(s) Chen, J.-R.; Yu, X.-Y.; Xiao, W.-J. Synthesis 2015, 47, 604.
doi: 10.1055/s-00000084 pmid: 24108594 |
|
[10] |
(a) Zhou, M.-B.; Song, R.-J.; Ouyang, X.-H.; Liu, Y.; Wei, W.-T.; Deng, G.-B.; Li, J.-H. Chem. Sci. 2013, 4, 2690.
doi: 10.1039/c3sc50810b |
(b) Correia, V. G.; Abreu, J. C.; Barata, C. A. E.; Andrade, L. H. Org. Lett. 2017, 19, 1060.
doi: 10.1021/acs.orglett.7b00078 |
|
(c) He, Z.-Y.; Guo, J.-Y.; Tian, S.-K. Adv. Synth. Catal. 2018, 360, 1544.
doi: 10.1002/adsc.v360.7 |
|
[11] |
(a) Jatoi, A. H.; Pawar, G. G.; Robert, F.; Landais, Y. Chem. Commun. 2019, 55, 466.
doi: 10.1039/C8CC08326F pmid: 28664204 |
(b) Jing, K.; Cui, P.-C.; Wang, G.-W. Chem. Commun. 2019, 15, 12551.
pmid: 28664204 |
|
(c) Jouffroy, M.; Kong, J. Chem.-Eur. J. 2019, 25, 2217.
doi: 10.1002/chem.201806159 pmid: 28664204 |
|
(d) Pawar, G. G.; Robert, F.; Grau, E.; Cramail, H.; Landais, Y. Chem. Commun. 2018, 54, 9337.
doi: 10.1039/C8CC05462B pmid: 28664204 |
|
(e) Bai, Q.-F.; Jin, C.-G.; He, J.-Y.; Feng, G.-F. Org. Lett. 2018, 20, 2172.
doi: 10.1021/acs.orglett.8b00449 pmid: 28664204 |
|
(f) Fan, H.-Q.; Pan, P.; Zhang, Y.-Q.; Wang, W. Org. Lett. 2018, 20, 7929.
doi: 10.1021/acs.orglett.8b03503 pmid: 28664204 |
|
(g) Petersen, W. F.; Taylor, R. J. K.; Donald, J. R. Org. Lett. 2017, 19, 874.
doi: 10.1021/acs.orglett.7b00022 pmid: 28664204 |
|
(h) Petersen, W. F.; Taylor, R. J. K.; Donald, J. R. Org. Biomol. Chem. 2017, 15, 5831.
doi: 10.1039/c7ob01274h pmid: 28664204 |
|
(i) Cheng, W.-M.; Shang, R.; Yu, H.-Z.; Fu, Y. Chem.-Eur. J. 2015, 21, 13191.
doi: 10.1002/chem.v21.38 pmid: 28664204 |
|
(j) Yuan, M.; Chen, L.; Wang, J.-W.; Chen, S.-J.; Wang, K.-C.; Xue, Y.-B.; Yao, G.-M.; Luo, Z.-W.; Zhang, Y.-G. Org. Lett. 2015, 17, 346.
doi: 10.1021/ol503459s pmid: 28664204 |
|
[12] |
Beck, E.; Grimster, N.; Hatley, R.; Gaunt, M. J. Am. Chem. Soc. 2006, 128, 2528.
doi: 10.1021/ja058141u |
[13] |
(a) Mi, X.; Wang, C.; Huang, M.; Zhang, J.; Wu, Y.; Wu, Y. Org. Lett. 2014, 16, 3356.
doi: 10.1021/ol5013839 |
(b) Yan, K.; Yang, D.; Wei, W.; Wang, F.; Shuai, Y.; Li, Q.; Wang, H. J. Org. Chem. 2015, 80, 1550.
doi: 10.1021/jo502474z |
|
(c) Liu, T.; Ding, Q.; Zong, Q.; Qiu, G. Org. Chem. Front. 2015, 2, 670.
doi: 10.1039/C5QO00029G |
|
[14] |
Suárez-Castillo, O. R.; Meléndez-Rodríguez, M.; Castelán-Duarte, L. E.; Sánchez-Zavala, M.; Rivera-Becerril, E.; Morales-Ríos, M. S.; Joseph-Nathan, P. Tetrahedron: Asymmetry 2009, 20, 2374.
doi: 10.1016/j.tetasy.2009.09.017 |
[1] | 黄华, 李鑫, 苏建科, 宋秋玲. 二氟卡宾参与下从邻乙烯基苯胺出发构建3-取代吲哚酮类化合物[J]. 有机化学, 2023, 43(3): 1146-1156. |
[2] | 赵雪纯, 樊辉, 徐瑶, 廖小铭, 张小祥. PPh3-促进邻炔基硝基苯合成3-羟基-2-吲哚酮[J]. 有机化学, 2023, 43(11): 3997-4002. |
[3] | 巫晓婷, 赵峰, 姬小趁, 黄华文. 可见光辅助无光敏剂串联磺酰化-环化合成吲哚酮[J]. 有机化学, 2022, 42(12): 4323-4331. |
[4] | 马蔚青, 韩莹, 孙晶, 颜朝国. 三组分反应高效合成螺[环戊烷-1,3'-吲哚啉]衍生物[J]. 有机化学, 2021, 41(8): 3180-3191. |
[5] | 刘奕彤, 张茜苑, 苗志伟. C-3位五元螺环吲哚酮衍生物合成方法研究进展[J]. 有机化学, 2021, 41(10): 3965-3982. |
[6] | 田坤, 孟娇, 甘宜远, 李小琴, 巫受群, 陈洁, 李文, 漆亚云, 胡伟男, 王贞超, 欧阳贵平. 含1,3,4-噻二唑、硫醚、酰胺的1,3-二取代吲哚酮衍生物的设计、合成及抗肿瘤活性研究[J]. 有机化学, 2018, 38(10): 2657-2665. |
[7] | 田文艳, 徐松, 梁中卫, 孙德立, 张荣华. 可见光下曙红Y催化的吲哚酮类化合物的合成[J]. 有机化学, 2016, 36(9): 2121-2129. |
[8] | 阿布力米提·阿布都卡德尔, 张永红, 张增鹏, 刘晨江. 基于C—H键官能团化/环化串联策略构建吲哚酮分子骨架的研究进展[J]. 有机化学, 2016, 36(5): 875-888. |
[9] | 盛卫坚, 金城安, 单尚, 贾义霞, 高建荣. 无金属催化N-芳基丙烯酰胺的多氯甲基化/环化反应[J]. 有机化学, 2016, 36(2): 325-329. |
[10] | 郝二军, 蒋小涵, 付丹丹, 王东超, 谢明胜, 渠桂荣, 郭海明. 水溶液中钯催化的Heck/氰基化串联反应合成3-氰甲基吲哚酮[J]. 有机化学, 2016, 36(11): 2746-2751. |
[11] | 高文涛, 兰帅, 郑宏梅, 白仁青卓玛. 含噻唑骨架的吲哚衍生物的有效合成[J]. 有机化学, 2015, 35(1): 144-151. |
[12] | 董超, 谭广慧, 金英学. 基于光诱导单电子转移反应的三环异吲哚酮并环肽的合成[J]. 有机化学, 2014, 34(3): 578-583. |
[13] | 肖 锋 ; 罗 宇* ; 吕 伟 汤 杰. 3-取代吲哚酮类化合物的合成及抗癌活性研究[J]. 有机化学, 2009, 29(03): 459-461. |
[14] | 赖宜生,张奕华,李月珍,季晖,杨茗,丛日刚a. 3-(羟基-p-甲磺酰苯甲撑基)-5-氯-2-吲哚酮-1-羧酰胺类化合物的合成及生物活性研究[J]. 有机化学, 2007, 27(06): 733-738. |
[15] | 徐天图,汪顺义,纪顺俊. 无溶剂条件下合成顺/反3-芳基亚甲基-2,3-二氢-吲哚-2-酮类化合物[J]. 有机化学, 2006, 26(10): 1414-1417. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||