有机化学 ›› 2022, Vol. 42 ›› Issue (4): 1170-1178.DOI: 10.6023/cjoc202110041 上一篇 下一篇
研究论文
张苗苗, 韩波*(), 马豪杰, 赵亮, 王记江, 张玉琦*()
收稿日期:
2021-10-29
修回日期:
2021-11-26
发布日期:
2021-12-15
通讯作者:
韩波, 张玉琦
基金资助:
Miaomiao Zhang, Bo Han(), Haojie Ma, Liang Zhao, Jijiang Wang, Yuqi Zhang()
Received:
2021-10-29
Revised:
2021-11-26
Published:
2021-12-15
Contact:
Bo Han, Yuqi Zhang
Supported by:
文章分享
发展了一种铱/氢硅烷/甲醇的催化体系, 不使用任何外加配体和碱的情况下, 实现了以喹啉化合物为代表的芳香杂环的选择性氢化, 得到了一系列1,2,3,4-四氢喹啉及杂环类化合物. 该反应操作简单, 以廉价且稳定的氢硅烷为氢源, 避免了使用危险易发生爆炸的氢气. 同时, 该体系对溴、氯、氟、酯、羧酸、氰基和硝基等官能团具有良好的兼容性. 该催化体系为制备各种1,2,3,4-四氢喹啉衍生物提供了一种方便、环保、实用的策略.
张苗苗, 韩波, 马豪杰, 赵亮, 王记江, 张玉琦. 以氢硅烷为氢源: 铱催化N-杂环化合物的氢化[J]. 有机化学, 2022, 42(4): 1170-1178.
Miaomiao Zhang, Bo Han, Haojie Ma, Liang Zhao, Jijiang Wang, Yuqi Zhang. Hydrosilanes as Hydrogen Source: Iridium-Catalyzed Hydrogenation of N-Heteroarenes[J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 1170-1178.
Entrya | [Si]—H (equiv.) | Solvent | T/℃ | of 2ab/% |
---|---|---|---|---|
1 | PMHS (4.0) | MeOH | r.t. | 55 |
2 | (EtO)3SiH (4.0) | MeOH | r.t. | 40 |
3 | Et3SiH (4.0) | MeOH | r.t. | 59 |
4 | Ph3SiH (4.0) | MeOH | r.t. | 61 |
5 | Ph2SiH2 (4.0) | MeOH | r.t. | 66 |
6 | PhSiH3 (4.0) | MeOH | r.t. | 74 |
7 | PhSiH3 (4.0) | EtOH | r.t. | 71 |
8 | PhSiH3 (4.0) | iPrOH | r.t. | 46 |
9 | PhSiH3 (4.0) | THF | r.t. | 39 |
10 | PhSiH3 (5.0) | MeOH | r.t. | 71 |
11 | PhSiH3 (3.0) | MeOH | r.t. | 68 |
12 | PhSiH3 (2.0) | MeOH | r.t. | 39 |
13 | PhSiH3 (4.0) | MeOH | 45 | 94 (83)c |
Entrya | [Si]—H (equiv.) | Solvent | T/℃ | of 2ab/% |
---|---|---|---|---|
1 | PMHS (4.0) | MeOH | r.t. | 55 |
2 | (EtO)3SiH (4.0) | MeOH | r.t. | 40 |
3 | Et3SiH (4.0) | MeOH | r.t. | 59 |
4 | Ph3SiH (4.0) | MeOH | r.t. | 61 |
5 | Ph2SiH2 (4.0) | MeOH | r.t. | 66 |
6 | PhSiH3 (4.0) | MeOH | r.t. | 74 |
7 | PhSiH3 (4.0) | EtOH | r.t. | 71 |
8 | PhSiH3 (4.0) | iPrOH | r.t. | 46 |
9 | PhSiH3 (4.0) | THF | r.t. | 39 |
10 | PhSiH3 (5.0) | MeOH | r.t. | 71 |
11 | PhSiH3 (3.0) | MeOH | r.t. | 68 |
12 | PhSiH3 (2.0) | MeOH | r.t. | 39 |
13 | PhSiH3 (4.0) | MeOH | 45 | 94 (83)c |
[1] |
Eds.: de Vries, J. G., Elsevier, C. J. The Handbook of Homogeneous Hydrogenation, Wiley-VCH, Weinheim, Germany, 2008.
|
[2] |
(a) He, Y.; Fan, Q. Chin. J. Org. Chem. 2019, 39, 3310. (in Chinese)
doi: 10.6023/cjoc201900005 pmid: 31074625 |
( 何艳梅, 范青华, 有机化学, 2019, 39, 3310.)
pmid: 31074625 |
|
(b) Han, B.; Ma, P.; Cong, X.; Chen, H.; Zeng, X. J. Am. Chem. Soc. 2019, 141, 9018.
doi: 10.1021/jacs.9b03328 pmid: 31074625 |
|
(c) Gu, X.; Li, X.; Xie, J.; Zhou, Q. Acta Chim. Sinica 2019, 77, 598. (in Chinese)
doi: 10.6023/A19050166 pmid: 31074625 |
|
( 顾雪松, 李校根, 谢建华, 周其林, 化学学报, 2019, 77, 598.)
pmid: 31074625 |
|
(d) Liu, Y.; Dong, X.-Q.; Zhang, X. Chin. J. Org. Chem. 2020, 40, 1096. (in Chinese)
doi: 10.6023/cjoc201912025 pmid: 31074625 |
|
( 刘元华, 董秀琴, 张绪穆, 有机化学, 2020, 40, 1096.)
pmid: 31074625 |
|
(e) Liu, T.; Wang, C. Chin. J. Org. Chem. 2020, 8, 2585. (in Chinese)
pmid: 31074625 |
|
( 刘婷, 王从洋, 有机化学, 2020, 8, 2585.)
pmid: 31074625 |
|
(f) Zhao, L.; Hu, C.; Cong, X.; Deng, G.; Liu, L. L.; Luo, M.; Zeng, X. J. Am. Chem. Soc. 2021, 143, 1618.
doi: 10.1021/jacs.0c12318 pmid: 31074625 |
|
[3] |
(a) Ding, C. Z.; Hunt, J. T.; Ricca, C.; Manne, V. Bioorg. Med. Chem. Lett. 2000, 10, 273.
pmid: 10698452 |
(b) Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Chem. Rev. 2011, 111, 7157.
doi: 10.1021/cr100307m pmid: 10698452 |
|
(c) Xu, Z.; Ye, H.; Zhang, W.; Xiao, Q. Chin. J. Org. Chem. 2021, 47, 2127. (in Chinese)
pmid: 10698452 |
|
( 许招会, 叶华涛, 张文峰, 肖强, 有机化学, 2021, 47, 2127.)
pmid: 10698452 |
|
[4] |
(a) Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Chem. Rev. 2011, 111, 7157.
doi: 10.1021/cr100307m |
(b) Yang, Z.; Chan, F.; He, Y.-M.; Yang, N.; Fan, Q.-H. Catal. Sci. Technol. 2014, 4, 2887.
doi: 10.1039/C4CY00418C |
|
(c) Yang, C.-H.; Chen, X.; Li, H.; Wei, W.; Yang, Z.; Chang, J. Chem. Commun. 2018, 54, 8622.
doi: 10.1039/C8CC04262D |
|
(d) Han, Z.; Liu, G.; Yang, X.; Dong, X.-Q.; Zhang, X. ACS Catal. 2021, 11, 7281.
doi: 10.1021/acscatal.1c01353 |
|
[5] |
Farndon, J. J.; Ma, X.; Bower, J. F. J. Am. Chem. Soc. 2017, 139, 14005.
doi: 10.1021/jacs.7b07830 pmid: 28953364 |
[6] |
(a) Compain, G.; Martin-Mingot, A.; Frapper, G.; Bachmann, C.; Jouannetaud, M. P.; Thibaudeau, S. Chem. Commun. 2012, 48, 5877.
doi: 10.1039/c2cc32246c |
(b) Cai, X.-F.; Huang, W.-X.; Chen, Z.-P.; Zhou, Y.-G. Chem. Commun. 2014, 50, 9588.
doi: 10.1039/C4CC04386C |
|
(c) Chen, F.; Surkus, A. E.; He, L.; Pohl, M. M.; Radnik, J.; Topf, C.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2015, 137, 11718.
doi: 10.1021/jacs.5b06496 |
|
(d) Kubota, K.; Watanabe, Y.; Ito, H. Adv. Synth. Catal. 2016, 358, 2379.
doi: 10.1002/adsc.201600372 |
|
(e) Li, W.; Cui, X.; Junge, K.; Surkus, A. E.; Kreyenschulte, C. R.; Bartling, S.; Beller, M. ACS Catal. 2019, 9, 4302.
doi: 10.1021/acscatal.8b04807 |
|
[7] |
(a) Ren, D.; He, L.; Yu, L.; Ding, R. S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K.-N. J. Am. Chem. Soc. 2012, 134, 17592.
doi: 10.1021/ja3066978 |
(b) Vilhanová, B.; Bokhoven, J. A.; Ranocchiaric, M. Adv. Synth. Catal. 2017, 359, 677.
doi: 10.1002/adsc.201601147 |
|
[8] |
(a) Heitbaum, M.; Fröhlich, R.; Glorius, F. Adv. Synth. Catal. 2010, 352, 357.
doi: 10.1002/adsc.200900763 |
(b) Ge, D.; Hu, L.; Wang, J.; Li, X.; Qi, F.; Lu, J.; Cao, X.; Gu, H. ChemCatChem 2013, 5, 2183.
doi: 10.1002/cctc.201300136 |
|
[9] |
Wang, C.; Li, C.; Wu, X.; Pettman, A.; Xiao, J. Angew. Chem., Int. Ed. 2009, 48, 6524.
doi: 10.1002/anie.200902570 |
[10] |
(a) Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou, Y.-G. J. Am. Chem. Soc. 2003, 125, 10536.
doi: 10.1021/ja0353762 pmid: 19480425 |
(b) Yamaguchi, R.; Ikeda, C.; Takahashi, Y.; Fujita, K. J. Am. Chem. Soc. 2009, 131, 8410.
doi: 10.1021/ja9022623 pmid: 19480425 |
|
(c) John, J.; Wilson-Konderka, C.; Metallinos, C. Adv. Synth. Catal. 2015, 357, 2071.
doi: 10.1002/adsc.201500105 pmid: 19480425 |
|
(d) Wang, S.; Huang, H.; Bruneau, C.; Fischmeister, C. ChemSusChem 2019, 12, 2350.
pmid: 19480425 |
|
[11] |
(a) Gong, Y.; Zhang, P.; Xu, X.; Li, Y.; Li, H.; Wang, Y. J. Catal. 2013, 297, 272.
doi: 10.1016/j.jcat.2012.10.018 |
(b) Zhang, Y.; Zhu, J.; Xia, Y.-T.; Sun, X.-T.; Wu, L. Adv. Synth. Catal. 2016, 358, 3039.
doi: 10.1002/adsc.201600505 |
|
[12] |
(a) Borowski, A. F.; Vendier, L.; Sabo-Etienne, S.; Rozycka- Sokolowska, E.; Gaudyn, A. V. Dalton Trans. 2012, 41, 14117.
doi: 10.1039/c2dt31205k pmid: 23033063 |
(b) Ding, Z. Y.; Wang, T.; He, Y. M.; Chen, F.; Zhou, H. F.; Fan, Q. H.; Guo, Q.; Chan, A. S. C. Adv. Synth. Catal. 2013, 355, 3727.
doi: 10.1002/adsc.201300698 pmid: 23033063 |
|
(c) Kuwano, R.; Ikeda, R.; Hirasada, K. Chem. Commun. 2015, 51, 1.
doi: 10.1039/C5CC90001H pmid: 23033063 |
|
(d) Ma, W.; Zhang, J.; Xu, C.; Chen, F.; He, Y. M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2016, 55, 12891.
doi: 10.1002/anie.201608181 pmid: 23033063 |
|
(e) Yang, Z.; Chen, F.; Zhang, S.; He, Y.; Yang, N.; Fan, Q.-H. Org. Lett. 2017, 19, 1458.
doi: 10.1021/acs.orglett.7b00419 pmid: 23033063 |
|
[13] |
(a) Chakraborty, S.; Brennessel, W. W.; Jones, W. D. J. Am Chem. Soc. 2014, 136, 8564.
doi: 10.1021/ja504523b pmid: 24877556 |
(b) Long, X.; Li, Z.; Gao, G.; Sun, P.; Wang, J.; Zhang, B.; Zhong, J.; Jiang, Z.; Li, F. Nat. Commun. 2020, 11, 4074.
doi: 10.1038/s41467-020-17903-0 pmid: 24877556 |
|
[14] |
(a) Xu, R.; Chakraborty, S.; Yuan, H.; Jones, W. D. ACS Catal. 2015, 5, 6350.
doi: 10.1021/acscatal.5b02002 pmid: 31791120 |
(b) Wei, Z., Chen, Y.; Wang, J. Su, D.; Tang, M.; Miao, S.; Wang, Y. ACS Catal. 2016, 6, 5816.
doi: 10.1021/acscatal.6b01240 pmid: 31791120 |
|
(c) Adam, R.; Cabrero-Antonino, J. R.; Spannenberg, A.; Junge, A.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2017, 56, 3216.
pmid: 31791120 |
|
(d) Hervochon, J.; Dorcet, V.; Junge, k.; Beller, M.; Fischmeister, C. Catal. Sci. Technol. 2020, 10, 4820.
doi: 10.1039/D0CY00582G pmid: 31791120 |
|
(e) Duan, Y.-N.; Du, X.; Cui, Z.; Zeng, Y.; Liu, Y.; Yang, T.; Wen, J.; Zhang, X. J. Am Chem. Soc. 2019, 141, 20424.
doi: 10.1021/jacs.9b11070 pmid: 31791120 |
|
[15] |
(a) Wang, Y.; Zhu, L.; Shao, Z.; Li, G.; Lan, Y.; Liu, Q. J. Am. Chem. Soc. 2019, 141, 17337.
doi: 10.1021/jacs.9b09038 |
(b) Papa, V.; Cao, Y.; Spannenberg, A.; Junge, K.; Beller, M. Nat. Catal. 2020, 3, 135.
doi: 10.1038/s41929-019-0404-6 |
|
(c) Wang, Z.; Chen, L.; Mao, G.; Wang, C. Chin. Chem. Lett. 2020, 31, 1890.
doi: 10.1016/j.cclet.2020.02.025 |
|
[16] |
(a) Alberico, E.; Nielsen, M. Chem. Commun. 2015, 51, 6714.
doi: 10.1039/C4CC09471A |
(b) Hu, X.; Wang, G.; Qin, C.; Xie, X.; Zhang, C.; Xu, W.; Liu, Y. Org. Chem. Front. 2019, 6, 2619.
doi: 10.1039/C9QO00616H |
|
(c) Vermaak, V.; Vosloo, H. C. M.; Swarts, A. J. Adv. Synth. Catal. 2020, 362, 5788.
doi: 10.1002/adsc.202001147 |
|
[17] |
(a) Wang, C.; Wu, X.; Xiao, J. Chem. Asian J. 2008, 3, 1750.
doi: 10.1002/asia.200800196 pmid: 27345438 |
(b) Guo, Q.-S.; Du, D.-M.; Xu, J. Angew. Chem., Int. Ed. 2008, 47, 759.
doi: 10.1002/anie.200703925 pmid: 27345438 |
|
(c) Werkmeister, S.; Neumann, J.; Junge, K.; Beller, M. Chem.-Eur. J. 2015, 21, 12226.
doi: 10.1002/chem.201500937 pmid: 27345438 |
|
(d) Zhou, J.; Zhang, Q.-F.; Zhao, W.-H.; Jiang, G.-F. Org. Biomol. Chem. 2016, 14, 6937.
doi: 10.1039/c6ob01176d pmid: 27345438 |
|
[18] |
(a) Wang, D.; Astruc, D. Chem. Rev. 2015, 115, 6621.
doi: 10.1021/acs.chemrev.5b00203 pmid: 28632391 |
(b) Gilkey, M. J.; Xu, B. ACS Catal. 2016, 6, 1420.
doi: 10.1021/acscatal.5b02171 pmid: 28632391 |
|
(c) Yamada, I.; Noyori, R. Org. Lett. 2000, 2, 3425.
pmid: 28632391 |
|
(d) Martin, N. J. A.; Ozores, L.; List, B. J. Am. Chem. Soc. 2007, 129, 8976.
doi: 10.1021/ja074045c pmid: 28632391 |
|
(e) Sonnenberg, J. F.; Coombs, N.; Dube, P. A.; Morris, R. H. J. Am. Chem. Soc. 2012, 134, 5893.
doi: 10.1021/ja211658t pmid: 28632391 |
|
(f) Jagadeesh, R. V.; Natte, K.; Junge, H.; Beller, M. ACS Catal. 2015, 5, 1526.
doi: 10.1021/cs501916p pmid: 28632391 |
|
(g) Wang, J.; Chen, M.-W.; Ji, Y.; Hu, S.-B.; Zhou, Y.-G. J. Am. Chem. Soc. 2016, 138, 10413.
doi: 10.1021/jacs.6b06009 pmid: 28632391 |
|
(h) Bigler, R.; Huber, R.; Stockli, M.; Mezzetti, A. ACS Catal. 2016, 6, 6455.
doi: 10.1021/acscatal.6b01872 pmid: 28632391 |
|
(i) Li, S.; Li, G.; Meng, W.; Du, H. J. Am. Chem. Soc. 2016, 138, 12956.
doi: 10.1021/jacs.6b07245 pmid: 28632391 |
|
(j) BruneauVoisine, A.; Wang, D.; Dorcet, V.; Roisnel, T.; Darcel, C.; Sortais, J.-B. Org. Lett. 2017, 19, 3656.
doi: 10.1021/acs.orglett.7b01657 pmid: 28632391 |
|
(k) He, Y.; Tang, J.; Luo, M.; Zeng, X. Org. Lett. 2018, 20, 4159.
doi: 10.1021/acs.orglett.8b01273 pmid: 28632391 |
|
(l) Wang, X.; Zhang, Y.; Yuan, D.; Yao, Y. Org. Lett. 2020, 22, 5695.
doi: 10.1021/acs.orglett.0c02082 pmid: 28632391 |
|
(m) Kattamuri, P. V.; West, J. R. J. Am. Chem. Soc. 2020, 142, 19316.
doi: 10.1021/jacs.0c09544 pmid: 28632391 |
|
(n) Slone, S. E.; Reyes, A.; Vang, Z. P.; Li, L.; Behlow, K. T.; Clark, J. P. Org. Lett. 2020, 22, 9139.
doi: 10.1021/acs.orglett.0c03632 pmid: 28632391 |
|
(o) Wu, X.; Ding, G.; Lu, W.; Yang, L.; Wang, J.; Zhang, Y.; Xie, X.; Zhang, Z. Org. Lett. 2021, 23, 1434.
doi: 10.1021/acs.orglett.1c00111 pmid: 28632391 |
|
[19] |
(a) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683.
doi: 10.1002/anie.200600191 |
(b) Guo, Q. -S.; Du, D.-M.; Xu, J. Angew. Chem., Int. Ed. 2008, 47, 759.
doi: 10.1002/anie.200703925 |
|
(c) Fujita, K.; Kitatsuji, C.; Furukawa, S.; Yamaguchi, R. Tetrahedron Lett. 2004, 45, 3215.
doi: 10.1016/j.tetlet.2004.02.123 |
|
(d) Wang, C.; Li, C.; Wu, X.; Pettman, A.; Xiao, J. Angew. Chem., Int. Ed. 2009, 48, 6524.
doi: 10.1002/anie.200902570 |
|
[20] |
Jia, W.-G.; Gao, L.-L.; Wang, Z.-B.; Wang, J.-J.; Sheng, E.-H.; Han, Y.-F. Organometallics 2020, 39, 1790.
doi: 10.1021/acs.organomet.0c00091 |
[21] |
Wang, Y.; Dong, B.; Wang, Z.; Cong, X.; Bi, X. Org. Lett. 2019, 21, 3631.
doi: 10.1021/acs.orglett.9b01055 pmid: 31062984 |
[22] |
(a) Manas, M. G.; Sharninghausen, L. S.; Balcells, D.; Crabtree, R. H. New J. Chem. 2014, 38, 1694.
doi: 10.1039/C3NJ01485A |
(b) Voutchkova, A. M.; Gnanamgari, D.; Jakobsche, C. E.; Butler, C.; Miller, S. J.; Parr, J.; Crabtree, R. H. J. Organomet. Chem. 2008, 693, 1815.
doi: 10.1016/j.jorganchem.2008.02.004 |
|
[23] |
Widegren, J. A.; Bennett, M. A.; Finke, R. G. J. Am. Chem. Soc. 2003, 125, 10301.
pmid: 12926954 |
[24] |
Kim, E.; Jeon, H. J.; Park, S.; Chang, S. Adv. Synth. Catal. 2019, 361, 1.
doi: 10.1002/adsc.201801478 |
[25] |
Bhattacharyya, D.; Nandi, S.; Adhikari, P.; Sarmah, B. K.; Konwar, M.; Das, A. Org. Biomol. Chem. 2020, 18, 1214.
doi: 10.1039/c9ob02673h pmid: 31996880 |
[26] |
Okten, S. J. Chem. Res. 2019, 43, 274.
doi: 10.1177/1747519819861389 |
[27] |
Duan, Y. N.; Du, X. M.; Cui, Z.; Zeng, Y.; Liu, Y.; Yang, T.; Wen, J.; Zhang, X. J. Am. Chem. Soc. 2019, 141, 20424.
doi: 10.1021/jacs.9b11070 pmid: 31791120 |
[28] |
Wang, Z.-C.; Xie, P.-P.; Xu, Y.; Hong, X.; Shi, S.-L. Angew. Chem., Int. Ed. 2021, 60, 16077.
doi: 10.1002/anie.202103803 |
[1] | 陈新强, 张敬. 伯醇的脱羟甲基反应的研究进展[J]. 有机化学, 2023, 43(8): 2711-2719. |
[2] | 周章涛, 王杨, 程冰心, 叶伟平. [RuCl(p-cymene)-(S)-BINAP]Cl催化不对称合成反式-3-氨基-双环[2.2.2]辛烷-2-甲酸乙酯[J]. 有机化学, 2023, 43(8): 2961-2967. |
[3] | 王莎, 陈常鹏, 曾小明. 联吡啶配体促进铬催化炔烃的顺式硼氢化反应[J]. 有机化学, 2023, 43(7): 2447-2453. |
[4] | 宋姿洁, 刘俊, 白赢, 厉嘉云, 彭家建. 利用硅氢加成反应催化转化二氧化碳研究进展[J]. 有机化学, 2023, 43(6): 2068-2080. |
[5] | 褚杨杨, 韩召斌, 丁奎岭. 动力学拆分在过渡金属催化的不对称(转移)氢化中的应用研究[J]. 有机化学, 2023, 43(6): 1934-1951. |
[6] | 卢凯, 屈浩琦, 陈樨, 秋慧, 郑晶, 马猛涛. 无催化剂、无溶剂条件下炔烃和烯烃与儿茶酚硼烷的硼氢化反应[J]. 有机化学, 2023, 43(6): 2197-2205. |
[7] | 刘育园, 雷雅钦, 杨文, 赵万祥. 钴催化烯胺远程硼氢化[J]. 有机化学, 2023, 43(5): 1761-1771. |
[8] | 蒋旺, 史壮志. 芳烃间/对位选择性碳氢硼化反应研究进展[J]. 有机化学, 2023, 43(5): 1691-1705. |
[9] | 李思达, 舒兴中, 吴立朋. 锆、钛介导的烯烃、炔烃硼氢化[J]. 有机化学, 2023, 43(5): 1751-1760. |
[10] | 刘双, 邹亮华, 王晓明. 均相钴催化氨硼烷的脱氢及转移氢化反应的研究进展[J]. 有机化学, 2023, 43(5): 1713-1725. |
[11] | 党燕, 贾朝红, 王亚兰, 王丽, 李亚飞, 李亚红. 含吡咯基配体的锌、锂和镁配合物的合成与表征及其对芳基碘代物的硼化反应和醛、酮的硼氢化反应的催化作用[J]. 有机化学, 2023, 43(3): 1124-1135. |
[12] | 赵佳怡, 葛怡聪, 何川. 不对称催化Si—H/X—H脱氢偶联构筑硅中心手性[J]. 有机化学, 2023, 43(10): 3352-3366. |
[13] | 孙伟, 朱守非. 铁系金属催化烯烃与三级硅烷的硅氢化反应研究进展[J]. 有机化学, 2023, 43(10): 3339-3351. |
[14] | 苏沛锋, 倪金煜, 柯卓锋. 二氧化碳硅氢化及相关转化的均相催化体系研究进展[J]. 有机化学, 2023, 43(10): 3526-3543. |
[15] | 冯向青, 杜海峰. B(C6F5)3催化不饱和烃的硅化反应[J]. 有机化学, 2023, 43(10): 3544-3557. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||