有机化学 ›› 2023, Vol. 43 ›› Issue (10): 3352-3366.DOI: 10.6023/cjoc202305001 上一篇 下一篇
所属专题: 有机硅化学专辑-2023
综述与进展
收稿日期:
2023-05-01
修回日期:
2023-06-30
发布日期:
2023-07-12
基金资助:
Jiayi Zhao, Yicong Ge, Chuan He()
Received:
2023-05-01
Revised:
2023-06-30
Published:
2023-07-12
Contact:
*E-mail: Supported by:
文章分享
硅中心手性有机硅化物因其独特的结构和性质, 在有机合成、功能材料及生物医药等领域展现出特有的价值和应用前景, 受到了化学家们的广泛关注. 近年来, 构筑硅中心手性的方法得到了快速发展, 特别是利用过渡金属催化对前手性硅烷进行去对称化反应. 其中, 以二氢硅烷为底物进行的不对称催化Si—H/X—H脱氢偶联(Si-CADC), 因其具有反应简单高效、原子经济性高、结构多样性好和对映选择性高等优点, 成为了构筑硅中心手性的重要手段和方法. 根据反应类型和产物的不同, 主要从以下三个层次展开综述: (1)不对称脱氢偶联串联策略构筑四取代硅中心手性有机硅烷; (2)分子内Si—H/C—H脱氢偶联构筑环状硅中心手性单氢硅烷; (3)分子间Si—H/X—H脱氢偶联构筑非环状多样化的硅中心手性硅烷.
赵佳怡, 葛怡聪, 何川. 不对称催化Si—H/X—H脱氢偶联构筑硅中心手性[J]. 有机化学, 2023, 43(10): 3352-3366.
Jiayi Zhao, Yicong Ge, Chuan He. Construction of Silicon-Stereogenic Center via Catalytic Asymmetric Si—H/X—H Dehydrogenative Coupling[J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3352-3366.
[10] |
Sommer L. H.; Frye C. L. J. Am. Chem. Soc. 1959, 81, 1013.
|
[11] |
(a) Xu L.-W. Angew. Chem., Int. Ed. 2012, 51, 12932.
doi: 10.1002/anie.v51.52 |
(b) Shintani R. Asian J. Org. Chem. 2015, 4, 510.
doi: 10.1002/ajoc.v4.6 |
|
(c) Cui Y.-M.; Lin Y.; Xu L.-W. Coord. Chem. Rev. 2017, 330, 37.
doi: 10.1016/j.ccr.2016.09.011 |
|
(d) Ye F.; Xu L.-W. Synlett 2021, 32, 1281.
doi: 10.1055/a-1408-6795 |
|
(e) Zheng L.; Nie X.-X.; Wu Y.; Wang P. Eur. J. Org. Chem. 2021, 6006.
|
|
[12] |
(a) Ohta T.; Ito M.; Tsuneto A.; Takaya H. J. Chem. Soc., Chem. Commun. 1994, 21, 2525.
pmid: 36756338 |
(b) Igawa K.; Yoshihiro D.; Ichikawa N.; Kokan N.; Tomooka K. Angew. Chem., Int. Ed. 2012, 51, 12745.
doi: 10.1002/anie.v51.51 pmid: 36756338 |
|
(c) Wen H.; Wan X.; Huang Z. Angew. Chem., Int. Ed. 2018, 57, 6319.
doi: 10.1002/anie.v57.21 pmid: 36756338 |
|
(d) Zhan G.; Teng H.-L.; Luo Y.; Lou S.-J.; Nishiura M.; Hou Z. Angew. Chem., Int. Ed. 2018, 57, 12342.
doi: 10.1002/anie.v57.38 pmid: 36756338 |
|
(e) Huang Y.-H.; Wu Y.; Zhu Z.; Zheng S.; Ye Z.; Peng Q.; Wang P. Angew. Chem., Int. Ed. 2022, 61, e202113052.
pmid: 36756338 |
|
(f) Lu W.; Zhao Y.; Meng F. J. Am. Chem. Soc. 2022, 144, 5233.
doi: 10.1021/jacs.2c00288 pmid: 36756338 |
|
(g) Yasutomi Y.; Suematsu H.; Katsuki T. J. Am. Chem. Soc. 2010, 132, 4510.
doi: 10.1021/ja100833h pmid: 36756338 |
|
(h) Jagannathan J. R.; Fettinger J. C.; Shaw J. T.; Franz A. K. J. Am. Chem. Soc. 2020, 142, 11674.
doi: 10.1021/jacs.0c04533 pmid: 36756338 |
|
(i) Tang R.-H.; Xu Z.; Nie Y.-X.; Xiao X.-Q.; Yang K.-F.; Xie J.-L.; Guo B.; Yin G.-W.; Yang X.-M.; Xu L.-W. iScience 2020, 23, 101268.
doi: 10.1016/j.isci.2020.101268 pmid: 36756338 |
|
(j) Xie J.-L.; Xu Z.; Zhou H.-Q.; Nie Y.-X.; Cao J.; Yin G.-W.; Bouillon J.-P.; Xu L.-W. Sci. China: Chem. 2021, 64, 761.
pmid: 36756338 |
|
(k) Ling F.-Y.; Ye F.; Fang X.-J.; Zhou X.-H.; Huang W.-S.; Xu Z.; Xu L.-W. Chem. Sci. 2023, 14, 1123.
doi: 10.1039/d2sc06181c pmid: 36756338 |
|
[13] |
(a) Shintani R.; Otomo H.; Ota K.; Hayashi T. J. Am. Chem. Soc. 2012, 134, 7305.
doi: 10.1021/ja302278s pmid: 22506681 |
(b) Sato Y.; Takagi C.; Shintani R.; Nozaki K. Angew. Chem., Int. Ed. 2017, 56, 9211.
doi: 10.1002/anie.v56.31 pmid: 22506681 |
|
(c) Kurihara Y.; Nishikawa M.; Yamanoi Y.; Nishihara H. Chem. Commun. 2012, 48, 11564.
doi: 10.1039/c2cc36238d pmid: 22506681 |
|
(d) Chen L.; Huang J.-B.; Xu Z.; Zheng Z.-J.; Yang K.-F.; Cui Y.-M.; Cao J.; Xu L.-W. RSC Adv. 2016, 6, 67113.
doi: 10.1039/C6RA12873D pmid: 22506681 |
|
[14] |
(a) Shintani R.; Moriya K.; Hayashi T. J. Am. Chem. Soc. 2011, 133, 16440.
doi: 10.1021/ja208621x pmid: 21936508 |
(b) Zhang Q.-W.; An K.; Liu L.-C.; Zhang Q.; Guo H.; He W. Angew. Chem., Int. Ed. 2017, 56, 1125.
doi: 10.1002/anie.v56.4 pmid: 21936508 |
|
(c) Chen H.; Chen Y.; Tang X.; Liu S.; Wang R.; Hu T.; Gao L.; Song Z. Angew. Chem., Int. Ed. 2019, 58, 4695.
doi: 10.1002/anie.v58.14 pmid: 21936508 |
|
(d) Zhang J.; Yan N.; Ju C.-W.; Zhao D. Angew. Chem., Int. Ed. 2021, 60, 25723.
doi: 10.1002/anie.v60.49 pmid: 21936508 |
|
(e) Wang X.; Huang S.-S.; Zhang F.-J.; Xie J.-L.; Li Z.; Xu Z.; Ye F.; Xu L.-W. Org. Chem. Front. 2021, 8, 6577.
doi: 10.1039/D1QO01386F pmid: 21936508 |
|
(f) An K.; Ma W.; Liu L.-C.; He T.; Guan G.; Zhang Q.-W.; He W. Nat. Commun. 2022, 13, 847.
doi: 10.1038/s41467-022-28439-w pmid: 21936508 |
|
(g) Tang X.; Zhang Y.; Tang Y.; Li Y.; Zhou J.; Wang D.; Gao L.; Su Z.; Song Z. ACS Catal. 2022, 12, 5185.
doi: 10.1021/acscatal.1c05831 pmid: 21936508 |
|
(h) Wang X.-C.; Li B.; Ju C.-W.; Zhao D. Nat. Commun. 2022, 13, 3392.
doi: 10.1038/s41467-022-31006-y pmid: 21936508 |
|
[15] |
(a) Shintani R.; Takagi C.; Ito T.; Naito M.; Nozaki K. Angew. Chem., Int. Ed. 2015, 54, 1616.
doi: 10.1002/anie.v54.5 pmid: 29910876 |
(b) Shintani R.; Takano R.; Nozaki K. Chem. Sci. 2016, 7, 1205.
doi: 10.1039/c5sc03767k pmid: 29910876 |
|
[16] |
(a) Zeng Y.; Fang X.-J.; Tang R.-H.; Xie J.-Y.; Zhang F.-J.; Xu Z.; Nie Y.-X.; Xu L.-W. Angew. Chem., Int. Ed. 2022, 61, e202214147.
|
(b) Zhou H.; Properzi R.; Leutzsch M.; Belanzoni P.; Bistoni G.; Tsuji N.; Han J. T.; Zhu C.; List B. J. Am. Chem. Soc. 2023, 145, 4994.
doi: 10.1021/jacs.3c00858 |
|
[17] |
(a) Yuan W.; He C. Synthesis 2022, 54, 1939.
doi: 10.1055/a-1729-9664 |
(b) Ge Y.; Huang X.; Ke J.; He C. Chem. Catal. 2022, 2, 2898.
|
|
[18] |
Kuninobu Y.; Yamauchi K.; Tamura N.; Seiki T.; Takai K. Angew. Chem., Int. Ed. 2013, 52, 1520.
doi: 10.1002/anie.v52.5 |
[19] |
Murai M.; Takeuchi Y.; Yamauchi K.; Kuninobu Y.; Takai K. Chem.-Eur. J. 2016, 22, 6048.
doi: 10.1002/chem.v22.17 |
[20] |
Mu D.; Yuan W.; Chen S.; Wang N.; Yang B.; You L.; Zu B.; Yu P.; He C. J. Am. Chem. Soc. 2020, 142, 13459.
doi: 10.1021/jacs.0c04863 |
[21] |
Yang B.; Yang W.; Guo Y.; You L.; He C. Angew. Chem., Int. Ed. 2020, 59, 22217.
doi: 10.1002/anie.v59.49 |
[22] |
(a) Corriu R. J. P.; Moreau J. J. E. Tetrahedron Lett. 1973, 4469.
|
(b) Corriu R. J. P.; Moreau J. J. E. J. Organomet. Chem. 1976, 120, 337.
doi: 10.1016/S0022-328X(00)98043-4 |
|
[23] |
Ma W.; Liu L.-C.; An K.; He T.; He W. Angew. Chem., Int. Ed. 2021, 60, 4245.
doi: 10.1002/anie.v60.8 |
[24] |
Yuan W.; You L.; Lin W.; Ke J.; Li Y.; He C. Org. Lett. 2021, 23, 1367.
doi: 10.1021/acs.orglett.1c00029 pmid: 33524255 |
[25] |
Chen S.; Mu D.; Mai P.-L.; Ke J.; Li Y.; He C. Nat. Commun. 2021, 12, 1249.
doi: 10.1038/s41467-021-21489-6 |
[26] |
Guo Y.; Liu M.-M.; Zhu X.; Zhu L.; He C. Angew. Chem., Int. Ed. 2021, 60, 13887.
doi: 10.1002/anie.v60.25 |
[27] |
Chen S.; Zhu J.; Ke J.; Li Y.; He C. Angew. Chem., Int. Ed. 2022, 61, e202117820.
|
[28] |
Mu D.; Pan S.; Wang X.; Liao X.; Huang Y.; Chen J. Chem. Commun. 2022, 58, 7388.
doi: 10.1039/D2CC02307E |
[29] |
Schmidt D. R.; O'Malley S. J.; Leighton J. L. J. Am. Chem. Soc. 2003, 125, 1190.
pmid: 12553820 |
[30] |
Xu J.-X.; Chen M.-Y.; Zheng Z.-J.; Cao J.; Xu Z.; Cui Y.-M.; Xu L.-W. ChemCatChem 2017, 9, 3111.
doi: 10.1002/cctc.v9.16 |
[31] |
Long P.-W.; Bai X.-F.; Ye F.; Li L.; Xu Z.; Yang K.-F.; Cui Y.-M.; Zheng Z.-J.; Xu L.-W. Adv. Synth. Catal. 2018, 360, 2825.
doi: 10.1002/adsc.v360.15 |
[32] |
(a) Zhu J.; Chen S.; He C. J. Am. Chem. Soc. 2021, 143, 5301.
doi: 10.1021/jacs.1c01106 |
[1] |
(a) Brook M. A. Silicon in Organic, Organometallic and Polymer Chemistry, Wiley, New York, 2000.
pmid: 23549525 |
(b) Jones R. G.; Ando W.; Chojnowski J. Silicon-Containing Polymers, Springer, Berlin, 2000.
pmid: 23549525 |
|
(c) Langkopf E.; Schinzer D. Chem. Rev. 1995, 95, 1375.
doi: 10.1021/cr00037a011 pmid: 23549525 |
|
(d) Kamino B. A.; Bender T. P. Chem. Soc. Rev. 2013, 42, 5119.
doi: 10.1039/c3cs35519e pmid: 23549525 |
|
(e) Zuo Y.; Gou Z.; Quan W.; Lin W. Coord. Chem. Rev. 2021, 438, 213887.
doi: 10.1016/j.ccr.2021.213887 pmid: 23549525 |
|
(f) Zhai X.-Y.; Wang X.-Q.; Wu B.; Zhou Y.-G. Chin. J. Chem. 2022, 40, 21.
doi: 10.1002/cjoc.v40.1 pmid: 23549525 |
|
[2] |
(a) Chan T. H.; Wang D. Chem. Rev. 1992, 92, 995.
doi: 10.1021/cr00013a012 |
(b) Liu J.; Zhang W.; Xi Z. Chin. J. Org. Chem. 2009, 29, 491 (in Chinese).
|
|
(刘俊辉, 张文雄, 席振峰, 有机化学, 2009, 29, 491.)
|
|
(c) Luo H.; Zhang Z.; Liu H.; Liu H. Chin. J. Org. Chem. 2015, 35, 802 (in Chinese).
doi: 10.6023/cjoc201410012 |
|
(罗海清, 张志鹏, 刘海东, 柳辉金, 有机化学, 2015, 35, 802.)
doi: 10.6023/cjoc201410012 |
|
(d) Wang M.; Yu M.; Wang W.; Lin W.; Luo F. Chin. J. Org. Chem. 2019, 39, 3145 (in Chinese).
doi: 10.6023/cjoc201904024 |
|
(王明凤, 余茂栋, 王文蜀, 林伟立, 罗斐贤, 有机化学, 2019, 39, 3145.)
doi: 10.6023/cjoc201904024 |
|
(e) Li L.; Wei Y.-L.; Xu L.-W. Synlett 2020, 31, 21.
doi: 10.1055/s-0039-1691496 |
|
[3] |
(a) Shimizu M.; Hiyama T. Synlett 2012, 23, 973.
doi: 10.1055/s-0031-1290566 pmid: 29039662 |
(b) Yamaguchi S.; Tamao K. J. Chem. Soc., Dalton Trans. 1998, 3693.
pmid: 29039662 |
|
(c) Yamaguchi S.; Tamao K. Chem. Lett. 2005, 34, 2.
doi: 10.1246/cl.2005.2 pmid: 29039662 |
|
(d) Franz A. K.; Wilson S. O. J. Med. Chem. 2013, 56, 388.
doi: 10.1021/jm3010114 pmid: 29039662 |
|
(e) Fujii S.; Hashimoto Y. Future Med. Chem. 2017, 9, 485.
doi: 10.4155/fmc-2016-0193 pmid: 29039662 |
|
(f) Ramesh R.; Reddy D. S. J. Med. Chem. 2018, 61, 3779.
doi: 10.1021/acs.jmedchem.7b00718 pmid: 29039662 |
|
(g) Remond E.; Martin C.; Martinez J.; Cavelier F. Chem. Rev. 2016, 116, 11654.
doi: 10.1021/acs.chemrev.6b00122 pmid: 29039662 |
|
[4] |
(a) Igawa K.; Tomooka K. Chiral Silicon Molecules, In Organosilicon Chemistry: Novel Approaches and Reactions, Eds.: Hiyama, T.; Oestreich, M., Wiley, Weinheim, Germany, 2019, pp. 495-532.
pmid: 21088772 |
(b) Xu L.-W.; Li L.; Lai G.-Q.; Jiang J.-X. Chem. Soc. Rev. 2011, 40, 1777.
doi: 10.1039/c0cs00037j pmid: 21088772 |
|
(c) Bauer J. O.; Strohmann C. Eur. J. Inorg. Chem. 2016, 2016, 2868.
doi: 10.1002/ejic.v2016.18 pmid: 21088772 |
|
(d) Wu Y.; Wang P. Angew. Chem., Int. Ed. 2022, 61, e202205382.
pmid: 21088772 |
|
[5] |
(a) Brook A. G.; Gajewski J. J. Heteroat. Chem. 1990, 1, 57.
doi: 10.1002/hc.v1:1 |
(b) Shintani R. Synlett 2018, 29, 388.
doi: 10.1055/s-0036-1591839 |
|
[6] |
Weickgenannt A.; Oestreich M. The Renaissance of Silicon-Stereogenic Silanes: A Personal Account, In Asymmetric Synthesis: More Methods and Applications, Eds.: Christmann, M.; Bräse, S., Wiley-VCH, Weinheim, 2012, pp. 35-42.
|
[7] |
(a) Berry R. S. J. Chem. Phys. 1960, 32, 933.
doi: 10.1063/1.1730820 |
(b) Ugi I.; Marquarding D.; Klusacek H.; Gillespie P.; Ramirez F. Acc. Chem. Res. 1971, 4, 288.
doi: 10.1021/ar50044a004 |
|
(c) Oestreich M. Synlett 2007, 1629.
|
|
[8] |
Kipping F. S. J. Chem. Soc. 1907, 91, 209.
doi: 10.1039/CT9079100209 |
[9] |
Eaborn C.; Pitt C. Chem. Ind. 1958, 830.
|
[32] |
(b) Zhu J.; He C. Synlett 2021, 32, 1575.
doi: 10.1055/a-1503-7976 |
[33] |
(a) Chandrasekhar V.; Boomishankar R.; Nagendran S. Chem. Rev. 2004, 104, 5847.
pmid: 15584691 |
(b) Jeon M.; Han J.; Park J. ACS Catal. 2012, 2, 1539.
doi: 10.1021/cs300296x pmid: 15584691 |
|
[34] |
Gao J.; He C. Chem.-Eur. J. 2023, 29, e202203475.
|
[35] |
Yuan W.; Zhu X.; Xu Y.; He C. Angew. Chem., Int. Ed. 2022, 61, e202204912.
|
[36] |
Yang W.; Liu L.; Guo J.; Wang S.-G.; Zhang J.-Y.; Fan L.-W.; Tian Y.; Wang L.-L.; Luan C.; Li Z.-L.; He C.; Wang X.; Gu Q.-S.; Liu X.-Y. Angew. Chem., Int. Ed. 2022, 61, e202205743.
|
[37] |
Gao J.; Mai P.-L.; Ge Y.; Yuan W.; Li Y.; He C. ACS Catal. 2022, 12, 8476.
doi: 10.1021/acscatal.2c02482 |
[38] |
Liu M.-M.; Xu Y.; He C. J. Am. Chem. Soc. 2023, 145, 11727.
doi: 10.1021/jacs.3c02263 |
[39] |
Huang X.; Zhu J.; He C. Chin. Chem. Lett. 2023, 34, 108783.
|
[1] | 杨爽, 房新强. 氮杂环卡宾催化实现的动力学拆分近期研究进展[J]. 有机化学, 2024, 44(2): 448-480. |
[2] | 陈宛婷, 钟雄威, 邢佳乐, 吴昌书, 高杨. C—N轴手性化合物的不对称催化合成研究进展[J]. 有机化学, 2024, 44(2): 349-377. |
[3] | 姜权彬. 经由氮杂邻联烯醌中间体合成轴手性化合物的研究进展[J]. 有机化学, 2024, 44(1): 159-172. |
[4] | 程春霞, 吴露平, 沙风, 伍新燕. 手性叔膦-酰胺不对称催化香豆素与Morita-Baylis-Hillman碳酸酯之间的插烯烯丙基烷基化反应[J]. 有机化学, 2023, 43(9): 3188-3195. |
[5] | 罗诚, 尹艳丽, 江智勇. P-手性膦氧化物的不对称合成研究进展[J]. 有机化学, 2023, 43(6): 1963-1976. |
[6] | 王海清, 杨爽, 张宇辰, 石枫. 邻羟基苄醇参与的催化不对称反应研究进展[J]. 有机化学, 2023, 43(3): 974-999. |
[7] | 曹伟地, 刘小华. 不对称催化质子化构建α-叔碳羰基化合物研究进展[J]. 有机化学, 2023, 43(3): 961-973. |
[8] | 方思强, 刘赞娇, 王天利. Atherton-Todd反应的研究进展[J]. 有机化学, 2023, 43(3): 1069-1083. |
[9] | 曾燕, 叶飞. 不对称催化构建硅立体中心化合物的新反应体系研究进展[J]. 有机化学, 2023, 43(10): 3388-3413. |
[10] | 代增进, 张绪穆, 殷勤. 铵盐为胺源的不对称还原胺化反应研究进展[J]. 有机化学, 2022, 42(8): 2261-2274. |
[11] | 李晖, 殷亮. 铜催化的直接型插烯反应研究进展[J]. 有机化学, 2022, 42(6): 1573-1585. |
[12] | 吴逾诸, 申盼盼, 段文增, 马玉道. 卡宾催化对亚甲基苯醌的不对称硼化反应的研究[J]. 有机化学, 2022, 42(5): 1483-1492. |
[13] | 徐东平, 黄飞, 汤琳, 张新明, 张武. 可见光诱导杂芳烃与脂肪醇的羟烷基化反应[J]. 有机化学, 2022, 42(5): 1493-1500. |
[14] | 王馨瑶, 张晴晴, 刘书扬, 李敏, 李海芳, 段春迎, 金云鹤. 可见光诱导无金属条件下交叉脱氢偶联反应合成醌类苄基化衍生物[J]. 有机化学, 2022, 42(5): 1443-1452. |
[15] | 徐萌萌, 蔡泉. 2-吡喃酮的催化不对称Diels-Alder反应研究进展[J]. 有机化学, 2022, 42(3): 698-713. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||