有机化学 ›› 2022, Vol. 42 ›› Issue (5): 1346-1374.DOI: 10.6023/cjoc202110027 上一篇    下一篇

综述与进展

钯催化C—H键官能团化形成C—X (X=O, N, F, I, ……)键的密度泛函理论研究进展

石宇冰a, 白文己a, 母伟花a,*(), 李江平a, 于嘉玮a, 连冰b   

  1. a 云南师范大学化学化工学院 昆明 650500
    b 北京市第八中学 北京 100033
  • 收稿日期:2021-10-19 修回日期:2021-12-12 发布日期:2022-01-11
  • 通讯作者: 母伟花
  • 基金资助:
    国家自然科学基金(21763033); 云南省万人计划“青年拔尖人才”专项资助项目

Research Progress on Density Functional Theory Study of Palladium-Catalyzed C—H Functionalization to Form C—X (X=O, N, F, I, …) Bonds

Yubing Shia, Wenji Baia, Weihua Mua(), Jiangping Lia, Jiawei Yua, Bing Lianb   

  1. a Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500
    b Beijing No. 8 High School, Beijing 100033
  • Received:2021-10-19 Revised:2021-12-12 Published:2022-01-11
  • Contact: Weihua Mu
  • Supported by:
    National Natural Science Foundation of China(21763033); Top Young Talents of Yunnan Ten Thousand People Plan

过渡金属催化C—H键官能团化是形成C—X (X=O, N, F, I, ……)键的有效方法, 在传统有机合成、农药、医药以及构筑含C—X杂环的生物活性天然产物基本骨架方面都扮演着重要角色. 钯催化C—H键官能团化形成C—X键的方法具有反应效率高、原子经济性好、环境友好等优点, 是近年来过渡金属催化构建C—X键的研究热点. 采用密度泛函理论(DFT)对钯催化C—H键官能团化形成C—X键的反应开展理论研究, 可获取有关反应路径的诸多信息, 帮助人们从微观层面深入认识此类反应的微观机理和反应选择性调控机制, 为改进钯催化C—H键官能团化形成C—X键的选择性和反应性控制拓展新思路. 对近十年来钯催化C—H键官能团化形成C—X (X=O, N, F, I, ……)键的最新理论研究进展进行了综述, 对上述反应的微观机理和反应选择性进行了深入探讨, 并对该领域的现存问题和发展前景进行了总结与展望.

关键词: 钯催化, C—H键官能团化, C—X键形成, 反应机理, 选择性, 密度泛函理论(DFT)

Transition metal-catalyzed C—H functionalization is an effective method for constructing C—X (X=O, N, F, I, …) bonds, which plays a crucial role not only in traditional organic synthesis, pesticides and medicine areas, but also in generating skeletons of biologically active natural products containing C—X heterocycles. Due to its high reaction efficiency, good atomic economy and environmental friendliness, palladium-catalyzed C—H functionalization has been demonstrated as one of the focus topics in the field of transition metal-catalyzed construction of C—X bonds for decades. Based on previous experimental results, density functional theory (DFT) has been employed to study the palladium-catalyzed C—H functionalization for constructing C—X bonds in detail, for obtaining more information about reaction process, such as microscopic reaction mechanism and selectivity regulation principles, and thus inspire new ideas for improving the selectivity and reactivity of palladium-catalyzed C—H functionalization in constructing C—X bonds. Herein, the latest density functional theory research results on palladium-catalyzed C—H functionalization in constructing C—X (X=O, N, F, I, …) bonds are summarized, with emphasis on the corresponding computational results about microcosmic reaction mechanism and selectivity controlling. The present issues and prospects of future development in this field are also summarized and forecasted in the end.

Key words: Pd catalysis, C—H functionalization, C—X bonds formation, reaction mechanism, selectivity, density functional theory (DFT)