有机化学 ›› 2023, Vol. 43 ›› Issue (1): 274-284.DOI: 10.6023/cjoc202204068 上一篇 下一篇
研究论文
收稿日期:
2022-04-28
修回日期:
2022-07-19
发布日期:
2022-08-17
通讯作者:
陈吉祥
基金资助:
Yifang Chen, Xin Luo, Yu Wang, Zhifu Xing, Ju Peng, Jixiang Chen()
Received:
2022-04-28
Revised:
2022-07-19
Published:
2022-08-17
Contact:
Jixiang Chen
Supported by:
文章分享
为了寻找新型抗菌剂, 采用活性亚结构拼接, 设计合成了23个含磺酰胺结构的1,3,4-噁二唑砜类化合物, 并对其抗菌活性进行了测试. 在100 μg/mL浓度下, 大多数化合物对水稻细菌性条斑病菌(Xanthomonas oryzae pv. oryzicola)和水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae)表现出优异的离体抗菌活性. 除N-((5-(丙基磺酰基)-1,3,4-噁二唑-2-基)甲基)-4-(三氟甲基)苯磺酰胺(18)外, 所有化合物对水稻细菌性条斑病菌的半数有效浓度(EC50)值为1.3~22.5 μg/mL, 所有化合物对水稻白叶枯病菌的EC50为1.1~32.7 μg/mL, 均优于对照药剂叶枯唑(84.1和71.4 µg/mL)和噻菌酮(122.1和84.0 µg/mL). 此外, 4-氟-N-((5-(甲基磺酰基)-1,3,4-噁二唑-2-基)甲基)苯磺酰胺(4)可以通过抑制胞外多糖(EPS)的产生、生物膜的形成以及改变细胞膜的通透性和细胞表面形态, 从而抑制水稻细菌性条斑病菌和水稻白叶枯病菌的正常生长.
陈艺方, 罗鑫, 王余, 邢志富, 彭菊, 陈吉祥. 含磺酰胺结构的1,3,4-噁二唑砜类化合物的设计、合成及抗菌活性研究[J]. 有机化学, 2023, 43(1): 274-284.
Yifang Chen, Xin Luo, Yu Wang, Zhifu Xing, Ju Peng, Jixiang Chen. Design, Synthesis and Antibacterial Activity of 1,3,4-Oxadiazole Sufones Containing Sulfonamide Structure[J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 274-284.
Compd. | Inhibition rate/% | EC50/(µg•mL–1) | |||
---|---|---|---|---|---|
100 µg/mL | 50 µg/mL | 20 µg/mL | 10 µg/mL | ||
1 | 98.5±0.6 | 98.3±0.4 | 97.4±0.5 | 93.7±0.6 | 2.7±0.2 |
2 | 99.1±0.2 | 98.8±0.2 | 98.1±0.6 | 97.5±0.8 | 1.9±0.3 |
3 | 98.5±0.4 | 98.3±0.2 | 97.5±0.3 | 96.3±0.4 | 2.3±0.3 |
4 | 98.8±0.3 | 98.6±0.2 | 98.4±0.5 | 97.5±0.2 | 1.1±0.1 |
5 | 98.6±0.3 | 98.3±0.5 | 98.1±0.3 | 96.7±0.4 | 1.9±0.1 |
6 | 98.6±0.6 | 98.4±0.1 | 98.5±0.4 | 97.4±0.5 | 2.1±0.1 |
7 | 98.7±0.6 | 98.4±0.1 | 97.3±0.6 | 96.0±0.5 | 1.4±0.2 |
8 | 98.7±0.5 | 98.2±0.3 | 98.4±0.8 | 95.2±0.3 | 1.7±0.2 |
9 | 99.6±0.3 | 99.4±0.8 | 98.3±0.2 | 94.1±4.0 | 2.0±0.2 |
10 | 99.1±0.8 | 98.4±0.5 | 97.6±0.6 | 93.2±0.6 | 1.8±0.2 |
11 | 98.8±0.1 | 98.6±0.1 | 97.2±0.1 | 96.2±0.4 | 2.2±0.1 |
12 | 99.4±0.7 | 98.9±0.6 | 97.4±0.6 | 93.7±1.1 | 2.6±0.1 |
13 | 98.7±0.2 | 98.6±0.2 | 98.1±0.5 | 97.4±0.7 | 1.5±0.3 |
14 | 98.7±0.5 | 98.3±0.2 | 97.1±0.3 | 95.0±1.3 | 1.8±0.2 |
15 | 98.6±0.1 | 98.5±0.3 | 89.2±1.2 | 76.9±2.3 | 5.5±0.5 |
16 | 98.7±0.2 | 98.7±0.4 | 94.7±0.6 | 90.9±0.7 | 2.6±0.1 |
17 | 98.9±0.7 | 98.3±0.3 | 95.4±1.5 | 78.5±2.1 | 4.2±0.3 |
18 | 84.0±1.9 | 76.2±1.3 | 45.6±1.4 | 30.2±2.4 | 32.7±1.2 |
19 | 98.7±0.2 | 89.8±1.0 | 80.3±3.2 | 47.0±4.1 | 8.3±0.4 |
20 | 92.2±2.7 | 85.7±0.8 | 47.6±2.6 | 28.4±2.3 | 18.7±1.2 |
21 | 98.1±1.2 | 96.2±0.4 | 97.9±0.6 | 97.3±1.7 | 1.2±0.1 |
Compd. | Inhibition rate/% | EC50/(µg•mL–1) | |||
100 µg/mL | 50 µg/mL | 20 µg/mL | 10 µg/mL | ||
22 | 96.7±2.3 | 96.0±3.0 | 94.2±0.3 | 91.6±0.6 | 2.3±0.2 |
23 | 95.2±1.1 | 91.5±1.2 | 97.8±0.5 | 86.8±0.7 | 2.4±0.1 |
BTa | 62.2±1.8 | 43.5±2.3 | — | — | 71.4±3.9 |
TCb | 56.2±1.1 | 26.9±4.3 | — | — | 84.0±3.1 |
JHXJZc | 99.2±0.3 | 98.7±0.4 | 94.9±1.5 | 81.9±2.3 | 2.1±0.2 |
Compd. | Inhibition rate/% | EC50/(µg•mL–1) | |||
---|---|---|---|---|---|
100 µg/mL | 50 µg/mL | 20 µg/mL | 10 µg/mL | ||
1 | 98.5±0.6 | 98.3±0.4 | 97.4±0.5 | 93.7±0.6 | 2.7±0.2 |
2 | 99.1±0.2 | 98.8±0.2 | 98.1±0.6 | 97.5±0.8 | 1.9±0.3 |
3 | 98.5±0.4 | 98.3±0.2 | 97.5±0.3 | 96.3±0.4 | 2.3±0.3 |
4 | 98.8±0.3 | 98.6±0.2 | 98.4±0.5 | 97.5±0.2 | 1.1±0.1 |
5 | 98.6±0.3 | 98.3±0.5 | 98.1±0.3 | 96.7±0.4 | 1.9±0.1 |
6 | 98.6±0.6 | 98.4±0.1 | 98.5±0.4 | 97.4±0.5 | 2.1±0.1 |
7 | 98.7±0.6 | 98.4±0.1 | 97.3±0.6 | 96.0±0.5 | 1.4±0.2 |
8 | 98.7±0.5 | 98.2±0.3 | 98.4±0.8 | 95.2±0.3 | 1.7±0.2 |
9 | 99.6±0.3 | 99.4±0.8 | 98.3±0.2 | 94.1±4.0 | 2.0±0.2 |
10 | 99.1±0.8 | 98.4±0.5 | 97.6±0.6 | 93.2±0.6 | 1.8±0.2 |
11 | 98.8±0.1 | 98.6±0.1 | 97.2±0.1 | 96.2±0.4 | 2.2±0.1 |
12 | 99.4±0.7 | 98.9±0.6 | 97.4±0.6 | 93.7±1.1 | 2.6±0.1 |
13 | 98.7±0.2 | 98.6±0.2 | 98.1±0.5 | 97.4±0.7 | 1.5±0.3 |
14 | 98.7±0.5 | 98.3±0.2 | 97.1±0.3 | 95.0±1.3 | 1.8±0.2 |
15 | 98.6±0.1 | 98.5±0.3 | 89.2±1.2 | 76.9±2.3 | 5.5±0.5 |
16 | 98.7±0.2 | 98.7±0.4 | 94.7±0.6 | 90.9±0.7 | 2.6±0.1 |
17 | 98.9±0.7 | 98.3±0.3 | 95.4±1.5 | 78.5±2.1 | 4.2±0.3 |
18 | 84.0±1.9 | 76.2±1.3 | 45.6±1.4 | 30.2±2.4 | 32.7±1.2 |
19 | 98.7±0.2 | 89.8±1.0 | 80.3±3.2 | 47.0±4.1 | 8.3±0.4 |
20 | 92.2±2.7 | 85.7±0.8 | 47.6±2.6 | 28.4±2.3 | 18.7±1.2 |
21 | 98.1±1.2 | 96.2±0.4 | 97.9±0.6 | 97.3±1.7 | 1.2±0.1 |
Compd. | Inhibition rate/% | EC50/(µg•mL–1) | |||
100 µg/mL | 50 µg/mL | 20 µg/mL | 10 µg/mL | ||
22 | 96.7±2.3 | 96.0±3.0 | 94.2±0.3 | 91.6±0.6 | 2.3±0.2 |
23 | 95.2±1.1 | 91.5±1.2 | 97.8±0.5 | 86.8±0.7 | 2.4±0.1 |
BTa | 62.2±1.8 | 43.5±2.3 | — | — | 71.4±3.9 |
TCb | 56.2±1.1 | 26.9±4.3 | — | — | 84.0±3.1 |
JHXJZc | 99.2±0.3 | 98.7±0.4 | 94.9±1.5 | 81.9±2.3 | 2.1±0.2 |
Compd. | Inhibition rate/% | EC50/(µg•mL–1) | |||
---|---|---|---|---|---|
100 µg/mL | 50 µg/mL | 20 µg/mL | 10 µg/mL | ||
1 | 98.7±0.4 | 98.3±0.7 | 94.9±0.6 | 67.9±1.7 | 4.5±0.3 |
2 | 98.7±0.6 | 97.7±1.5 | 95.5±0.7 | 88.7±1.5 | 2.9±0.2 |
3 | 99.0±0.3 | 97.5±1.3 | 95.3±1.3 | 70.1±0.9 | 8.4±0.1 |
4 | 98.8±0.4 | 96.6±0.2 | 97.4±0.5 | 96.9±0.3 | 1.3±0.2 |
5 | 99.1±0.1 | 98.7±0.5 | 96.3±0.4 | 95.5±0.7 | 4.0±0.2 |
6 | 98.5±0.6 | 98.4±0.4 | 95.7±0.5 | 71.9±2.4 | 6.9±0.5 |
7 | 99.3±0.6 | 98.0±0.5 | 94.6±0.6 | 89.2±1.1 | 3.1±0.3 |
8 | 98.4±0.8 | 98.2±0.1 | 95.0±0.8 | 90.1±0.4 | 4.3±0.4 |
9 | 98.7±0.2 | 98.0±1.0 | 93.2±0.4 | 88.0±1.1 | 4.6±0.2 |
10 | 98.6±0.6 | 97.2±0.9 | 96.6±0.4 | 92.2±0.7 | 2.4±0.3 |
11 | 99.2±0.1 | 98.4±0.5 | 94.6±0.3 | 88.8±1.2 | 4.1±0.3 |
12 | 98.1±0.8 | 97.2±1.6 | 95.1±1.8 | 86.2±0.6 | 4.5±0.3 |
13 | 99.1±0.7 | 97.5±0.7 | 98.4±0.7 | 90.5±0.6 | 2.8±0.6 |
14 | 99.1±0.2 | 96.0±1.2 | 94.8±0.2 | 76.0±1.3 | 5.2±0.3 |
15 | 99.2±0.2 | 98.6±0.4 | 95.0±0.4 | 84.9±0.9 | 5.3±0.4 |
16 | 97.1±1.9 | 94.7±2.2 | 94.7±0.5 | 89.8±0.6 | 4.8±0.3 |
17 | 98.3±1.6 | 97.3±1.1 | 92.6±1.7 | 61.3±3.1 | 7.0±0.3 |
18 | 42.2±2.9 | 27.2±6.9 | — | — | 99.0±8.9 |
19 | 99.5±0.6 | 98.8±0.3 | 83.8±2.7 | 48.9±3.6 | 8.9±0.7 |
20 | 93.5±2.1 | 63.8±2.7 | 47.5±2.4 | 24.1±2.3 | 22.5±3.4 |
21 | 99.1±0.2 | 97.5±0.8 | 96.5±1.2 | 93.7±1.3 | 2.1±0.3 |
22 | 98.9±0.4 | 97.7±0.2 | 92.5±0.6 | 62.5±0.9 | 6.1±0.6 |
23 | 96.8±1.5 | 90.8±0.3 | 91.3±1.1 | 62.9±0.7 | 7.3±1.4 |
BTa | 52.6±1.5 | 29.8±2.3 | — | — | 84.1±6.5 |
TCb | 38.5±5.2 | 27.7±6.6 | — | — | 122.1±9.5 |
JHXJZc | 97.0±0.2 | 96.7±0.2 | 96.1±0.2 | 54.9±1.5 | 7.9±0.8 |
Compd. | Inhibition rate/% | EC50/(µg•mL–1) | |||
---|---|---|---|---|---|
100 µg/mL | 50 µg/mL | 20 µg/mL | 10 µg/mL | ||
1 | 98.7±0.4 | 98.3±0.7 | 94.9±0.6 | 67.9±1.7 | 4.5±0.3 |
2 | 98.7±0.6 | 97.7±1.5 | 95.5±0.7 | 88.7±1.5 | 2.9±0.2 |
3 | 99.0±0.3 | 97.5±1.3 | 95.3±1.3 | 70.1±0.9 | 8.4±0.1 |
4 | 98.8±0.4 | 96.6±0.2 | 97.4±0.5 | 96.9±0.3 | 1.3±0.2 |
5 | 99.1±0.1 | 98.7±0.5 | 96.3±0.4 | 95.5±0.7 | 4.0±0.2 |
6 | 98.5±0.6 | 98.4±0.4 | 95.7±0.5 | 71.9±2.4 | 6.9±0.5 |
7 | 99.3±0.6 | 98.0±0.5 | 94.6±0.6 | 89.2±1.1 | 3.1±0.3 |
8 | 98.4±0.8 | 98.2±0.1 | 95.0±0.8 | 90.1±0.4 | 4.3±0.4 |
9 | 98.7±0.2 | 98.0±1.0 | 93.2±0.4 | 88.0±1.1 | 4.6±0.2 |
10 | 98.6±0.6 | 97.2±0.9 | 96.6±0.4 | 92.2±0.7 | 2.4±0.3 |
11 | 99.2±0.1 | 98.4±0.5 | 94.6±0.3 | 88.8±1.2 | 4.1±0.3 |
12 | 98.1±0.8 | 97.2±1.6 | 95.1±1.8 | 86.2±0.6 | 4.5±0.3 |
13 | 99.1±0.7 | 97.5±0.7 | 98.4±0.7 | 90.5±0.6 | 2.8±0.6 |
14 | 99.1±0.2 | 96.0±1.2 | 94.8±0.2 | 76.0±1.3 | 5.2±0.3 |
15 | 99.2±0.2 | 98.6±0.4 | 95.0±0.4 | 84.9±0.9 | 5.3±0.4 |
16 | 97.1±1.9 | 94.7±2.2 | 94.7±0.5 | 89.8±0.6 | 4.8±0.3 |
17 | 98.3±1.6 | 97.3±1.1 | 92.6±1.7 | 61.3±3.1 | 7.0±0.3 |
18 | 42.2±2.9 | 27.2±6.9 | — | — | 99.0±8.9 |
19 | 99.5±0.6 | 98.8±0.3 | 83.8±2.7 | 48.9±3.6 | 8.9±0.7 |
20 | 93.5±2.1 | 63.8±2.7 | 47.5±2.4 | 24.1±2.3 | 22.5±3.4 |
21 | 99.1±0.2 | 97.5±0.8 | 96.5±1.2 | 93.7±1.3 | 2.1±0.3 |
22 | 98.9±0.4 | 97.7±0.2 | 92.5±0.6 | 62.5±0.9 | 6.1±0.6 |
23 | 96.8±1.5 | 90.8±0.3 | 91.3±1.1 | 62.9±0.7 | 7.3±1.4 |
BTa | 52.6±1.5 | 29.8±2.3 | — | — | 84.1±6.5 |
TCb | 38.5±5.2 | 27.7±6.6 | — | — | 122.1±9.5 |
JHXJZc | 97.0±0.2 | 96.7±0.2 | 96.1±0.2 | 54.9±1.5 | 7.9±0.8 |
[1] |
Ristaino, J. B.; Anderson, P. K.; Bebber, D. P.; Brauman, K. A.; Cunniffe, N.; Fedoroff, N. V.; Finegold, C.; Garrett, K. A.; Gilligan, C. A.; Jones, C. M.; Martin, M. D.; MacDonald, G. K.; Neenan, P.; Schmale, D. G.; Tateosian, L.; Wei, Q. S. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2022239118.
|
[2] |
Xiang, J.; Liu, D. Y.; Chen, J. X.; Hu, D. Y.; Song, B. A. Pestic. Biochem. Physiol. 2020, 170, 104695.
doi: S0048-3575(20)30190-5 pmid: 32980058 |
[3] |
Wu, S. K.; Shi, J.; Chen, J. X.; Hu, D. Y.; Zang, L. S.; Song, B. A. J. Agric. Food Chem. 2021, 69, 4645.
doi: 10.1021/acs.jafc.1c01204 |
[4] |
Shamsunnaher.; Chen, D.; Zhang, X. X.; Wu, X. X.; Huang, X. E.; Song, W. Y. Sci. Rep. 2020, 10, 16938.
doi: 10.1038/s41598-020-73128-7 pmid: 33037245 |
[5] |
Zhu, X. F.; Xu, Y.; Peng, D.; Zhang, Y.; Huang, T. T.; Wang, J. X.; Zhou, M. G. Crop Prot. 2013, 47, 24.
doi: 10.1016/j.cropro.2012.12.026 |
[6] |
Liang, X. Y.; Duan, Y. B.; Yu, X. Y.; Wang, J. X.; Zhou, M. G. Pest Manage. Sci. 2016, 72, 997.
doi: 10.1002/ps.4080 |
[7] |
Wu, Q.; Cai, H.; Yuan, T.; Li, S. Y.; Gan, X. H.; Song, B. A. Med. Chem. Lett. 2020, 30, 127113.
doi: 10.1016/j.bmcl.2020.127113 |
[8] |
Zhou, X.; Feng, Y. M.; Qi, P. Y.; Shao, W. B.; Wu, Z. B.; Liu, L. W.; Wang, Y.; Ma, H. D.; Wang, P. Y.; Li, Z.; Yang, S. J. Agric. Food Chem. 2020, 68, 8132.
doi: 10.1021/acs.jafc.0c01565 |
[9] |
Ma, S. C.; Jiang, W. Q.; Li, Q.; Li, T.; Wu, W. J.; Bai, H. Y.; Shi, B. J. Agric. Food Chem. 2021, 69, 11572.
doi: 10.1021/acs.jafc.1c00088 |
[10] |
Xu, W. M.; Han, F. F.; He, M.; Hu, D. Y.; He, J.; Yang, S.; Song, B. J. Agric. Food Chem. 2012, 60, 1036.
doi: 10.1021/jf203772d |
[11] |
Li, P.; Shi, L.; Yang, X.; Yang, L.; Chen, X. W.; Wu, F.; Shi, Q. C.; Xu, W. M.; He, M.; Hu, D. Y.; Song, B. A. Bioorg. Med. Chem. Lett. 2014, 24, 1677.
doi: 10.1016/j.bmcl.2014.02.060 |
[12] |
Li, P.; Hu, D. Y.; Xie, D. D.; Chen, J. X.; Jin, L. H.; Song, B. A. J. Agric. Food Chem. 2018, 66, 3093.
doi: 10.1021/acs.jafc.7b06061 |
[13] |
Jiang, S. C.; Tang, X.; Chen, M.; He, J.; Su, S. J.; Liu, L. W.; He, M.; Xue, W. Pest Manage. Sci. 2020, 76, 853.
doi: 10.1002/ps.5587 |
[14] |
Eldesouky, H. E.; Mayhoub, A.; Hazbun, T. R.; Seleem, M. N. Antimicrob. Agents Chemother. 2018, 62, e00701.
|
[15] |
Zhang, J.; He, F. C.; Chen, J. X.; Wang, Y. J.; Yang, Y. Y.; Hu, D. Y.; Song, B. A. J. Agric. Food Chem. 2021, 69, 5575.
doi: 10.1021/acs.jafc.0c06612 |
[16] |
Elgemeie, G. H.; Azzam, R. A.; Elsayed, R. E. Med. Chem. Res. 2019, 28, 1099.
doi: 10.1007/s00044-019-02378-6 |
[17] |
Wei, C. Q.; Huang, J. J.; Luo, Y. Q.; Wang, S. B.; Wu, S. K.; Xing, Z. F.; Chen, J. X. Pestic. Biochem. Phys. 2021, 175, 104857.
doi: 10.1016/j.pestbp.2021.104857 |
[18] |
Shi, L.; Li, P.; Wang, W. L.; Gao, M. N.; Wu, Z. X.; Song, X. P.; Hu, D. Y. Molecules 2015, 20, 11660.
doi: 10.3390/molecules200711660 pmid: 26114927 |
[19] |
Chen, Y. F.; Luo, X.; Wang, Y.; Xing, Z. F.; Chen, J. X. J. Heterocycl. Chem. 2022, 59, 1160.
doi: 10.1002/jhet.4455 |
[20] |
Wei, C. Q.; Huang, J. J.; Wang, Y.; Chen, Y. F.; Luo, X.; Wang, S. B.; Wu, Z. X.; Xing, Z. F.; Chen, J. X. Int. J. Mol. Sci. 2021, 22, 12953.
doi: 10.3390/ijms222312953 |
[21] |
Wang, S. B.; Chen, J. X.; Shi, J.; Wang, Z. J.; Hu, D. Y.; Song, B. A. J. Agric. Food Chem. 2021, 69, 11804.
doi: 10.1021/acs.jafc.1c03087 |
[22] |
Wu, Z. B.; Shi, J.; Chen, J. X.; Hu, D. Y.; Song, B. A. J. Agric. Food Chem. 2021, 69, 8660.
doi: 10.1021/acs.jafc.1c01626 |
[23] |
Liu, H. W.; Ji, Q. T.; Ren, G. G.; Wang, F.; Su, F.; Wang, P. Y.; Zhou, X.; Wu, Z. B.; Li, Z.; Yang, S. J. Agric. Food Chem. 2020, 68, 12558.
doi: 10.1021/acs.jafc.0c02528 |
[24] |
Chen, J. X.; Luo, Y. Q.; Wei, C. Q.; Wu, S. K.; Wu, R.; Wang, S. B.; Hu, D. Y.; Song, B. A. Pest Manage. Sci. 2020, 76, 3188.
doi: 10.1002/ps.5873 |
[25] |
Yi, C. F.; Chen, J. X.; Wei, C. Q.; Wu, S. K.; Wang, S. B.; Hu, D. Y.; Song, B. A. Bioorg. Med. Chem. Lett. 2020, 30, 126814.
doi: 10.1016/j.bmcl.2019.126814 |
[26] |
Mou, H. L.; Shi, J.; Chen, J. X.; Hu, D. Y. Pestic. Biochem. Phys. 2021, 178, 104913.
doi: 10.1016/j.pestbp.2021.104913 |
[27] |
Liu, T.; Shi, J.; Liu, D. Y.; Zhang, D. S.; Song, B. A.; Hu, D. Y. J. Agric. Food Chem. 2022, 70, 99.
doi: 10.1021/acs.jafc.1c04715 |
[28] |
Li, H. B.; Ming, X. J.; Xu, D.; Mo, H. Z.; Liu, Z. B.; Hu, L. B.; Zhou, X. H. J. Agric. Food Chem. 2021, 69, 11733.
|
[1] | 江港钟, 林嘉欣, 鲍晓光, 万小兵. 亚硝酸异戊酯活化伯磺酰胺制备磺酰溴与磺酰氯[J]. 有机化学, 2024, 44(2): 533-549. |
[2] | 冯康博, 陈炯, 古双喜, 王海峰, 陈芬儿. 全连续流反应技术在药物合成中的新进展(2019~2022)[J]. 有机化学, 2024, 44(2): 378-397. |
[3] | 李鹏辉, 谢青洋, 万福贤, 张元红, 姜林. 含环丙基的新型取代嘧啶-5-甲酰胺的合成及杀菌活性研究[J]. 有机化学, 2024, 44(2): 650-656. |
[4] | 邹发凯, 王能中, 姚辉, 王慧, 刘明国, 黄年玉. 1β-/3R-芳基硫代糖的区域与立体选择性合成[J]. 有机化学, 2024, 44(2): 593-604. |
[5] | 李路瑶, 贺忠文, 张振国, 贾振华, 罗德平. 三芳基碳正离子在有机合成中的应用[J]. 有机化学, 2024, 44(2): 421-437. |
[6] | 梅青刚, 李清寒. 可见光促进C(3)(杂)芳硫基吲哚化合物的合成研究进展[J]. 有机化学, 2024, 44(2): 398-408. |
[7] | 杨维清, 葛宴兵, 陈元元, 刘萍, 付海燕, 马梦林. 1,8-萘酰亚胺衍生物的设计、合成及其对半胱氨酸的识别研究[J]. 有机化学, 2024, 44(1): 180-194. |
[8] | 黄志友, 杨平, 何波, 欧文霞, 袁思雨. 吗啉磺酰胺化合物的设计、合成及其抑制大豆萌芽活性的研究[J]. 有机化学, 2024, 44(1): 309-315. |
[9] | 于士航, 刘嘉威, 安碧玉, 边庆花, 王敏, 钟江春. 黑腹尼虎天牛接触性信息素的不对称合成[J]. 有机化学, 2024, 44(1): 301-308. |
[10] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
[11] | 陈珊, 陈志林, 胡琼, 蒙艳双, 黄悦, 陶萍芳, 卢丽如, 黄国保. 含双硫脲基团分子钳在非极性溶剂中识别中性分子[J]. 有机化学, 2024, 44(1): 277-281. |
[12] | 王化坤, 任晓龙, 宣宜宁. 卤盐催化的α,β-环氧羧酸酯与异氰酸酯[3+2]环加成反应研究[J]. 有机化学, 2024, 44(1): 251-258. |
[13] | 金玉坤, 任保轶, 梁福顺. 可见光介导的三氟甲基的选择性C-F键断裂及其在偕二氟类化合物合成中的应用[J]. 有机化学, 2024, 44(1): 85-110. |
[14] | 马翠云, 罗海澜, 张福华, 郭丹, 陈树兴, 王飞. 3-Pyrrolyl BODIPY的绿色生物合成、光物理性质及应用研究[J]. 有机化学, 2024, 44(1): 216-223. |
[15] | 王博珍, 张婕, 粘春惠, 金茗茗, 孔苗苗, 李物兰, 何文斐, 吴建章. 含有3,4-二氯苯基的酰胺类化合物的合成及抗肿瘤活性研究[J]. 有机化学, 2024, 44(1): 232-241. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||