有机化学 ›› 2023, Vol. 43 ›› Issue (3): 1146-1156.DOI: 10.6023/cjoc202210031 上一篇 下一篇
研究论文
收稿日期:
2022-10-26
修回日期:
2022-11-30
发布日期:
2022-12-21
通讯作者:
宋秋玲
基金资助:
Hua Huanga, Xin Lia, Jianke Sua, Qiuling Songa,b,c()
Received:
2022-10-26
Revised:
2022-11-30
Published:
2022-12-21
Contact:
Qiuling Song
Supported by:
文章分享
开发了一种新型的无需过渡金属参与的合成1-烷基-3-(2-氧代-2-芳基/烷基-乙基)吲哚酮的方法. 这项工作揭示了氧吲哚骨架可以直接由邻乙烯基苯胺和市售的卤代二氟烷基试剂通过C—N裂解/新C—N键和C—C键形成来构建. 该反应具有高效和优异的官能团兼容性, 在药物分子和天然产物的后期修饰中具有巨大潜力.
黄华, 李鑫, 苏建科, 宋秋玲. 二氟卡宾参与下从邻乙烯基苯胺出发构建3-取代吲哚酮类化合物[J]. 有机化学, 2023, 43(3): 1146-1156.
Hua Huang, Xin Li, Jianke Su, Qiuling Song. Difluorocarbene-Enabled Synthesis of 3-Substituted-2-oxoindoles from o-Vinylanilines[J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1146-1156.
Entry | Base | [∶CF2] | Solvent | T/℃ | Yieldb/% |
---|---|---|---|---|---|
1 | K2CO3 | 2a | CH3CN | 90 | 76 |
2 | KOH | 2a | CH3CN | 90 | 45 |
3 | Na2CO3 | 2a | CH3CN | 90 | 61 |
4 | Na3PO4 | 2a | CH3CN | 90 | 56 |
5 | K3PO4 | 2a | CH3CN | 90 | 93 (90c) |
6 | K3PO4 | 2a | THF | 90 | 15 |
7 | K3PO4 | 2a | DME | 90 | Trace |
8 | K3PO4 | 2a | Toluene | 90 | n.r. |
9 | K3PO4 | 2b | CH3CN | 90 | 88 |
10 | K3PO4 | 2c | CH3CN | 90 | 66 |
11 | K3PO4 | 2d | CH3CN | 90 | Trace |
12 | K3PO4 | 2e | CH3CN | 90 | 49 |
13 | K3PO4 | 2a | CH3CN | 80 | 81 |
14 | K3PO4 | 2a | CH3CN | 100 | 93 |
15 | K3PO4 | 2a | CH3CN | 110 | 88 |
Entry | Base | [∶CF2] | Solvent | T/℃ | Yieldb/% |
---|---|---|---|---|---|
1 | K2CO3 | 2a | CH3CN | 90 | 76 |
2 | KOH | 2a | CH3CN | 90 | 45 |
3 | Na2CO3 | 2a | CH3CN | 90 | 61 |
4 | Na3PO4 | 2a | CH3CN | 90 | 56 |
5 | K3PO4 | 2a | CH3CN | 90 | 93 (90c) |
6 | K3PO4 | 2a | THF | 90 | 15 |
7 | K3PO4 | 2a | DME | 90 | Trace |
8 | K3PO4 | 2a | Toluene | 90 | n.r. |
9 | K3PO4 | 2b | CH3CN | 90 | 88 |
10 | K3PO4 | 2c | CH3CN | 90 | 66 |
11 | K3PO4 | 2d | CH3CN | 90 | Trace |
12 | K3PO4 | 2e | CH3CN | 90 | 49 |
13 | K3PO4 | 2a | CH3CN | 80 | 81 |
14 | K3PO4 | 2a | CH3CN | 100 | 93 |
15 | K3PO4 | 2a | CH3CN | 110 | 88 |
[1] |
(a) Peng, Y.; Keenan, S. M.; Welsh, W. J. J. Mol. Graphics Modell. 2005, 24, 72.
doi: 10.1016/j.jmgm.2005.06.002 pmid: 15481979 |
(b) Bhattacharjee, A. K.; Geyer, J. A.; Woodard, C. L.; Kathcart, A. K.; Nichols, D. A.; Prigge, S. T.; Li, Z.; Mott, B. T.; Waters, N. C. J. Med. Chem. 2004, 47, 5418.
pmid: 15481979 |
|
(c) Woodard, C. L.; Li, Z.; Kathcart, A. K.; Terrell, J.; Gerena, L.; Lopez-Sanchez, M.; Kyle, D. E.; Bhattacharjee, A. K.; Nichols, D. A.; Ellis, W.; Prigge, S. T.; Geyer, J. A.; Waters, N. C. J. Med. Chem. 2003, 46, 3877.
doi: 10.1021/jm0300983 pmid: 15481979 |
|
(d) Klöck, C.; Jin, X.; Choi, K.; Khosla, C.; Madrid, P. B.; Spencer, A.; Raimundo, B. C.; Boardman, P.; Lanza, G.; Griffin, J. H. Bioorg. Med. Chem. Lett. 2011, 21, 2692.
doi: 10.1016/j.bmcl.2010.12.037 pmid: 15481979 |
|
(e) Matheson, C. J.; Casalvieri, K. A.; Backos, D. S.; Minhajuddin, M.; Jordan, C. T.; Reigan, P. Eur. J. Med. Chem. 2020, 197, 112316.
doi: 10.1016/j.ejmech.2020.112316 pmid: 15481979 |
|
(f) Edupuganti, R.; Taliaferro, J. M.; Wang, Q.; Xie, X.; Cho, E. J.; Vidhu, F.; Ren, P.; Anslyn, E. V.; Bar-tholomeusz, C.; Dalby, K. N. Bioorg. Med. Chem. 2017, 25, 2609.
doi: 10.1016/j.bmc.2017.03.018 pmid: 15481979 |
|
[2] |
Yong, S. R.; Ung, A. T.; Pyne, S. G.; Skelton, B. W.; White, A. H. Tetrahedron Lett. 2007, 63, 5579.
doi: 10.1016/j.tet.2007.04.028 |
[3] |
Yasuda, D.; Takahashi, K.; Ohe, T.; Nakamura, S.; Mashino, T. Bioorg. Med. Chem. 2013, 21, 7709.
doi: 10.1016/j.bmc.2013.10.021 |
[4] |
Lai, J. Y.; Cox, P. J.; Patel, R.; Sadiq, S.; Aldous, D. J.; Thurai- ratnam, S.; Smith, K.; Wheeler, D.; Jagpal, S.; Parveen, S.; Fenton, G.; Harrison, T. K.; McCarthy, C.; Bamborough, P. Bioorg. Med. Chem. 2003, 13, 3111.
doi: 10.1016/S0960-894X(03)00658-9 |
[5] |
(a) Saito, N.; Kanno, Y.; Yamashita, N.; Degawa, M.; Yoshinari, K.; Nemoto, K. Biol. Pharm. Bull. 2021, 44, 571.
doi: 10.1248/bpb.b20-00961 pmid: 23716882 |
(b) Sano, M.; Ichimaru, Y.; Kurita, M.; Hayashi, E.; Homma, T.; Saito, H.; Masuda, S.; Nemoto, N.; Hemmi, A.; Suzuki, T.; Miyairi, S.; Hao, H. Cancer Lett. 2017, 397, 72.
doi: 10.1016/j.canlet.2017.03.031 pmid: 23716882 |
|
(c) Xie, K.; Chen, R.; Chen, D.; Li, J.; Wang, R.; Yang, L.; Dai, J. Adv. Synth. Catal. 2017, 359, 603.
doi: 10.1002/adsc.v359.4 pmid: 23716882 |
|
(d) Huang, M.; Wang, L.; Zeng, S.; Qiu, Q.; Zou, Y.; Shi, M.; Xu, H.; Liang, L. Inflammation Res. 2017, 66, 433.
doi: 10.1007/s00011-017-1027-5 pmid: 23716882 |
|
(e) Otlowska, O.; Slebioda, M.; Kot-Wasik, A.; Karczewski, J.; SLiwka-KaszynSka, M. Molecules 2018, 23, 339.
doi: 10.3390/molecules23020339 pmid: 23716882 |
|
(f) Aouidate, A.; Ghaleb, A.; Ghamali, M.; Chtita, S.; Ousaa, A.; Choukrad, M.; Sbai, A.; Bouachrine, M.; Lakhlifi, T. Struct. Chem. 2018, 29, 1609.
doi: 10.1007/s11224-018-1134-0 pmid: 23716882 |
|
(g) Aourz, N.; Serruys, A. K.; Chabwine, J. N.; Balegamire, P. B.; Afrikanova, T.; Edrada-Ebel, R.; Grey, A. I.; Kamuhabwa, A. R.; Walrave, L.; Esguerra, C. V.; Leuven, F. V.; Witte, P. A. M. D.; Smolders, I.; Crawford, A. D. ACS Chem. Neurosci. 2019, 10, 1992.
doi: 10.1021/acschemneuro.8b00281 pmid: 23716882 |
|
(h) Xu, X.; Wei, Y.; Guo, Q.; Zhao, S.; Liu, Z.; Xiao, T.; Liu, Y.; Qiu, Y.; Hou, Y.; Zhang, G.; Wang, K. J. Pharmacol. Exp. Ther. 2018, 365, 624.
doi: 10.1124/jpet.118.248351 pmid: 23716882 |
|
(i) Nguyen, D. T.; Truong, G. N.; Vuong, V. T.; Van, T. N.; Manh, C. N.; Dao, C. T.; Thuy, T. D. T.; Van, C. L.; Khac, V. T. Chem. Pap. 2019, 73, 1083.
doi: 10.1007/s11696-018-0659-4 pmid: 23716882 |
|
(j) Thakur, R. K.; Joshi, P.; Upadhyaya, K.; Singh, K.; Sharma, G.; Shukla, S. K.; Tripathi, R.; Tripathi, R. P. Eur. J. Med. Chem. 2019, 162, 448.
doi: S0223-5234(18)30962-0 pmid: 23716882 |
|
(k) Tanaka, T.; Saito, H.; Miyairi, S.; Kobayashi, S. Biochem. Biophys. Res. Commun. 2021, 544, 15.
doi: 10.1016/j.bbrc.2021.01.048 pmid: 23716882 |
|
(l) Gupta, A. K.; Kalpana, S.; Malik, J. K. Indian J. Pharm. Sci. 2012, 74, 481.
doi: 10.4103/0250-474X.108445 pmid: 23716882 |
|
(m) Dawar, M.; Utreja, D.; Rani, R.; Kaur, K. Lett. Org. Chem. 2020, 17, 199.
doi: 10.2174/1570178616666190724120308 pmid: 23716882 |
|
[6] |
(a) Sohail, M.; Tanaka, F. Angew. Chem., Int. Ed. 2021, 60, 21256.
doi: 10.1002/anie.202108734 pmid: 25575040 |
(b) Vive-kanand, T.; Vinoth, P.; Agieshkumar, B.; Sampath, N.; Sudalai, A.; Menéndez, J. C.; Sridharan, V. Green Chem. 2015, 17, 3415.
doi: 10.1039/C5GC00365B pmid: 25575040 |
|
(c) Zhou, Z.; Wang, Z.; Zhou, Y.; Xiao, W.; Ouyang, Q.; Du, W.; Chen, Y. Nat. Chem. 2017, 9, 590.
doi: 10.1038/nchem.2698 pmid: 25575040 |
|
(d) Basu, S.; Mukhopadhyay, C. Eur. J. Org. Chem. 2018, 2018, 1496.
doi: 10.1002/ejoc.v2018.12 pmid: 25575040 |
|
(e) Parveen, I.; Khan, D.; Ahmed N. Eur. J. Org. Chem. 2019, 2019, 759.
doi: 10.1002/ejoc.201801385 pmid: 25575040 |
|
(f) Halskov, K. S.; Kniep, F.; Lauridsen, V. H.; Iversen, E. H.; Donslund, B. S.; Jørgensen K. A. J. Am. Chem. Soc. 2015, 137, 1685.
doi: 10.1021/ja512573q pmid: 25575040 |
|
(g) Prieto, L.; Sánchez-Díez, E.; Uria, U.; Reyes, E.; Carrillo, L.; Vicario, L. J. Adv. Synth. Catal. 2017, 359, 1678.
doi: 10.1002/adsc.v359.10 pmid: 25575040 |
|
(h) Faita, G.; Mella, M.; Righetti, P.; Tacconi, G. Tetrahedron 1994, 50, 10955.
doi: 10.1016/S0040-4020(01)85706-9 pmid: 25575040 |
|
(i) Zhao, B.; Du, D. Adv. Synth. Catal. 2019, 361, 3412.
doi: 10.1002/adsc.v361.14 pmid: 25575040 |
|
(j) Li, D.; Liu, K.; Jiang, Y.; Gu, Y.; Zhang, J.; Zhao, L. Org. Lett. 2018, 20, 1122.
doi: 10.1021/acs.orglett.8b00045 pmid: 25575040 |
|
(k) Fu, Y.; Hu, S.; Li, S.; Li, X. Synth. Commun. 2019, 49, 1067.
doi: 10.1080/00397911.2019.1587779 pmid: 25575040 |
|
[7] |
(a) Du, Y.; Li, J.; Chen, K.; Wu, C.; Zhou, Y.; Liu, H. J. Org. Chem. 2017, 13, 1342.
pmid: 34021187 |
(b) Biswas, P.; Mandal, S.; Guin, J. Org. Lett. 2020, 22, 4294.
doi: 10.1021/acs.orglett.0c01336 pmid: 34021187 |
|
(c) Fujita, S.; Imagawa, K.; Yamaguchi, S.; Yamasaki, J.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T. Sci. Rep. 2021, 11, 10673.
doi: 10.1038/s41598-021-89561-1 pmid: 34021187 |
|
[8] |
(a) Ma, X.; Song, Q. Chem. Soc. Rev. 2020, 49, 9197.
doi: 10.1039/D0CS00604A pmid: 31548670 |
(b) Dilman, A. D.; Levin, V. V. Acc. Chem. Res. 2018, 51, 1272.
doi: 10.1021/acs.accounts.8b00079 pmid: 31548670 |
|
(c) Liang, H.; Liu, R.; Zhou, M.; Fu, Y.; Ni, C.; Hu, J. Org. Lett. 2020, 22, 7047.
doi: 10.1021/acs.orglett.0c02688 pmid: 31548670 |
|
(d) Smirnov, V. O.; Volodin, A. D.; Korlyukov, A. A.; Dilman, A. D. Angew. Chem.,Int. Ed. 2020, 59, 12428.
doi: 10.1002/anie.v59.30 pmid: 31548670 |
|
(e) Wang, Y.; Mu, S.; Li, X.; Song, Q. Chin. Chem. Lett. 2020, 33, 1511.
doi: 10.1016/j.cclet.2021.08.089 pmid: 31548670 |
|
(f) Ai, H.-J.; Ma, X.; Song, Q.; Wu, X.-F. Sci. China: Chem. 2021, 64, 1630.
doi: 10.1007/s11426-021-1040-2 pmid: 31548670 |
|
(g) Zhang, X.; Feng, Z.; Min, Q. Org. Lett. 2016, 18, 44.
doi: 10.1021/acs.orglett.5b03206 pmid: 31548670 |
|
(h) Zhang, X.; Feng, Z.; Min, Q.; Fu, X.; An, L. Nat. Chem. 2017, 9, 918.
doi: 10.1038/nchem.2746 pmid: 31548670 |
|
(i) Zhang, X.; Houk, K.; Fu, X.; Xue, X.; Zhang, X.; Xiao, Y.; Zhang, S.; Guo, Y. Nat. Chem. 2019, 11, 948.
doi: 10.1038/s41557-019-0331-9 pmid: 31548670 |
|
[9] |
Hu, J.; Han, X.; Yuan, Y.; Shi, Z. Angew. Chem., Int. Ed. 2017, 56, 13342.
|
[10] |
(a) Su, J.; Ma, X.; Ou, Z.; Song, Q. ACS Cent. Sci. 2020, 6, 1819.
doi: 10.1021/acscentsci.0c00779 |
(b) Zhang, G.; Shi, Q.; Hou, M.; Yang, K.; Wang, S.; Wang, S.; Li, W.; Li, C.; Qiu, J.; Xu, H.; Zhou, L.; Wang, C.; Li, S.-J.; Lan, Y.; Song, Q. CCS Chem. 2021, 3, 1613.
|
|
(c) Su, J.; Hu, X.; Huang, H.; Guo, Y.; Song, Q. Nat. Commun. 2021, 12, 4986.
doi: 10.1038/s41467-021-25313-z |
|
(d) Deng, S.; Song, Q. Chem. Sci. 2019, 10, 6828.
doi: 10.1039/C9SC01333D |
|
(e) Ma, X.; Zhou, Y.; Song, Q. Org. Lett. 2018, 20, 4777.
doi: 10.1021/acs.orglett.8b01888 |
|
(f) Ma, X.; Mai, S.; Zhou, Y.; Cheng, G.-J.; Song, Q. Chem. Commun. 2018, 54, 8960.
doi: 10.1039/C8CC04298E |
|
(g) Ma, X.; Su, J.; Zhang, X.; Song, Q. iScience 2019, 19, 1.
doi: 10.1016/j.isci.2019.07.005 |
|
(h) Kim, Y.; Heo, J.; Kim, D.; Chang, S.; Seo, S. Nat. Commun. 2020, 11, 4761.
doi: 10.1038/s41467-020-18557-8 |
|
(i) Mita, T., Harabuchi, Y.; Maeda, S. Chem. Sci. 2020, 11, 7569.
doi: 10.1039/D0SC02089C |
|
(j) Nawrot, E.; Joñczyk, A. J. Org. Chem. 2007, 72, 10258.
doi: 10.1021/jo701735n |
|
(k) Ma, X.; Huang, H.; Su, J.; Song, Z.; Tamaki, N.; Song, Q. Chin. J. Chem. 2020, 38, 63.
doi: 10.1002/cjoc.v38.1 |
|
(l) Sheng, H.; Su, J.; Li, X.; Song, Q. CCS Chem. 2022, 4, 3820.
doi: 10.31635/ccschem.022.202101576 |
|
[11] |
(a) Verniest, G.; Colpaert, F.; Hende, E. V.; Kimpe, N. D. J. Org. Chem. 2007, 72, 8569.
pmid: 23355490 |
(b) Gilman, H.; Yale, H. L. J. Am. Chem. Soc. 1950, 72, 3646.
doi: 10.1021/ja01164a090 pmid: 23355490 |
|
(c) Hende, E. V.; Verniest, G.; Surmont, R.; Kimpe, N. D. Org. Lett. 2007, 9, 2935.
pmid: 23355490 |
|
(d) Eisenstein, O.; Milani, J.; Perutz, R. N. Chem. Rev. 2017, 117, 8710.
doi: 10.1021/acs.chemrev.7b00163 pmid: 23355490 |
|
(e) Whittlesey, M. K.; Peris, E. ACS Catal. 2014, 4, 3152.
doi: 10.1021/cs500887p pmid: 23355490 |
|
(f) Kuehnel, M. F.; Lentz, D.; Braun, T. Angew. Chem., Int. Ed. 2013, 52, 3328.
doi: 10.1002/anie.201205260 pmid: 23355490 |
|
(g) Lv, H.; Cai, Y.-B.; Zhang, J.-L. Angew. Chem., Int. Ed. 2013, 52, 3203.
doi: 10.1002/anie.201208364 pmid: 23355490 |
[1] | 涂志, 余金生, 周剑. 溴二氟甲基三甲基硅烷的合成及其在有机合成中的应用[J]. 有机化学, 2023, 43(10): 3491-3507. |
[2] | 秦文兵, 陈嘉怡, 熊威, 刘国凯. 亲电二氟甲基试剂及其应用研究进展[J]. 有机化学, 2020, 40(10): 3177-3195. |
[3] | 王为强, 余秦伟, 张前, 李江伟, 惠丰, 杨建明, 吕剑. 二氟甲基化方法研究进展[J]. 有机化学, 2018, 38(7): 1569-1585. |
[4] | 陈庆云. 抑铬雾剂F-53的研制带动了有机氟化学的发展[J]. 有机化学, 2001, 21(11): 805-809. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||