有机化学 ›› 2023, Vol. 43 ›› Issue (6): 2040-2052.DOI: 10.6023/cjoc202210015 上一篇 下一篇
综述与进展
收稿日期:
2022-10-17
修回日期:
2022-12-19
发布日期:
2023-01-05
基金资助:
Jiamin Ma, Jiaoxiong Li, Qiansen Meng, Xianghua Zeng*()
Received:
2022-10-17
Revised:
2022-12-19
Published:
2023-01-05
Contact:
E-mail: Supported by:
文章分享
近年来, 利用亚磺酸钠、磺酰肼、亚磺酸、磺酰氯、二甲基亚砜(DMSO)或双(二氧化硫)-1,4-二氮杂双环[2.2.2]辛烷加合物(DABSO)为砜基源, 在光催化、电催化、金属催化和氧化体系中易形成砜自由基的特点, 由砜自由基介导炔烃的双官能化反应合成烯基砜取得了快速的发展. 按照构建C—X键的不同, 分类总结了各种反应体系, 并对存在的难点和未来发展的方向进行了展望.
马佳敏, 李姣兄, 孟千森, 曾祥华. 炔烃的自由基砜基化反应研究进展[J]. 有机化学, 2023, 43(6): 2040-2052.
Jiamin Ma, Jiaoxiong Li, Qiansen Meng, Xianghua Zeng. Advances on the Radical Sulfonation of Alkynes[J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2040-2052.
[1] |
(a) Meadows, D. C.; Sanchez, T.; Neamati, N.; North, T. W.; Gervay-Hague, J. Bioorg. Med. Chem. 2007, 15, 1127.
doi: 10.1016/j.bmc.2006.10.017 pmid: 24467268 |
(b) Dunny, E.; Doherty, W.; Evans, P.; Malthouse, J. P. G.; Nolan, D.; Knox, A. J. S. J. Med. Chem. 2013, 56, 6638.
doi: 10.1021/jm400294w pmid: 24467268 |
|
(c) Woo, S. Y.; Kim, J. H.; Moon, M. K.; Han, S. H.; Yeon, S. K.; Choi, J. W.; Jang, B. K.; Song, H. J.; Kang, Y. G.; Kim, J. W.; Lee, J.; Kim, D. J.; Hwang, O.; Park, K. D. J. Med. Chem. 2014, 57, 1473.
doi: 10.1021/jm401788m pmid: 24467268 |
|
(d) Noshi, M. N.; Elawa, A.; Torres, E.; Fuchs, P. L. J. Am. Chem. Soc. 2007, 129, 11242.
doi: 10.1021/ja072890p pmid: 24467268 |
|
(e) Mulina, M. O.; Ilovaisky, I. A.; Parshin, D. V.; Terent'ev, O. A. Adv. Synth. Catal. 2020, 362, 4579.
doi: 10.1002/adsc.v362.21 pmid: 24467268 |
|
(f) Lv, Y.; Cui, H.; Meng, N.; Yue, H.; Wei, W. Chin. Chem. Lett. 2022, 33, 97.
doi: 10.1016/j.cclet.2021.06.068 pmid: 24467268 |
|
(g) Wang, X.; Meng, J.; Zhao, D.; Tang, S. Sun, K. Chin. Chem. Lett. 2023, 34, 107736.
doi: 10.1016/j.cclet.2022.08.016 pmid: 24467268 |
|
[2] |
(a) Fang, Y.; Luo, Z.; Xu, X. RSC Adv. 2016, 6, 59661.
doi: 10.1039/C6RA10731A |
(b) Hu, F.; Gao, W.; Chang, H.; Li, X.; Wei, W. Chin. J. Org. Chem. 2015, 35, 1848. (in Chinese)
doi: 10.6023/cjoc201504039 |
|
(胡飞, 高文超, 常宏宏, 李兴, 魏文珑, 有机化学, 2015, 35, 1848.)
doi: 10.6023/cjoc201504039 |
|
[3] |
Truce, E. W.; Wolf, C. G. J. Org. Chem. 1971, 36, 1727.
doi: 10.1021/jo00812a001 |
[4] |
Kobayashi, T.; Tanaka, Y.; Ohtani, T.; Kinoshita, H.; Inomata, K.; Kotake, H. Chem. Lett. 1987, 16, 1209.
doi: 10.1246/cl.1987.1209 |
[5] |
Nair, V.; Augustine, A.; George, T. G.; Nair, L. G. Tetrahedron Lett. 2001, 42, 6763.
doi: 10.1016/S0040-4039(01)01377-6 |
[6] |
Katrun, P.; Chiampanichayakul, S.; Korworapan, K.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Kuhakarn, C. Eur. J. Org. Chem. 2010, 5633.
|
[7] |
Li, X.; Xu, X.; Shi, X. Tetrahedron Lett. 2013, 54, 3071.
doi: 10.1016/j.tetlet.2013.03.117 |
[8] |
Wei, W.; Wen, J.; Yang, D.; Jing, H.; You, J.; Wang, H. RSC Adv. 2015, 5, 4416.
doi: 10.1039/C4RA13998D |
[9] |
Luo, D.; Min, L.; Zheng, W.; Shan, L.; Wang, X.; Hu, Y. Chin. Chem. Lett. 2020, 31, 1877.
doi: 10.1016/j.cclet.2019.12.040 |
[10] |
Sun, Y.; Abdukader, A.; Lu, D.; Zhang, H.; Liu, C. Green Chem. 2017, 19, 1255.
doi: 10.1039/C6GC03387C |
[11] |
Zhou, P.; Pan, Y.; Tan, H.; Liu, W. J. Org. Chem. 2019, 84, 15662.
doi: 10.1021/acs.joc.9b02302 |
[12] |
Ma, Y.; Wang, K.; Zhang, D.; Sun, P. Adv. Synth. Catal. 2019, 361, 597.
doi: 10.1002/adsc.v361.3 |
[13] |
Zhou, C.; Zeng, X. Synthesis 2021, 53, 4614.
doi: 10.1055/a-1559-3346 |
[14] |
Amiel, Y. J. Org. Chem. 1974, 39, 3867.
doi: 10.1021/jo00940a014 |
[15] |
Li, X.; Shi, X.; Fang, M.; Xu, X. J. Org. Chem. 2013, 78, 9499.
doi: 10.1021/jo401581n |
[16] |
Gao, Y.; Wu, W.; Huang, Y.; Huang, K.; Jiang, H. Org. Chem. Front. 2014, 1, 361.
doi: 10.1039/C3QO00075C |
[17] |
Taniguchi, N. Tetrahedron 2014, 70, 1984.
doi: 10.1016/j.tet.2014.01.071 |
[18] |
Wan, J.-P.; Hu, D.; Bai, F.; Wei, L.; Liu, Y. RSC Adv. 2016, 6, 73132.
doi: 10.1039/C6RA13737G |
[19] |
Amiel, Y. J. Org. Chem. 1971, 36, 3691.
doi: 10.1021/jo00823a007 |
[20] |
Liu, X.; Duan, X.; Pan, Z.; Han, Y. Liang, Y. Synlett 2005, 1752.
|
[21] |
Chen, B.; Xia, X.; Zeng, X.; Xu, B. Tetrahedron Lett. 2018, 59, 3950.
doi: 10.1016/j.tetlet.2018.09.051 |
[22] |
Zeng, X.; IIies, L.; Nakamura, E. Org. Lett. 2012, 14, 954.
doi: 10.1021/ol203446t |
[23] |
Wang, L.; Zhu, H.; Che, J.; Yang, Y.; Zhu, G. Tetrahedron Lett. 2014, 55, 1011.
doi: 10.1016/j.tetlet.2013.12.063 |
[24] |
Chakrasali, P.; Kim, K.; Jung, Y.-S.; Kim, H.; Han, S. B. Org. Lett. 2018, 20, 7509.
doi: 10.1021/acs.orglett.8b03273 pmid: 30489090 |
[25] |
Hossain, A.; Engl, S.; Lutsker, E.; Reiser, O. ACS Catal. 2019, 9, 1103.
doi: 10.1021/acscatal.8b04188 |
[26] |
Henriquez, A. M.; Engl, S.; Jaque, P.; Gonzalez, A. I.; Natali, M.; Reiser, O. Cabrera, R. A. Eur. J. Inorg. Chem. 2021, 4020.
|
[27] |
Zeng, K.; Chen, L.; Chen, Y.; Liu, Y.; Zhou, Y.; Au, C.-T.; Yin, S.-F. Adv. Synth. Catal. 2017, 359, 841.
doi: 10.1002/adsc.v359.5 |
[28] |
Liu, X.-T.; Ding, Z.-C.; Ju, L.-C.; Xu, S.-X.; Zhan, Z.-P. Synthesis 2017, 49, 1757.
doi: 10.1055/s-0036-1588410 |
[29] |
Xu, Y.; Zhao, J.; Tang, X.; Wu, W.; Jiang, H. Adv. Synth. Catal. 2014, 356, 2029.
doi: 10.1002/adsc.v356.9 |
[30] |
Rong, G.; Mao, J.; Yan, H.; Zheng, Y.; Zhang, G. J. Org. Chem. 2015, 80, 7652.
doi: 10.1021/acs.joc.5b01212 |
[31] |
Meesin, J.; Katrun, P.; Reutrakul, V.; Pohmakotr, M.; Soorukram, D.; Kuhakarn, C. Tetrahedron 2016, 72, 1440.
doi: 10.1016/j.tet.2016.01.042 |
[32] |
Wei, W.; Li, J.; Yang, D.; Wen, J.; Jiao, Y.; You, J. Wang, H. Org. Biomol. Chem. 2014, 12, 1861.
doi: 10.1039/c3ob42522c pmid: 24519394 |
[33] |
Li, S.; Li, X.; Yang, F.; Wu, Y. Org. Chem. Front. 2015, 2, 1076.
doi: 10.1039/C5QO00212E |
[34] |
Rong, G.; Mao, J.; Yan, H.; Zheng, Y.; Zhang, G. J. Org. Chem. 2015, 80, 4697.
doi: 10.1021/acs.joc.5b00558 |
[35] |
Liu, T.; Ding, Y.; Fan, X.; Wu, J. Org. Chem. Front. 2018, 5, 3153.
doi: 10.1039/C8QO00965A |
[36] |
Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481.
doi: 10.1021/ja4052685 |
[37] |
Handa, S.; Fennewald, C. J.; Lipshutz, H. B. Angew. Chem., Int. Ed. 2014, 53, 3432.
doi: 10.1002/anie.201310634 |
[38] |
Singh, K. A.; Chawla, R.; Yadav, S. L. D. Tetrahedron Lett. 2014, 55, 2845.
doi: 10.1016/j.tetlet.2014.03.078 |
[39] |
Xiong, Y.-S.; Weng, J.; Lu, G. Adv. Synth. Catal. 2018, 360, 1611.
doi: 10.1002/adsc.v360.8 |
[40] |
Kumar, N.; Kumar, A. ACS Sustainable Chem. Eng. 2019, 7, 9182.
doi: 10.1021/acssuschemeng.8b06566 |
[41] |
Cai, S.; Chen, D.; Xu, Y.; Weng, W.; Li, L.; Zhang, R.; Huang, M. Org. Biomol. Chem. 2016, 14, 4205.
doi: 10.1039/C6OB00617E |
[42] |
Dam, B.; Sahoo, K. A.; Patel, K. B. Green Chem. 2022, 24, 7122.
doi: 10.1039/D2GC02254K |
[43] |
Yavari, I.; Shaabanzadeh, S. Org. Lett. 2020, 22, 464.
doi: 10.1021/acs.orglett.9b04221 pmid: 31910023 |
[44] |
Ansari, Y. M.; Kumar, N.; Kumar, A. Org. Lett. 2019, 21, 3931.
doi: 10.1021/acs.orglett.9b01041 |
[45] |
Du, W.-B.; Wang, N.-N.; Pan, C.; Ni, S.-F.; Wen, L.-R.; Li, M.; Zhang, L.-B. Green Chem. 2021, 23, 2420.
doi: 10.1039/D1GC00027F |
[46] |
Sahoo, A. K.; Dahiya, A.; Das, B.; Behera, A.; Patel, B. K. J. Org. Chem. 2021, 86, 11968.
doi: 10.1021/acs.joc.1c01350 |
[47] |
Xie, W.; Ma, P.; Zhang, Y.; Xi, L.; Qiu, S.; Huang, X.; Yang, B.; Gao, Y.; Zhang, J. Org. Lett. 2022, 24, 6099.
doi: 10.1021/acs.orglett.2c02512 |
[48] |
Kataoka, T.; Banno, Y.; Watanabe, S.-I.; Iwamura, T.; Shimizu, H. Tetrahedron Lett. 1997, 38, 1809.
|
[49] |
Dai, C.; Wang, J.; Deng, S.; Zhou, C.; Zhang, W.; Zhu, Q.; Tang, X. RSC Adv. 2017, 7, 36112.
doi: 10.1039/C7RA07105A |
[50] |
Fu, H.; Shang, J.-Q.; Yang, T.; Shen, Y.; Gao, C.-Z.; Li, Y.-M. Org. Lett. 2018, 20, 489.
doi: 10.1021/acs.orglett.7b03922 |
[51] |
Liu, Z.; Yang, L.; Zhang, K.; Chen, W.; Yu, T.; Wang, L.; Gao, W.; Tang, B. Org. Lett. 2020, 22, 2081.
doi: 10.1021/acs.orglett.0c00575 |
[52] |
Wang, Y.; Tang, K.; Liu, Z.; Ning, Y. Chem. Commun. 2020, 56, 13141.
doi: 10.1039/D0CC05849A |
[53] |
Li, H.; Cheng, Z.; Tung, C.-H.; Xu, Z. ACS Catal. 2018, 8, 8237.
doi: 10.1021/acscatal.8b02194 |
[54] |
Song, T.; Li, H.; Wei, F.; Tung, C.-H.; Xu, Tetrahedron Lett. 2019, 60, 916.
doi: 10.1016/j.tetlet.2019.02.039 |
[55] |
Peng, Z.; Yin, H.; Zhang, H.; Jia, T. Org. Lett. 2020, 22, 5885.
doi: 10.1021/acs.orglett.0c01982 |
[56] |
Zhang, M.; Zeng, X. Org. Lett. 2021, 23, 3326.
doi: 10.1021/acs.orglett.1c00820 |
[57] |
Wang, Z.; Zhang, Z.; Zhao, W.; Sivaguru, P.; Zanoni, G.; Wang, Y.; Anderson, A. E.; Bi, X. Nat. Commun. 2021, 12, 5244.
doi: 10.1038/s41467-021-25593-5 |
[58] |
Zhang, Z.; Song, Q.; Feng, C.; Wang, Z.; Zhao, W.; Ning, Y.; Wu, Y. Chem. Asian J. 2022, 17, e202200299.
|
[59] |
Qian, H.; Huang, X. Tetrahedron Lett. 2002, 43, 1059.
doi: 10.1016/S0040-4039(01)02330-9 |
[60] |
Liu, Y.; Zheng, G.; Li, Y.; Zhang, Q. J. Org. Chem. 2017, 82, 2269.
doi: 10.1021/acs.joc.6b03049 |
[61] |
Sun, K. Wang, X.; Fu, F.; Zhang, C.; Chen, Y.; Liu, L. Green Chem. 2017, 19, 1490.
doi: 10.1039/C6GC03420A |
[62] |
Sun, K.; Shi, Z, Liu, Z.; Luan, B,; Zhu, J.; Xue, Y. Org. Lett. 2018, 20, 6687.
doi: 10.1021/acs.orglett.8b02733 |
[63] |
Zhang, R.; Xu, P.; Wang, S.-Y.; Ji, S.-J. J. Org. Chem. 2019, 84, 12324.
doi: 10.1021/acs.joc.9b01626 pmid: 31476121 |
[64] |
Ning, Y.; Ji, Q.; Liao, P.; Anderson, A. E.; Bi, X. Angew. Chem., Int. Ed. 2017, 56, 13805.
doi: 10.1002/anie.201705122 |
[65] |
Ansari, Y. M.; Swarnkar, S.; Kumar, A. Chem. Commun. 2020, 56, 9561.
doi: 10.1039/D0CC03726E |
[66] |
Rohokale, S. R.; Tambeb, D. S.; Kshirsagar, A. U. Org. Biomol. Chem. 2018, 16, 536.
doi: 10.1039/C7OB02977B |
[67] |
He, X.; Yue, X.; Zhang, L.; Wu, S.; Hu, M.; Li, J.-H. Chem. Commun. 2019, 55, 3517.
doi: 10.1039/C9CC00625G |
[68] |
Qi, Z.; Jiang, Y.; Wang, Y.; Yan, R. J. Org. Chem. 2018, 83, 8636.
doi: 10.1021/acs.joc.8b00741 |
[69] |
Wang, B.; Yan, Z.; Liu, L.; Wang, J.; Zha, Z.; Wang, Z. Green Chem. 2019, 21, 205.
doi: 10.1039/c8gc02708k |
[70] |
Zheng, L.; Wang, Z.; Li, C.; Wu, Y.; Liu, Z.; Ning, Y. Chem. Commun. 2020, 56, 9874.
doi: 10.1039/D0CC04050A |
[71] |
Li, Y.; Xiang, Y.; Li, Z.; Wu, J. Org. Chem. Front. 2016, 3, 1493.
doi: 10.1039/C6QO00434B |
[72] |
Xiang, Y.; Li, Y.; Kuang, Y.; Wu, J. Adv. Synth. Catal. 2017, 359, 2605.
doi: 10.1002/adsc.v359.15 |
[73] |
Xiang, Y.; Li, Y.; Kuang, Y.; Wu, J. Chem.-Eur. J. 2017, 23, 1032.
doi: 10.1002/chem.201605336 |
[74] |
García-Domínguez, A.; Müller, S.; Nevado, C. Angew. Chem., Int. Ed. 2017, 56, 9949.
doi: 10.1002/anie.v56.33 |
[75] |
Dong, X.; Jiang, W.; Hua, D.; Wang, X.; Xu, L.; Wu, X. Chem. Sci. 2021, 12, 11762.
doi: 10.1039/D1SC03315H |
[76] |
Liu, L.; Sun, K.; Su, L.; Dong, J.; Cheng, L.; Zhu, X.; Au, C.-T.; Zhou, Y.; Yin, S.-F. Org. Lett. 2018, 20, 4023.
doi: 10.1021/acs.orglett.8b01585 |
[77] |
Sun, Q.; Li, L.; Liu, L.; Guan, Q.; Yang, Y.; Zha, Z.; Wang, Z. Org. Lett. 2018, 20, 5592.
doi: 10.1021/acs.orglett.8b02268 pmid: 30168720 |
[78] |
Sun, Q.; Li, L.; Liu. L.; Yang, Y.; Zha, Z.; Wang, Z. Sci. China Chem. 2019, 62, 904.
doi: 10.1007/s11426-019-9454-8 |
[79] |
Xie, S.; Li, Y.; Liu, P.; Sun, P. Org. Lett. 2020, 22, 8774.
doi: 10.1021/acs.orglett.0c03038 |
[80] |
Yao, Y.; Yin, Z.; He, F.-S.; Qin, X.; Xie, W.; Wu, J. Chem. Commun. 2021, 57, 2883.
doi: 10.1039/D0CC07927H |
[81] |
Liang, Y.-Q.; Xu, Y.-X.; Cai, Z.-J.; Ji, S.-J. Chem. Commun. 2022, 58, 10206.
doi: 10.1039/D2CC03799H |
[1] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[2] | 张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106. |
[3] | 贝文峰, 潘健, 冉冬梅, 刘伊琳, 杨震, 冯若昆. 基于钴催化吲哚酰胺与二炔和单炔的[4+2]环化反应合成γ-咔啉酮[J]. 有机化学, 2023, 43(9): 3226-3238. |
[4] | 张素珍, 张文文, 杨慧, 顾庆, 游书力. 铑催化2-烯基苯酚与炔烃的对映体选择性螺环化反应[J]. 有机化学, 2023, 43(8): 2926-2933. |
[5] | 卢凯, 屈浩琦, 陈樨, 秋慧, 郑晶, 马猛涛. 无催化剂、无溶剂条件下炔烃和烯烃与儿茶酚硼烷的硼氢化反应[J]. 有机化学, 2023, 43(6): 2197-2205. |
[6] | 李思达, 舒兴中, 吴立朋. 锆、钛介导的烯烃、炔烃硼氢化[J]. 有机化学, 2023, 43(5): 1751-1760. |
[7] | 陈志豪, 范奇, 尹标林, 李清江, 王洪根. α-硼取代羰基类化合物的合成进展[J]. 有机化学, 2023, 43(5): 1706-1712. |
[8] | 高师泉, 刘闯军, 杨俊锋, 张俊良. 钴催化的烯烃和炔烃的电化学还原偶联反应[J]. 有机化学, 2023, 43(4): 1559-1565. |
[9] | 刘鹏, 钟富明, 廖礼豪, 谭伟强, 赵晓丹. 炔烃参与的去芳构化反应构建螺环己二烯酮类化合物的研究进展[J]. 有机化学, 2023, 43(12): 4019-4035. |
[10] | 霍炳豪, 郭聪慧, 徐占辉. Mn(acac)3促进烯醇酯与亚磷酸酯的自由基氧化偶联反应合成β-酮膦酸酯[J]. 有机化学, 2023, 43(11): 3989-3996. |
[11] | 田冲, 孙奇, 王俊锋, 陈俏, 温志国, Maxim Borzov, 聂万丽. 卤素阴离子催化的立体可控炔烃碳硼化反应研究[J]. 有机化学, 2023, 43(1): 338-344. |
[12] | 石云, 肖婷, 夏冬, 杨文超. 三氟甲硫基自由基引发不饱和烃的串联反应[J]. 有机化学, 2022, 42(9): 2715-2727. |
[13] | 孙奇, 孙泽颖, 俞泽, 王光伟. 镍催化炔烃的立体选择性芳基-二氟烷基化反应[J]. 有机化学, 2022, 42(8): 2515-2520. |
[14] | 刘会丽, 朱超杰, 唐天地. 酸性沸石HBeta催化的傅克烯基化反应[J]. 有机化学, 2022, 42(6): 1792-1798. |
[15] | 尹艳丽, 赵筱薇, 江智勇. 可见光不对称催化合成手性氮杂芳烃衍生物[J]. 有机化学, 2022, 42(6): 1609-1625. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||