有机化学 ›› 2023, Vol. 43 ›› Issue (8): 2855-2863.DOI: 10.6023/cjoc202302004 上一篇 下一篇
研究论文
钟赟哲a,b, 陈颖b,c, 俞磊c,*(), 周宏伟b,*()
收稿日期:
2023-02-05
修回日期:
2023-03-24
发布日期:
2023-04-21
基金资助:
Yunzhe Zhonga,b, Ying henb,c, Lei Yuc(), Hongwei Zhoub()
Received:
2023-02-05
Revised:
2023-03-24
Published:
2023-04-21
Contact:
*E-mail: Supported by:
文章分享
通过电化学介导羧酸和醇反应合成了一系列酯类化合物. 该策略通过温和绿色的电化学合成方式进行, 反应在室温下即可发生, 无需惰性气体保护, 过程中也无需使用强酸和金属催化剂等进行辅助催化. 反应在无隔膜电解槽中以恒流模式进行, 以较高的收率生成酯化产物. 相比有机试剂促进的酯化反应, 该方案不残留需柱层析分离的副产物, 可适用难于反应的叔丁醇.
钟赟哲, 陈颖, 俞磊, 周宏伟. 电化学介导羧酸与醇的酯化反应[J]. 有机化学, 2023, 43(8): 2855-2863.
Yunzhe Zhong, Ying hen, Lei Yu, Hongwei Zhou. Electrochemical Mediated Esterification Reaction of Carboxylic Acids and Alcohols[J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2855-2863.
Entry | Additive | Solvent | Current/mA | Electrode | Yieldb/% |
---|---|---|---|---|---|
1c | TBAB/Na2S2O5 | EtOH | 5 | Graphite (+)/Pt(-) | 54 |
2d | TBAB/Na2S2O5 | EtOH | 10 | Graphite (+)/Pt(-) | 86 |
3e | TBAB/Na2S2O5 | EtOH | 15 | Graphite (+)/Pt(-) | 84 |
4 | KBr/Na2S2O5 | EtOH | 10 | Graphite (+)/Pt(-) | 25 |
5 | KCl/Na2S2O5 | EtOH | 10 | Graphite (+)/Pt(-) | NR |
6 | TBAB/Na2S2O5 | CH3CN | 10 | Graphite (+)/Pt(-) | 56 |
7 | TBAB/Na2S2O5 | DMF | 10 | Graphite (+)/Pt(-) | 47 |
8 | TBAB/Na2S2O5 | DCE | 10 | Graphite (+)/Pt(-) | 37 |
9 | TBAB/Na2S2O5 | Acetone | 10 | Graphite (+)/Pt(-) | 83 |
10 | TBAB/Na2S2O5 | EtOH | 10 | Graphite (+)/Graphite (-) | 48 |
11 | TBAB/Na2S2O5 | EtOH | 10 | Glassy carbon (+)/Pt(-) | 62 |
12 | TBAB/Na2S2O5 | EtOH | 10 | Pt (+)/Pt(-) | NR |
13f | TBAB/Na2S2O5 | EtOH | — | Graphite (+)/Pt(-) | NR |
14g | TBAB | EtOH | 10 | Graphite (+)/Pt(-) | NR |
15h | TBAB/Na2S2O5 | EtOH | 10 | Graphite (+)/Pt(-) | 76 |
Entry | Additive | Solvent | Current/mA | Electrode | Yieldb/% |
---|---|---|---|---|---|
1c | TBAB/Na2S2O5 | EtOH | 5 | Graphite (+)/Pt(-) | 54 |
2d | TBAB/Na2S2O5 | EtOH | 10 | Graphite (+)/Pt(-) | 86 |
3e | TBAB/Na2S2O5 | EtOH | 15 | Graphite (+)/Pt(-) | 84 |
4 | KBr/Na2S2O5 | EtOH | 10 | Graphite (+)/Pt(-) | 25 |
5 | KCl/Na2S2O5 | EtOH | 10 | Graphite (+)/Pt(-) | NR |
6 | TBAB/Na2S2O5 | CH3CN | 10 | Graphite (+)/Pt(-) | 56 |
7 | TBAB/Na2S2O5 | DMF | 10 | Graphite (+)/Pt(-) | 47 |
8 | TBAB/Na2S2O5 | DCE | 10 | Graphite (+)/Pt(-) | 37 |
9 | TBAB/Na2S2O5 | Acetone | 10 | Graphite (+)/Pt(-) | 83 |
10 | TBAB/Na2S2O5 | EtOH | 10 | Graphite (+)/Graphite (-) | 48 |
11 | TBAB/Na2S2O5 | EtOH | 10 | Glassy carbon (+)/Pt(-) | 62 |
12 | TBAB/Na2S2O5 | EtOH | 10 | Pt (+)/Pt(-) | NR |
13f | TBAB/Na2S2O5 | EtOH | — | Graphite (+)/Pt(-) | NR |
14g | TBAB | EtOH | 10 | Graphite (+)/Pt(-) | NR |
15h | TBAB/Na2S2O5 | EtOH | 10 | Graphite (+)/Pt(-) | 76 |
[1] |
(a) Larock, R. C. Comprehensive Organic Transformations, Wiley, New York, 2018, pp. 1-81.
|
(b) Khan, Z.; Javed, F.; Shamair, Z.; Hafeez, A.; Fazal, T.; Aslam, A.; Zimmerman, W. B.; Rehman, F. J. Ind. Eng. Chem. 2021, 103, 80.
doi: 10.1016/j.jiec.2021.07.018 |
|
(c) Zheng, Y.; Zhao, Y.; Tao, S.; Li, X.; Cheng, X.; Jiang, G.; Wan, X. Eur. J. Org. Chem. 2021, 18, 2713.
|
|
(d) Li, Y.; Wang, H.; Zhang, H.; Lei, A. Chin. J. Chem. 2021, 39, 3023.
doi: 10.1002/cjoc.v39.11 |
|
(e) Maeda, B.; Sakakibara, Y.; Murakami, K.; Itami, K. Org. Lett. 2021, 23, 5113.
doi: 10.1021/acs.orglett.1c01645 |
|
[2] |
(a) Zare, M.; Golmakani, M.-T.; Sardarian, A. Green Chem. Lett. Rev. 2020, 13, 83.
doi: 10.1080/17518253.2020.1737739 |
(b) De Barros, D. P.; Azevedo, A. M.; Cabral, J. M.; Fonseca, L. P. Food Biochem. 2012, 36, 275.
doi: 10.1111/jfbc.2012.36.issue-3 |
|
(c) SÁ, A. G.; De Meneses, A. C.; De Araújo, P. H.; Oliveira, D. Trends Food Sci. Technol. 2017, 69, 95.
doi: 10.1016/j.tifs.2017.09.004 |
|
(d) Khan, N. R.; Rathod, V. K. Process Biochem. 2015, 50, 1793.
doi: 10.1016/j.procbio.2015.07.014 |
|
(e) Zhu, Z.; Li, S.; Liu, R.; Yuan, J.; Wang, H.; Zhang, Y.; Liu, Y. Chin. J. Chem. 2010, 28, 2245.
doi: 10.1002/cjoc.201090371 |
|
[3] |
(a) Yang, M.; Wang, X.; Zhao, J. ACS Catal. 2020, 10, 5230.
doi: 10.1021/acscatal.0c00523 |
(b) Li, Q.-C.; Jiang, L.; Bai, R.; Han, Y.-K.; Li, Z.-N. Chin. J. Org. Chem. 2021, 41, 3390. (in Chinese)
doi: 10.6023/cjoc202104063 |
|
( 李泉城, 姜岚, 白瑞, 韩永康, 李争宁, 有机化学, 2021, 41, 3390.)
doi: 10.6023/cjoc202104063 |
|
(c) Bińczak, J.; Dziuba, K.; Chrobok, A. Materials 2021, 14, 2881.
doi: 10.3390/ma14112881 |
|
(d) Zhang, Q.; Li, Y.-H.; Xu, L.-C.; Ma, H.-Y.; Li, X.-D.; Wang, M.-A. Chin. J. Org. Chem. 2022, 42, 2438. (in Chinese)
doi: 10.6023/cjoc202203033 |
|
( 张倩, 李益豪, 许磊川, 马好运, 李向东, 王明安, 有机化学, 2022, 42, 2438.)
doi: 10.6023/cjoc202203033 |
|
[4] |
(a) Iwasaki, T. Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, New York, 2000, pp. 1-33.
|
(b) Steele, J. H.; Bozor, M. X.; Boyce, G. R. J. Chem. Educ. 2020, 97, 4127.
doi: 10.1021/acs.jchemed.0c00861 |
|
(c) Jyoti, G.; Keshav, A.; Anandkumar, J. Int. J. Chem. React. Eng. 2016, 14, 571.
|
|
(d) Li, Y.-L.; Pang, J.-Y.; Lou, J.-C.; Sun, W.-W.; Liu, J.-K.; Wu, B. Asian J. Org. Chem. 2021, 10, 1.
doi: 10.1002/ajoc.v10.1 |
|
[5] |
(a) Zhu, L.; Zhu, Y.; Meng, X.; Hao, J.; Li, Q.; Wei, Y.; Lin, Y. Chem.-Eur. J. 2008, 14, 10923.
doi: 10.1002/chem.200801836 pmid: 19006146 |
(b) Neises, B.; Steglich, W. Angew. Chem. 1978, 90, 556.
doi: 10.1002/(ISSN)1521-3757 pmid: 19006146 |
|
(c) Zhang, J.; Wang, Y.; Du, G.; Gu, C.-Z.; Dai, B. Chin. J. Chem. 2015, 33, 1211.
doi: 10.1002/cjoc.201500399 pmid: 19006146 |
|
[6] |
(a) Jyoti, G.; Keshav, A.; Anandkumar, J.; Bhoi, S. Int. J. Chem. Kinet. 2018, 50, 370.
doi: 10.1002/kin.2018.50.issue-5 |
(b) Sert, E.; Atalay, F. S. Ind. Eng. Chem. Res. 2012, 51, 6666.
doi: 10.1021/ie202609f |
|
(c) Buluklu, A. D.; Sert, E.; Karakuş, S.; Atalay, F. S. Int. J. Chem. Kinet. 2014, 46, 197.
doi: 10.1002/kin.2014.46.issue-4 |
|
(d) Chen, X.; Mao, J.; Liu, C.; Chen, C.; Cao, H.; Yu, L. Chin. Chem. Lett. 2020, 31, 3205.
doi: 10.1016/j.cclet.2020.07.031 |
|
(e) Zhang, L.; Zhang, H.; Shang, H. Can. J. Chem. Eng. 2021, 99, 1107.
doi: 10.1002/cjce.v99.5 |
|
(f) Xiao, X.; Shao, Z.; Yu, L. Chin. Chem. Lett. 2021, 32, 2933.
doi: 10.1016/j.cclet.2021.03.047 |
|
(g) Li, W.; Wang, F.; Shi, Y.; Yu, L. Chin. Chem. Lett. 2023, 34, 107505.
doi: 10.1016/j.cclet.2022.05.019 |
|
(h) Zeng, Z.; Chen, Y.; Zhu, X.; Yu, L. Chin. Chem. Lett. 2023, 34, 107728.
doi: 10.1016/j.cclet.2022.08.008 |
|
[7] |
(a) Pongpamorn, P.; Kiattisewee, C.; Kittipanukul, N.; Jaroensuk, J.; Trisrivirat, D.; Maenpuen, S.; Chaiyen, P. Angew. Chem., Int. Ed. 2021, 60, 5749.
doi: 10.1002/anie.v60.11 |
(b) Li, N.-G.; Shi, Z.-H.; Tang, Y.-P.; Li, B.-Q.; Duan, J.-A. Molecules 2009, 14, 2118.
doi: 10.3390/molecules14062118 |
|
(c) Maester, T. C.; Pereira, M. R.; Malaman, A. M.; Borges, J. P.; Pereira, P. A.; Lemos, E. G. Catalysts 2020, 10, 1100.
doi: 10.3390/catal10101100 |
|
(d) Shi, H.; Zhu, W.; Li, H.; Liu, H.; Zhang, M. ; Yan, Y.; Wang, Z. Catal. Commun. 2010, 11, 588.
doi: 10.1016/j.catcom.2009.12.025 |
|
(e) Nguyen, H. C.; Wang, F.-M.; Dinh, K. K.; Pham, T. T.; Juan, H.-Y.; Nguyen, N. P.; Ong, H. C.; Su, C.-H. Energies 2020, 13, 2167.
doi: 10.3390/en13092167 |
|
[8] |
(a) Stergiou, P.-Y.; Foukis, A.; Filippou, M.; Koukouritaki, M.; Parapouli, M.; Theodorou, L. G.; Hatziloukas, E.; Afendra, A.; Pandey, A.; Papamichael, E. M. Biotechnol. Adv. 2013, 31, 1846.
doi: 10.1016/j.biotechadv.2013.08.006 |
(b) Guldhe, A.; Singh, B.; Mutanda, T.; Permaul, K.; Bux, F. Renewable Sustainable Energy Rev. 2015, 41, 1447.
doi: 10.1016/j.rser.2014.09.035 |
|
(c) Moseley, J. D.; Kappe, C. O. Green Chem. 2011, 13, 794.
doi: 10.1039/c0gc00823k |
|
(d) Li, X.-Y.; Tao, P.-F.; Cheng, Y.-Y.; Hu, Q.; Huang, W.-J.; Li, Y.; Luo, Z.-H.; Huang, G.-B. Chin. J. Org. Chem. 2022, 42, 4169. (in Chinese)
doi: 10.6023/cjoc202204066 |
|
( 李秀英, 陶萍芳, 程泳渝, 胡琼, 黄伟娟, 李芸, 罗志辉, 黄国保, 有机化学, 2022, 42, 4169.)
doi: 10.6023/cjoc202204066 |
|
[9] |
(a) Sperry, J. B.; Wright, D. L. Chem. Soc. Rev. 2006, 35, 605.
doi: 10.1039/b512308a |
(b) Yoshida, J.-I.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2008, 108, 2265.
doi: 10.1021/cr0680843 |
|
(c) Frontana-Uribe, B. A.; Little, R. D.; Ibanez, J. G.; Palma, A.; Vasquez-Medrano, R. Green Chem. 2010, 12, 2099.
doi: 10.1039/c0gc00382d |
|
(d) Horn, E. J.; Rosen, B. R.; Baran, P. S. ACS Cent. Sci. 2016, 2, 302.
doi: 10.1021/acscentsci.6b00091 |
|
(e) Wiebe, A.; Gieshoff, T.; Mohle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 5594.
doi: 10.1002/anie.201711060 |
|
(f) Wen, L. R.; Wang, N. N.; Du, W. B.; Zhu, M. Z.; Pan, C.; Zhang, L. B.; Li, M. Chin. J. Chem. 2021, 39, 1831.
doi: 10.1002/cjoc.v39.7 |
|
[10] |
(a) Little, R. D.; Moeller, K. D. Chem. Rev. 2018, 118, 4483.
doi: 10.1021/acs.chemrev.8b00197 |
(b) Minteer, S. D.; Baran, P. Acc. Chem. Res. 2020, 53, 545.
doi: 10.1021/acs.accounts.0c00049 |
|
(c) Yuan, Y.; Lei, A. Nat. Commun. 2020, 11, 802.
doi: 10.1038/s41467-020-14322-z |
|
(d) Mohle, S.; Zirbes, M; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 6018.
doi: 10.1002/anie.v57.21 |
|
(e) Wen, L. R.; Wang, N. N.; Du, W. B.; Zhu, M. Z.; Pan, C.; Zhang, L. B.; Li, M. Chin. J. Chem. 2021, 39, 1831.
doi: 10.1002/cjoc.v39.7 |
|
[11] |
(a) Waldvogel, S. R.; Janza, B. Angew. Chem., Int. Ed. 2014, 53, 7122.
doi: 10.1002/anie.v53.28 |
(b) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
doi: 10.1021/acs.chemrev.7b00397 |
|
(c) Schotten, C.; Nicholls, T. P.; Bourne, R. A.; Kapur, N.; Nguyen, B. A.; Willans, C. E. Green Chem. 2020, 22, 3358.
doi: 10.1039/D0GC01247E |
|
(d) Wang, P.; Tang, S.; Huang, P.; Lei, A. Angew. Chem., Int. Ed. 2017, 56, 3009.
doi: 10.1002/anie.201700012 |
|
(e) Zhang, L.; Cheng, X.; Zhou, Q. L. Chin. J. Chem. 2022, 40, 1687.
doi: 10.1002/cjoc.v40.14 |
|
[12] |
Kaboudin, B.; Behrouzi, L.; Kazemi, F.; Najafpour, M. M.; Aoyama, H. ACS Omega 2020, 5, 17947.
doi: 10.1021/acsomega.0c00953 pmid: 32743167 |
[13] |
Cheng, S.-Y.; Ou, C.-H.; Lin, H.-M.; Jia, J. S.; Tang, H.-T.; Pan, Y.-M.; Huang, G.-B.; Meng, X.-J. Chin. J. Org. Chem. 2021, 41, 4718. (in Chinese)
doi: 10.6023/cjoc202110019 |
( 程诗砚, 欧楚鸿, 林洪敏, 贾均松, 唐海涛, 潘英明, 黄国保, 蒙秀金, 有机化学, 2021, 41, 4718.)
doi: 10.6023/cjoc202110019 |
|
[14] |
(a) Devadas, B.; Svoboda, J.; Krupicka, M. Electrochim. Acta 2020, 342, 136080.
doi: 10.1016/j.electacta.2020.136080 |
(b) Gil, D. M. D.; Rebelo, M. J. F. Microchim. Acta 2009, 167, 253.
doi: 10.1007/s00604-009-0249-9 |
|
(c) Zhang, Z.; Wang, Y.; Tang, H.; Pan, Y.; Meng, X. Org. Biomol. Chem. 2023, 21, 3177.
doi: 10.1039/D3OB00178D |
|
(d) Villoria-del-Álamo, B.; Rojas-Buzo, S.; García-García, B.; Corma, A. Chem.-Eur. J. 2021, 27, 4588.
doi: 10.1002/chem.v27.14 |
|
(e) Lawal, M. M.; Govender, T.; Maguire, G. E.; Kruger, H. G.; Honarparvar, B. Int. J. Quantum Chem. 2018, 118, e25497.
doi: 10.1002/qua.v118.4 |
|
[15] |
(a) Jagadeesh, R. V.; Junge, H.; Pohl, M. M.; Radnik, J.; Bruckner, A.; Beller, M. J. Am. Chem. Soc. 2013, 135, 10776.
doi: 10.1021/ja403615c |
(b) Trost, B. M.; McClory, A. Angew. Chem., Int. Ed. 2007, 46, 2074.
doi: 10.1002/(ISSN)1521-3773 |
|
[16] |
Sun, X. Y.; Shan, G.; Sun, Y. H.; Rao, Y. Angew. Chem., Int. Ed. 2013, 52, 4440.
doi: 10.1002/anie.201300176 |
[17] |
(a) Liang, A. P.; Han, S. J.; Wang, L.; Li, J. Y.; Zou, D. P.; Wu, Y. J.; Wu, Y. S. Adv. Synth. Catal. 2015, 357, 3104.
doi: 10.1002/adsc.v357.14/15 |
(b) Wang, X.-J.; Zhang, S.-L. New J. Chem. 2017, 41, 14826.
doi: 10.1039/C7NJ03405A |
|
[18] |
Garcia-Alvarez, P.; Graham, D. V.; Hevia, E.; Kennedy, A. R.; Klett, J.; Mulvey, R. E.; O'Hara, C. T.; Weatherstone, S. Angew. Chem., Int. Ed. 2008, 47, 8079.
doi: 10.1002/anie.v47:42 |
[19] |
Karmakar, A.; da Silva, M.; Pombeiro, A. J. L. Dalton Trans. 2014, 43, 7795.
doi: 10.1039/c4dt00219a pmid: 24715037 |
[20] |
(a) Salman, B. S.; Ahmed, M. R. Chem. Methodol. 2022, 6, 997.
|
(b) Day, C.; Jia, X.; Wei, L.; Xu, L.; Zu, W. Chem. Commun. 2020, 56, 8273.
doi: 10.1039/D0CC03230A |
|
[21] |
Tian, H. T.; Xue, W. X.; Wu, J. T.; Yang, Z. G.; Lu, H. C.; Tang, C. H. Org. Chem. Front. 2022, 9, 4554.
doi: 10.1039/D2QO00683A |
[22] |
(a) Tollini, F.; Brivio, L.; Innocenti, P.; Sponchioni, M.; Moscatelli, D. Chem. Eng. Sci. 2022, 260, 117875.
doi: 10.1016/j.ces.2022.117875 |
(b) Zhou, Y.; Yang, D.; Luo, G.; Zhao, Y.; Luo, Y.; Xue, N.; Qu, J. Tetrahedron 2014, 70, 4668.
doi: 10.1016/j.tet.2014.05.017 |
|
[23] |
Karthik, S.; Sreedharan, R.; Gandhi, T. ChemistrySelect 2019, 4, 175.
doi: 10.1002/slct.201803105 |
[24] |
Gan, S. Y.; Yin, J. R.; Yu, Z. Y.; Song, L. J.; Shi, L. Green Chem. 2022, 24, 2232.
doi: 10.1039/D1GC04478H |
[25] |
(a) Sarjeant, A. A.; Snurr, R. Q.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc. 2015, 137, 3585.
doi: 10.1021/ja512973b |
(b) Reed, M. A.; Chang, M. T.; Snieckus, V. Org. Lett. 2004, 6, 2297.
doi: 10.1021/ol049740t |
|
[26] |
Luo, H. H.; Yang, Y. K.; Yang, B. B.; Xu, Z. J.; Wang, D. W. J. Chem. Res. 2021, 45, 708.
doi: 10.1177/1747519821989963 |
[27] |
Tabasi, N. S.; Genc, S.; Gulcemal, D. Org. Biomol. Chem. 2022, 20, 6582.
doi: 10.1039/d2ob01142e pmid: 35913502 |
[28] |
Azadi, S.; Goudarzian, N.; Parish, M. H.; Hosseini, F. N. Monatsh. Chem. 2023, 154, 239.
doi: 10.1007/s00706-022-03024-5 |
[29] |
Chakraborti, A. K.; Singh, B.; Chankeshwara, S. V.; Patel, A. R. J. Org. Chem. 2009, 74, 5967.
doi: 10.1021/jo900614s pmid: 19618958 |
[30] |
Miah, M. A. J.; Sibi, M. P.; Chattopadhyay, S.; Familoni, O. B.; Snieckus, V. Eur. J. Org. Chem. 2018, 2018, 440.
doi: 10.1002/ejoc.201701142 |
[31] |
Bhatia, A.; Kannan, M.; Muthaiah, S. Synlett 2019, 30, 721.
doi: 10.1055/s-0037-1612247 |
[1] | 石义军, 孙馨悦, 曹晗, 别福升, 马杰, 刘哲, 丛兴顺. 室温下酯与伯硫醇的硫酯化反应[J]. 有机化学, 2023, 43(7): 2499-2505. |
[2] | 高师泉, 刘闯军, 杨俊锋, 张俊良. 钴催化的烯烃和炔烃的电化学还原偶联反应[J]. 有机化学, 2023, 43(4): 1559-1565. |
[3] | 穆思宇, 李红霞, 伍智林, 彭俊梅, 陈锦杨, 何卫民. 电催化肼、丙二酮和2-溴丙二酸二乙酯三组分合成4-溴吡唑[J]. 有机化学, 2022, 42(12): 4292-4299. |
[4] | 王鹏, 杨妲, 刘欢. 1,3-二烯烃的羰基化反应研究进展[J]. 有机化学, 2021, 41(9): 3379-3389. |
[5] | 易荣楠, 刘冬娴, 吴啟林, 赵明明, 王勇, 王峥. 电化学氧化-碘促进丙酮α-H芳(烷)硒化制备α-芳(烷)硒基丙酮[J]. 有机化学, 2021, 41(9): 3726-3732. |
[6] | 孟薇, 徐坤, 郭兵兵, 曾程初. 电化学条件下的Minisci反应研究进展[J]. 有机化学, 2021, 41(7): 2621-2635. |
[7] | 何慕雪, 程诗砚, 潘永周, 唐海涛, 潘英明. 电化学介导的S—N键形成: 次磺酰胺化合物的简洁合成[J]. 有机化学, 2021, 41(6): 2354-2360. |
[8] | 王卫伟, 赵宇, 刘鑫磊, 蒋家珍, 王明安. 3-芳基-7-甲基-7-羟基-2-辛烯-6-内酯类化合物的合成及杀菌活性[J]. 有机化学, 2021, 41(6): 2343-2353. |
[9] | 董宏波, 王卫伟, 赵宇, 刘鑫磊, 王明安. 3,7-二甲基-7-羟基-2-辛烯-6-内酯类似物的合成及杀菌活性[J]. 有机化学, 2021, 41(4): 1646-1657. |
[10] | 程诗砚, 欧楚鸿, 林洪敏, 贾均松, 唐海涛, 潘英明, 黄国保, 蒙秀金. 电化学介导的芳香醛和脂肪醇氧化酯化反应[J]. 有机化学, 2021, 41(12): 4718-4724. |
[11] | 赵宇, 王卫伟, 刘鑫磊, 耿瑞, 王明安. 无催化剂条件下4-羟基烷基-2-炔酸乙酯与N-杂环芳基甲基-N-2,2-二氟乙基-1-胺的串联反应[J]. 有机化学, 2020, 40(3): 694-703. |
[12] | 冯恩祺, 侯中伟, 徐海超. 通过电化学脱氢N—N偶联合成四取代肼化合物[J]. 有机化学, 2019, 39(5): 1424-1428. |
[13] | 孟根其其格, 乌云, 包永胜. 季铵盐与醛或羧酸的无金属酯化反应研究[J]. 有机化学, 2018, 38(4): 902-911. |
[14] | 于江帆, 冯若昆, 杨震. 具有优良抗癌活性的天然产物Neopeltolide的合成研究进展[J]. 有机化学, 2017, 37(10): 2526-2543. |
[15] | 张海飞, 刘冬梅, 康婷婷, 王也, 张小祥, 朱新宝. 新型苯并噻唑离子液体的合成及其催化蓖麻油酸酯化研究[J]. 有机化学, 2016, 36(5): 1104-1110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||