有机化学 ›› 2023, Vol. 43 ›› Issue (10): 3367-3387.DOI: 10.6023/cjoc202304030 上一篇 下一篇
所属专题: 有机硅化学专辑-2023
综述与进展
匡鑫a,b, 丁昌华a, 吴奕晨b,*(), 王鹏b,c,d,*()
收稿日期:
2023-04-21
修回日期:
2023-05-11
发布日期:
2023-05-23
基金资助:
Xin Kuanga,b, Changhua Dinga, Yichen Wub(), Peng Wangb,c,d()
Received:
2023-04-21
Revised:
2023-05-11
Published:
2023-05-23
Contact:
*E-mail: Supported by:
文章分享
手性烯丙基硅烷作为多功能试剂被广泛应用于不对称合成中, 因而, 发展高效的方法构建该类化合物受到了大家的广泛关注. 伴随着不对称催化领域的快速发展, 催化不对称合成手性烯丙基硅烷已经取得了重要的进展. 详细总结了手性烯丙基硅烷催化不对称合成的进展, 并展示了其在有机合成中的应用.
匡鑫, 丁昌华, 吴奕晨, 王鹏. 手性烯丙基硅烷的催化对映选择性合成[J]. 有机化学, 2023, 43(10): 3367-3387.
Xin Kuang, Changhua Ding, Yichen Wu, Peng Wang. Catalytic Enantioselective Preparation of Chiral Allylsilanes[J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3367-3387.
[1] |
(a) Langkopf E.; Schinzer D. Chem. Rev. 1995, 95, 1375.
doi: 10.1021/cr00037a011 |
(b) Yamamoto Y.; Asao N. Chem. Rev. 1993, 93, 2207.
doi: 10.1021/cr00022a010 |
|
(c) Chabaud L.; James P.; Landais Y. Eur. J. Org. Chem. 2004, 2004, 3173.
doi: 10.1002/ejoc.v2004:15 |
|
[2] |
Auner N.; Weis J. Organosilicon Chemistry V: From Molecules to Materials, Wiley-VCH, Weinheim, Germany, 2004.
|
[3] |
(a) Showell G. A.; Mills J. S. Drug Discovery Today 2003, 8, 551.
pmid: 12821303 |
(b) Min G. K.; Hernández D.; Skrydstrup T. Acc. Chem. Res. 2013, 46, 457.
doi: 10.1021/ar300200h pmid: 12821303 |
|
(c) Franz A. K.; Wilson S. O. J. Med. Chem. 2013, 56, 388.
doi: 10.1021/jm3010114 pmid: 12821303 |
|
[4] |
(a) Chan T. H.; Wang D. Chem. Rev. 1992, 92, 995.
doi: 10.1021/cr00013a012 pmid: 11848898 |
(b) Fleming I.; Barbero A.; Walter D. Chem. Rev. 1997, 97, 2063.
pmid: 11848898 |
|
(c) Masse C. E.; Panek J. S. Chem. Rev. 1995, 95, 1293.
doi: 10.1021/cr00037a008 pmid: 11848898 |
|
[5] |
(a) Kira M.; Kobayashi M.; Sakurai H. Tetrahedron Lett. 1987, 28, 4081.
doi: 10.1016/S0040-4039(01)83867-3 |
(b) Kira M.; Sato K.; Sakurai H. J. Am. Chem. Soc. 1990, 112, 257.
doi: 10.1021/ja00157a040 |
|
(c) Hosomi A.; Endo M.; Sakurai H. Chem. Lett. 1976, 5, 941.
doi: 10.1246/cl.1976.941 |
|
[6] |
Chan T. H.; Fleming I. Synthesis 1979, 761.
|
[7] |
(a) Sarkar T. K. Synthesis 1990, 969.
|
(b) Sarkar T. K. Synthesis 1990, 1101.
|
|
[8] |
Bhushan V.; Lohray B. B.; Enders D. Tetrahedron Lett. 1993, 34, 5067.
doi: 10.1016/S0040-4039(00)60677-9 |
[9] |
(a) Fleming I.; Thomas A. P. J. Chem. Soc., Chem. Commun. 1986, 1456.
|
(b) Buckle M. J. C.; Fleming I. Tetrahedron Lett. 1993, 34, 2383.
doi: 10.1016/S0040-4039(00)77620-9 |
|
[10] |
(a) Mikami K.; Maeda T.; Kishi N.; Nakai T. Tetrahedron Lett. 1984, 25, 5151.
doi: 10.1016/S0040-4039(01)81549-5 |
(b) Sparks M. A.; Panek J. S. J. Org. Chem. 1991, 56, 3431.
doi: 10.1021/jo00010a046 |
|
[11] |
(a) Landais Y.; Planchenault D.; Weber V. Tetrahedron Lett. 1994, 35, 9549.
doi: 10.1016/0040-4039(94)88508-7 |
(b) Bulugahapitiya P.; Landais Y.; Parra-Rapado L.; Planchenault D.; Weber V. J. Org. Chem. 1997, 62, 1630.
doi: 10.1021/jo961952j |
|
[12] |
(a) Bourque L. E.; Cleary P. A.; Woerpel K. A. J. Am. Chem. Soc. 2007, 129, 12602.
pmid: 26013036 |
(b) Hayashi S.; Hirano K.; Yorimitsu H.; Oshima K. J. Am. Chem. Soc. 2007, 129, 12650.
pmid: 26013036 |
|
(c) Li D.; Tanaka T.; Ohmiya H.; Sawamura M. Org. Lett. 2010, 12, 3344.
doi: 10.1021/ol101114r pmid: 26013036 |
|
(d) Nagao K.; Yokobori U.; Makida Y.; Ohmiya H.; Sawamura M. J. Am. Chem. Soc. 2012, 134, 8982.
doi: 10.1021/ja302520h pmid: 26013036 |
|
(e) Yasuda Y.; Nagao K.; Shido Y.; Mori S.; Ohmiya H.; Sawamura M. Chem.-Eur. J. 2015, 21, 9666.
doi: 10.1002/chem.201501055 pmid: 26013036 |
|
[13] |
(a) Suginome M.; Ohmura T.; Miyake Y.; Mitani S.; Ito Y.; Murakami M. J. Am. Chem. Soc. 2003, 125, 11174.
doi: 10.1021/ja0368958 |
(b) Ohmura T.; Suginome M. Org. Lett. 2006, 8, 2503.
doi: 10.1021/ol060666j |
|
[14] |
Hayashi T.; Konishi M.; Ito H.; Kumada M. J. Am. Chem. Soc. 1982, 104, 4962.
doi: 10.1021/ja00382a045 |
[15] |
(a) Hayashi T. Acc. Chem. Res. 2000, 33, 354.
doi: 10.1021/ar990080f |
(b) Gibson S. E.; Rudd M. Adv. Synth. Catal. 2007, 349, 781.
doi: 10.1002/adsc.v349:6 |
|
(c) Han J. W.; Hayashi T. Tetrahedron: Asymmetry 2010, 21, 2193.
|
|
(d) Wilkinson J. R.; Nuyen C. E.; Carpenter T. S.; Harruff S. R.; Van Hoveln R. ACS Catal. 2019, 9, 8961.
doi: 10.1021/acscatal.9b02762 |
|
[16] |
Hayashi T.; Kabeta K.; Yamamoto T.; Tamao K.; Kumada M. Tetrahedron Lett. 1983, 24, 5661.
doi: 10.1016/S0040-4039(00)94167-4 |
[17] |
Hayashi T.; Matsumoto Y.; Morikawa I.; Ito Y. Tetrahedron: Asymmetry 1990, 1, 151.
|
[18] |
Ohmura H.; Matsuhashi H.; Tanaka M.; Kuroboshi M.; Hiyama T.; Hatanaka Y.; Goda K. J. Organomet. Chem. 1995, 499, 167.
doi: 10.1016/0022-328X(95)00311-D |
[19] |
(a) Okada T.; Morimoto T.; Achiwa K. Chem. Lett. 1990, 19, 999.
doi: 10.1246/cl.1990.999 |
(b) Sakuraba S.; Okada T.; Morimoto T.; Achiwa K. Chem. Pharm. Bull. 1995, 43, 927.
doi: 10.1248/cpb.43.927 |
|
[20] |
Marinetti A. Tetrahedron Lett. 1994, 35, 5861.
doi: 10.1016/S0040-4039(00)78203-7 |
[21] |
Hayashi T.; Han Jin, W.; Takeda A.; Tang T.; Nohmi K.; Mukaide K.; Tsuji H.; Uozumi Y. Adv. Synth. Catal. 2001, 343, 279.
doi: 10.1002/(ISSN)1615-4169 |
[22] |
Han J. W.; Hayashi T. Tetrahedron: Asymmetry 2002, 13, 325.
|
[23] |
Park H. S.; Han J. W.; Shintani R.; Hayashi T. Tetrahedron: Asymmetry 2013, 24, 418.
|
[24] |
Hayashi T.; Kabeta K. Tetrahedron Lett. 1985, 26, 3023.
|
[25] |
Han J. W.; Tokunaga N.; Hayashi T. Helv. Chim. Acta 2002, 85, 3848.
doi: 10.1002/1522-2675(200211)85:11【-逻*辑*与-】amp;lt;3848::AID-HLCA3848【-逻*辑*与-】amp;gt;3.0.CO;2-V |
[26] |
Hatanaka Y.; Goda K.; Yamashita F.; Hiyama T. Tetrahedron Lett. 1994, 35, 7981.
doi: 10.1016/S0040-4039(00)78401-2 |
[27] |
Sang H.-L.; Yu S.; Ge S. Chem. Sci. 2018, 9, 973.
doi: 10.1039/C7SC04002D |
[28] |
Wen H.; Wang K.; Zhang Y.; Liu G.; Huang Z. ACS Catal. 2019, 9, 1612.
doi: 10.1021/acscatal.8b04481 |
[29] |
Huang Y.-H.; Wu Y.; Zhu Z.; Zheng S.; Ye Z.; Peng Q.; Wang P. Angew. Chem., Int. Ed. 2022, 61, e202113052.
|
[30] |
Wang L.; Lu W.; Zhang J.; Chong Q.; Meng F. Angew. Chem., Int. Ed. 2022, 61, e202205624.
|
[31] |
Li K.; Nie M.; Tang W. Green Synth. Catal. 2020, 1, 171.
|
[32] |
Xu J.-L.; Xu Z.-Y.; Wang Z.-L.; Ma W.-W.; Sun X.-Y.; Fu Y.; Xu Y.-H. J. Am. Chem. Soc. 2022, 144, 5535.
doi: 10.1021/jacs.2c00260 |
[33] |
Li S.; Xu J.-L.; Xu Y.-H. Org. Lett. 2022, 24, 6054.
doi: 10.1021/acs.orglett.2c02359 |
[34] |
Liu T.; Mao X.-R.; Song S.; Chen Z.-Y.; Wu Y.; Xu L.-P.; Wang P. Angew. Chem., Int. Ed. 2023, 62, e202216878.
|
[35] |
Chang X.; Ma P.-L.; Chen H.-C.; Li C.-Y.; Wang P. Angew. Chem., Int. Ed. 2020, 59, 8937.
doi: 10.1002/anie.v59.23 |
[36] |
Matsumoto Y.; Ohno A.; Hayashi T. Organometallics 1993, 12, 4051.
doi: 10.1021/om00034a043 |
[37] |
Hayashi T.; Ohno A.; Lu S.; Matsumoto Y.; Fukuyo E.; Yanagi K. J. Am. Chem. Soc. 1994, 116, 4221.
doi: 10.1021/ja00089a011 |
[38] |
Delvos L. B.; Vyas D. J.; Oestreich M. Angew. Chem., Int. Ed. 2013, 52, 4650.
doi: 10.1002/anie.v52.17 |
[39] |
McQuade D.; Park J. Synthesis 2012, 44, 1485.
doi: 10.1055/s-0031-1290820 |
[40] |
Oestreich M.; Delvos L.; Hensel A. Synthesis 2014, 46, 2957.
doi: 10.1055/s-00000084 |
[41] |
Oestreich M.; Delvos L. Synthesis 2015, 47, 924.
doi: 10.1055/s-00000084 |
[42] |
Takeda M.; Shintani R.; Hayashi T. J. Org. Chem. 2013, 78, 5007.
doi: 10.1021/jo400888b |
[43] |
Hensel A.; Oestreich M. Chem.-Eur. J. 2015, 21, 9062.
doi: 10.1002/chem.v21.25 |
[44] |
(a) Morizawa Y.; Oda H.; Oshima K.; Nozaki H. Tetrahedron Lett. 1984, 25, 1163.
doi: 10.1016/S0040-4039(01)91550-3 pmid: 19937624 |
(b) Weickgenannt A.; Oestreich M. Chem.-Eur. J. 2010, 16, 402.
doi: 10.1002/chem.200902222 pmid: 19937624 |
|
[45] |
(a) Bobek M.; Kavai I.; De Clercq E. J. Med. Chem. 1987, 30, 1494.
pmid: 29381352 |
(b) Leriche C.; He X.; Chang C.-W. T.; Liu H.-W. J. Am. Chem. Soc. 2003, 125, 6348.
doi: 10.1021/ja021487+ pmid: 29381352 |
|
(c) Lamy C.; Hofmann J.; Parrot-Lopez H.; Goekjian P. Tetrahedron Lett. 2007, 48, 6177.
doi: 10.1016/j.tetlet.2007.06.154 pmid: 29381352 |
|
(d) Juncosa J. I.; Takaya K.; Le H. V.; Moschitto M. J.; Weerawarna P. M.; Mascarenhas R.; Liu D.; Dewey S. L.; Silverman R. B. J. Am. Chem. Soc. 2018, 140, 2151.
doi: 10.1021/jacs.7b10965 pmid: 29381352 |
|
[46] |
Paioti P. H. S.; Del Pozo J.; Mikus M. S.; Lee J.; Koh M. J.; Romiti F.; Torker S.; Hoveyda A. H. J. Am. Chem. Soc. 2019, 141, 19917.
doi: 10.1021/jacs.9b11382 pmid: 31809041 |
[47] |
Gao P.; Gao L.; Xi L.; Zhang Z.; Li S.; Shi Z. Org. Chem. Front. 2020, 7, 2618.
doi: 10.1039/D0QO00773K |
[48] |
Hayashi T.; Iwamura H.; Uozumi Y. Tetrahedron Lett. 1994, 35, 4813.
doi: 10.1016/S0040-4039(00)76975-9 |
[49] |
Kacprzynski M. A.; May T. L.; Kazane S. A.; Hoveyda A. H. Angew. Chem., Int. Ed. 2007, 46, 4554.
doi: 10.1002/anie.v46:24 |
[50] |
Shintani R.; Takatsu K.; Takeda M.; Hayashi T. Angew. Chem., Int. Ed. 2011, 50, 8656.
doi: 10.1002/anie.v50.37 |
[51] |
Jung B.; Hoveyda A. H. J. Am. Chem. Soc. 2012, 134, 1490.
doi: 10.1021/ja211269w |
[52] |
Shido Y.; Yoshida M.; Tanabe M.; Ohmiya H.; Sawamura M. J. Am. Chem. Soc. 2012, 134, 18573.
doi: 10.1021/ja3093955 |
[53] |
Hayashi T.; Konishi M.; Okamoto Y.; Kabeta K.; Kumada M. J. Org. Chem. 1986, 51, 3772.
doi: 10.1021/jo00370a006 |
[54] |
(a) Gu J.; Wang X.; Xue W.; Gong H. Org. Chem. Front. 2015, 2, 1411.
doi: 10.1039/C5QO00224A |
(b) Wang X.; Dai Y.; Gong H. Top. Curr. Chem. 2016, 374, No. 43.
|
|
(c) Pang X.; Shu X.-Z. Chem.-Eur. J. 2023, 29, e202203362.
|
|
[55] |
Hofstra J. L.; Cherney A. H.; Ordner C. M.; Reisman S. E. J. Am. Chem. Soc. 2018, 140, 139.
doi: 10.1021/jacs.7b11707 pmid: 29202243 |
[56] |
Levi Knippel J.; Ni A. Z.; Schuppe A. W.; Buchwald S. L. Angew. Chem., Int. Ed. 2022, 61, e202212630.
|
[57] |
Bagheri V.; Doyle M. P.; Taunton J.; Claxton E. E. J. Org. Chem. 1988, 53, 6158.
doi: 10.1021/jo00261a045 |
[58] |
Davies H. M. L.; Hansen T.; Rutberg J.; Bruzinski P. R. Tetrahedron Lett. 1997, 38, 1741.
doi: 10.1016/S0040-4039(97)00205-0 |
[59] |
Sambasivan R.; Ball Z. T. J. Am. Chem. Soc. 2010, 132, 9289.
doi: 10.1021/ja103747h pmid: 20518468 |
[60] |
Chen D.; Zhang X.; Qi W.-Y.; Xu B.; Xu M.-H. J. Am. Chem. Soc. 2015, 137, 5268.
doi: 10.1021/jacs.5b00892 |
[61] |
Chen D.; Zhu D.-X.; Xu M.-H. J. Am. Chem. Soc. 2016, 138, 1498.
doi: 10.1021/jacs.5b12960 |
[62] |
Wu J.; Chen Y.; Panek J. S. Org. Lett. 2010, 12, 2112.
doi: 10.1021/ol100604m |
[63] |
Wu J.; Panek J. S. J. Org. Chem. 2011, 76, 9900.
doi: 10.1021/jo202119p |
[64] |
Lee K.; Hoveyda A. H. J. Am. Chem. Soc. 2010, 132, 2898.
doi: 10.1021/ja910989n |
[65] |
Lee K.; Wu H.; Haeffner F.; Hoveyda A. H. Organometallics 2012, 31, 7823.
doi: 10.1021/om300790t |
[66] |
Mita T.; Sugawara M.; Saito K.; Sato Y. Org. Lett. 2014, 16, 3028.
doi: 10.1021/ol501143c |
[67] |
Da B.-C.; Liang Q.-J.; Luo Y.-C.; Ahmad T.; Xu Y.-H.; Loh T.-P. ACS Catal. 2018, 8, 6239.
doi: 10.1021/acscatal.8b01547 |
[68] |
Meng F.-F.; Xie J.-H.; Xu Y.-H.; Loh T.-P. ACS Catal. 2018, 8, 5306.
doi: 10.1021/acscatal.8b00999 |
[69] |
Wang X.-L.; Yin X.-H.; Xiao J.-Z.; Jia X.-S.; Yin L. Chin. J. Chem. 2021, 39, 1916.
doi: 10.1002/cjoc.v39.7 |
[70] |
Gerdin M.; Moberg C. Adv. Synth. Catal. 2005, 347, 749.
doi: 10.1002/adsc.v347:6 |
[71] |
Ohmura T.; Taniguchi H.; Suginome M. J. Am. Chem. Soc. 2006, 128, 13682.
doi: 10.1021/ja063934h |
[72] |
Saito N.; Kobayashi A.; Sato Y. Angew. Chem., Int. Ed. 2012, 51, 1228.
doi: 10.1002/anie.v51.5 |
[73] |
Ogoshi S.; Tonomori K.; Oka M.; Kurosawa H. J. Am. Chem. Soc. 2006, 128, 7077.
doi: 10.1021/ja060580l |
[74] |
Han S. B.; Gao X.; Krische M. J. J. Am. Chem. Soc. 2010, 132, 9153.
doi: 10.1021/ja103299f |
[75] |
Zhang Y.; Huang J.; Guo Y.; Li L.; Fu Z.; Huang W. Angew. Chem., Int. Ed. 2018, 57, 4594.
doi: 10.1002/anie.v57.17 |
[76] |
(a) Nakao Y.; Imanaka H.; Sahoo A. K.; Yada A.; Hiyama T. J. Am. Chem. Soc. 2005, 127, 6952.
doi: 10.1021/ja051281j |
(b) Nakao Y.; Sahoo A.; Yada A.; Chen J.; Hiyama T. Sci. Technol. Adv. Mater. 2006, 7, 536.
doi: 10.1016/j.stam.2006.02.019 |
|
(c) Nakao Y.; Imanaka H.; Chen J.; Yada A.; Hiyama T. J. Organomet. Chem. 2007, 692, 585.
doi: 10.1016/j.jorganchem.2006.04.046 |
|
[77] |
Shintani R.; Ichikawa Y.; Hayashi T.; Chen J.; Nakao Y.; Hiyama T. Org. Lett. 2007, 9, 4643.
pmid: 17914835 |
[1] | 于士航, 刘嘉威, 安碧玉, 边庆花, 王敏, 钟江春. 黑腹尼虎天牛接触性信息素的不对称合成[J]. 有机化学, 2024, 44(1): 301-308. |
[2] | 王化坤, 任晓龙, 宣宜宁. 卤盐催化的α,β-环氧羧酸酯与异氰酸酯[3+2]环加成反应研究[J]. 有机化学, 2024, 44(1): 251-258. |
[3] | 王玉超, 刘晋彪, 何智涛. 钯催化共轭二烯的不对称氢官能团化[J]. 有机化学, 2023, 43(8): 2614-2627. |
[4] | 宋亭谕, 李冉, 黄利华, 贾世琨, 梅光建. N—N单键阻转异构体的催化不对称合成[J]. 有机化学, 2023, 43(6): 1977-1990. |
[5] | 罗诚, 尹艳丽, 江智勇. P-手性膦氧化物的不对称合成研究进展[J]. 有机化学, 2023, 43(6): 1963-1976. |
[6] | 蒙玲, 汪君. 硫代黄烷酮类衍生物的合成研究进展[J]. 有机化学, 2023, 43(3): 873-891. |
[7] | 张怀远, 许诺, 唐蓉萍, 石星丽. 手性高价碘试剂诱导的不对称去芳构化反应研究进展[J]. 有机化学, 2023, 43(11): 3784-3805. |
[8] | 濮留洋, 李芷悦, 李利民, 马玉翠, 马民, 胡胜全, 吴正治. 秋水仙碱及其天然类似物(–)-N-乙酰秋水酚甲醚的不对称合成[J]. 有机化学, 2023, 43(1): 313-319. |
[9] | 毛沅浩, 高延峰, 苗志伟. 过渡金属催化不对称环化反应合成七元环化合物研究进展[J]. 有机化学, 2022, 42(7): 1904-1924. |
[10] | 姚婷, 李佳燕, 王佳明, 赵常贵. 氮杂环卡宾催化构筑含七元环结构的研究进展[J]. 有机化学, 2022, 42(4): 925-944. |
[11] | 王立花, 公绪顺, 雷婷, 江世智. 黄烷酮的不对称合成研究进展[J]. 有机化学, 2022, 42(3): 758-769. |
[12] | 苏艺雯, 邹有全, 肖文精. 光催化去消旋化的研究进展[J]. 有机化学, 2022, 42(10): 3201-3212. |
[13] | 滕明瑜, 韩涛, 黄恩和, 叶龙武. 金属卡宾参与的对映选择性去对称化反应研究进展[J]. 有机化学, 2022, 42(10): 3295-3301. |
[14] | 成秀亮, 李冬, 杨博轩, 林玉妹, 龚磊. 手性Lewis酸催化的可见光不对称合成研究进展[J]. 有机化学, 2022, 42(10): 3335-3350. |
[15] | 胡旭东, 张鑫亮, 刘文博. 手性螺环双氮配体在过渡金属催化中的应用进展[J]. 有机化学, 2022, 42(10): 3102-3117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||