有机化学 ›› 2023, Vol. 43 ›› Issue (10): 3544-3557.DOI: 10.6023/cjoc202306009 上一篇 下一篇
所属专题: 有机硅化学专辑-2023
综述与进展
收稿日期:
2023-06-12
修回日期:
2023-07-22
发布日期:
2023-08-16
基金资助:
Xiangqing Fenga, Haifeng Dua,b()
Received:
2023-06-12
Revised:
2023-07-22
Published:
2023-08-16
Contact:
*E-mail: Supported by:
文章分享
有机硅化合物由于其独特的性质, 在合成化学、药物化学、高分子化学和有机光电材料等领域具有广泛的应用. 不饱和化合物的硅化反应是获得有机硅化合物的重要途径之一, 因此引起了化学家的关注并取得了令人瞩目的进展. B(C6F5)3作为一类独特的非金属路易斯酸, 近年来, 其催化不饱和烃的硅化取得了重要的研究进展, 详细介绍了不饱和烃的硅化反应及机理研究.
冯向青, 杜海峰. B(C6F5)3催化不饱和烃的硅化反应[J]. 有机化学, 2023, 43(10): 3544-3557.
Xiangqing Feng, Haifeng Du. B(C6F5)3-Catalyzed Silylation of Unsaturated Hydrocarbons[J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3544-3557.
[1] |
(a) Tacke R.; Wannagat U. In Bioactive Organo-Silicon Compounds, Vol. 84, Springer, Berlin, 1979.
|
(b) Colvin E. Silicon in Organic Synthesis II, Butterworth, London, 1981, p. 325.
|
|
(c) Ojima I. The Chemistry of Organic Silicon Compounds, Eds.: Patai, S.; Rappoport, Z., Wiley Interscience, New York, 1989, p. 1479.
|
|
(d) Corey J. Y. Chemistry of Organic Silicon Compounds, Eds: Patai, S.; Rappoport, Z., Wiley, Chichester, 1989; Vols. 1 and 2, pp. 1-56.
|
|
(e) Pukhnarevich V. B.; Lukevics E.; Kopylova L. T.; Voronkov M. G. In Perspectives of Hydrosilylation, Ed.: Lukevics, E., Institute of Organic Synthesis, Riga, 1992.
|
|
(f) Brook M. A. Silicon in Organic, Organometallic, and Polymer Chemistry; John Wiley & Sons, New York, 2000.
|
|
[2] |
(a) Langkopf E.; Schinzer D. Chem. Rev. 1995, 95, 1375.
doi: 10.1021/cr00037a011 pmid: 19421578 |
(b) Fleming I.; Barbero A.; Walter D. Chem. Rev. 1997, 97, 2063.
pmid: 19421578 |
|
(c) Sieburth S. M.; Nittoli T.; Mutahi A. M.; Guo L. Angew. Chem., Int. Ed. 1998, 37, 812.
doi: 10.1002/(ISSN)1521-3773 pmid: 19421578 |
|
(d) Mortensen M.; Husmann R.; Veri E.; Bolm C. Chem. Soc. Rev. 2009, 38, 1002.
doi: 10.1039/b816769a pmid: 19421578 |
|
(e) Min G. K.; Hernández D.; Skrydstrup T. Acc. Chem. Res. 2013, 46, 457.
doi: 10.1021/ar300200h pmid: 19421578 |
|
(f) Franz A. K.; Wilson S. O. J. Med. Chem. 2013, 56, 388.
doi: 10.1021/jm3010114 pmid: 19421578 |
|
[3] |
(a) Cheng C.; Hartwig J. F. Chem. Rev. 2015, 115, 8946.
doi: 10.1021/cr5006414 pmid: 25714857 |
(b) Du X.; Huang Z. ACS Catal. 2017, 7, 1227.
doi: 10.1021/acscatal.6b02990 pmid: 25714857 |
|
(c) Zhang L.-Z. Ph.D. Dissertation, Lanzhou University, Lanzhou, 2017 (in Chinese).
pmid: 25714857 |
|
(张立志, 博士论文, 兰州大学, 兰州, 2017.)
pmid: 25714857 |
|
(d) Yang X. H.; Gao H. W.; Yan J. L.; Shi L. Chin. J. Org. Chem. 2022, 42, 4122 (in Chinese)
doi: 10.6023/cjoc202207047 pmid: 25714857 |
|
(杨惜晖, 高皓炜, 闫甲乐, 史雷, 有机化学, 2022, 42, 4122.)
doi: 10.6023/cjoc202207047 pmid: 25714857 |
|
[4] |
Piers W. E. Adv. Organomet. Chem. 2005, 52, 1.
doi: 10.1016/S0022-328X(00)88806-3 |
[5] |
(a) Massey A. G.; Park A. J.; Stone F. G. A. Proc. Chem. Soc. 1963, 212.
|
(b) Massey A. G.; Park A. J. J. Organomet. Chem. 1964, 2, 245.
doi: 10.1016/S0022-328X(00)80518-5 |
|
[6] |
Piers W. E.; Chivers T. Chem. Soc. Rev. 1997, 26, 345.
doi: 10.1039/cs9972600345 |
[7] |
Erker G. Dalton Trans. 2005, 1883.
|
[8] |
(a) Piers W. E.; Marwitz A. J. V.; Mercier L. G. Inorg. Chem. 2011, 50, 12252.
doi: 10.1021/ic2006474 pmid: 25679769 |
(b) Melen R. L. Chem. Commun. 2014, 50, 1161.
doi: 10.1039/C3CC48036D pmid: 25679769 |
|
(c) Oestreich M.; Hermeke J.; Mohr J. Chem. Soc. Rev. 2015, 44, 2202.
doi: 10.1039/c4cs00451e pmid: 25679769 |
|
[9] |
(a) Welch G. C.; San Juan R. R.; Masuda J. D.; Stephan D. W. Science 2006, 314, 1124.
doi: 10.1126/science.1134230 |
(b) Stephan D. W. Acc. Chem. Res. 2015, 48, 306.
doi: 10.1021/ar500375j |
|
(c) Stephan D. W.; Erker G. Angew. Chem., Int. Ed. 2015, 54, 6400.
doi: 10.1002/anie.v54.22 |
|
(c) Stephan D. W. J. Am. Chem. Soc. 2015, 137, 10018.
doi: 10.1021/jacs.5b06794 |
|
(d) Stephan D. W. Science 2016, 354, aaf7229.
|
|
(e) Wilkins L. C.; Melen R. L. Coord. Chem. Rev. 2016, 324, 123.
doi: 10.1016/j.ccr.2016.07.011 |
|
(f) Stephan D. W. J. Am. Chem. Soc. 2021, 143, 20002.
doi: 10.1021/jacs.1c10845 |
|
[10] |
(a) Marciniec B. G.; Gulinski J.; Urbaniak W.; Kornetka Z. W. In Comprehensive Handbook on Hydrosilylation, Ed.: Marciniec, B. G., Pergamon, Oxford, U. K. 1992.
|
(b) Lewis L. N.; Stein J.; Gao Y.; Colborn R. E.; Hutchins G. Platinum Met. Rev. 1997, 41, 66.
|
|
(c) Roy A. K. Adv. Organomet. Chem. 2007, 55, 1.
doi: 10.1016/S0022-328X(00)84034-6 |
|
(d) Clarson S. J. Silicon 2009, 1, 57.
doi: 10.1007/s12633-009-9009-z |
|
[11] |
Rubin M.; Schwier T.; Gevorgyan V. J. Org. Chem. 2002, 67, 1936.
doi: 10.1021/jo016279z |
[12] |
Simonneau A.; Oestreich M. Angew. Chem., Int. Ed. 2013, 52, 11905.
doi: 10.1002/anie.v52.45 |
[13] |
Keess S.; Simonneau A.; Oestreich M. Organometallics 2015, 34, 790.
doi: 10.1021/om501284a |
[14] |
Simonneau A.; Oestreich M. Nat. Chem. 2015, 7, 816.
doi: 10.1038/nchem.2329 pmid: 26391081 |
[15] |
Gandhamsetty N.; Park J.; Jeong J.; Park S.-W.; Park S.; Chang S. Angew. Chem., Int. Ed. 2015, 54, 6832.
doi: 10.1002/anie.v54.23 |
[16] |
Kim Y.; Chang S. Angew. Chem., Int. Ed. 2016, 55, 218.
doi: 10.1002/anie.v55.1 |
[17] |
Kim E.; Park S.; Chang S. Chem. Eur. J. 2018, 24, 5765.
doi: 10.1002/chem.v24.22 |
[18] |
Ma Y.; Lou S. J.; Luo G.; Luo Y.; Zhan G.; Nishiura M.; Luo Y.; Hou Z. Angew. Chem., Int. Ed. 2018, 57, 15222.
doi: 10.1002/anie.v57.46 |
[19] |
Curless L. D.; Ingleson M. J. Organometallics 2014, 33, 7241.
doi: 10.1021/om501033p |
[20] |
Ma Y.; Wang B.; Zhang L.; Hou Z. J. Am. Chem. Soc. 2016, 138, 3663.
doi: 10.1021/jacs.6b01349 |
[21] |
Gandhamsetty N.; Joung S.; Park S.-W.; Park S.; Chang S. J. Am. Chem. Soc. 2014, 136, 16780.
doi: 10.1021/ja510674u pmid: 25412033 |
[22] |
Gandhamsetty N.; Park S.; Chang S. J. Am. Chem. Soc. 2015, 137, 15176.
doi: 10.1021/jacs.5b09209 pmid: 26580152 |
[23] |
Curless L. D.; Clark E. R.; Dunsford J. J.; Ingleson M. J. Chem. Commun. 2014, 50, 5270.
doi: 10.1039/C3CC47372D |
[24] |
Han Y.; Zhang S.; He J.; Zhang Y. J. Am. Chem. Soc. 2017, 139, 7399.
doi: 10.1021/jacs.7b03534 |
[25] |
Hazra C. K.; Gandhamsetty N.; Park S.; Chang S. Nature Commun. 2016, 7, 13431.
doi: 10.1038/ncomms13431 |
[26] |
Ma Y.; Zhang L.; Luo Y.; Nishiura M.; Hou Z. J. Am. Chem. Soc. 2017, 139, 12434.
doi: 10.1021/jacs.7b08053 |
[27] |
Zhang J.; Park S.; Chang S. J. Am. Chem. Soc. 2018, 140, 13209.
doi: 10.1021/jacs.8b08733 |
[28] |
Long P.-W.; He T.; Oestreich M. Org. Lett. 2020, 22, 7383.
doi: 10.1021/acs.orglett.0c02751 |
[29] |
Long P.-W.; Oestreich M. Org. Lett. 2021, 23, 4834.
doi: 10.1021/acs.orglett.1c01565 |
[1] | 陈祖佳, 宇世伟, 周永军, 李焕清, 邱琪雯, 李妙欣, 汪朝阳. BF3•OEt2作为催化剂与合成子在有机合成中的应用进展[J]. 有机化学, 2023, 43(9): 3107-3118. |
[2] | 曹伟地, 刘小华. 不对称催化质子化构建α-叔碳羰基化合物研究进展[J]. 有机化学, 2023, 43(3): 961-973. |
[3] | 肖丽娟, 张艳平, 洪缪. 路易斯酸碱对在材料化学应用中的研究进展[J]. 有机化学, 2023, 43(3): 949-960. |
[4] | 段康慧, 唐俊龙, 伍婉卿. 稠杂环化合物的合成及其抗肿瘤活性研究进展[J]. 有机化学, 2023, 43(3): 826-854. |
[5] | 石云, 肖婷, 夏冬, 杨文超. 三氟甲硫基自由基引发不饱和烃的串联反应[J]. 有机化学, 2022, 42(9): 2715-2727. |
[6] | 巴聃, 程国林. 蓝光诱导的1,3-二酮C(CO)—C键卡宾插入反应[J]. 有机化学, 2022, 42(9): 2888-2897. |
[7] | 陈学荣, 祁亮, 黄晋培, 朱伟伟, 周益峰. 路易斯酸促进的不饱和酰胺的分子内亲核加成杂环化反应合成2-噁唑啉衍生物及其在细胞成像中的应用[J]. 有机化学, 2022, 42(7): 2155-2163. |
[8] | 管怡雯, 常克俭, 孙千林, 徐信. 基于稀土金属路易斯酸碱对化学的研究进展[J]. 有机化学, 2022, 42(5): 1326-1335. |
[9] | 王宇, 王泾洋, 吴啸宇, 丁广妮, 张兆国, 谢小敏. 脱烯丙基反应研究进展[J]. 有机化学, 2021, 41(4): 1337-1358. |
[10] | 易雅平, 杭炜, 席婵娟. 过渡金属催化不饱和烃与有机金属试剂及CO 2的串联羧化反应研究进展[J]. 有机化学, 2021, 41(1): 80-93. |
[11] | 孔庆山, 李兴龙, 许华建, 傅尧. 锆基路易斯酸催化γ-戊内酯与胺的反应研究[J]. 有机化学, 2020, 40(7): 2062-2070. |
[12] | 王子超, 许佑君, 施世良. 碱促进醛亚胺的快速氢硅化反应[J]. 有机化学, 2020, 40(10): 3463-3466. |
[13] | 王桥天, 韩彩芳, 冯向青, 杜海峰. 手性螺环骨架硼烷催化酮的不对称硅氢化反应[J]. 有机化学, 2019, 39(8): 2257-2263. |
[14] | 和振秀, 周永云, 孙蔚青, 樊瑞峰, 沈国礼, 樊保敏. 铑/锌共催化苯酚对氧杂苯并降冰片烯的不对称开环反应研究[J]. 有机化学, 2019, 39(3): 754-760. |
[15] | 杨敏荣, 朱亚楠, 徐凡. 阳离子铝化合物催化合成2,8-二氧杂双环[3.3.1]壬烷[J]. 有机化学, 2019, 39(12): 3550-3559. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||