有机化学 ›› 2023, Vol. 43 ›› Issue (10): 3598-3607.DOI: 10.6023/cjoc202307030 上一篇 下一篇
所属专题: 有机硅化学专辑-2023
研究论文
收稿日期:
2023-07-31
修回日期:
2023-09-06
发布日期:
2023-09-08
基金资助:
Zhiyuan Chen, Mengwei Yang, Jianlin Xu, Yunhe Xu()
Received:
2023-07-31
Revised:
2023-09-06
Published:
2023-09-08
Contact:
*E-mail: Supported by:
文章分享
报道了铜催化双炔基膦氧化物单侧硅质子化合成β-硅基取代乙烯基膦氧化物的反应. 各种(杂)芳基和烷基取代的二炔膦氧化物能够以中等和较高的产率和较高的化学选择性得到相应的目标产物. 产物中未反应的炔基可以被进一步衍生为其它官能团.
陈志远, 杨梦维, 徐建林, 徐允河. 铜催化双炔膦氧化物硅质子化反应合成β-硅基取代的乙烯基膦氧化物[J]. 有机化学, 2023, 43(10): 3598-3607.
Zhiyuan Chen, Mengwei Yang, Jianlin Xu, Yunhe Xu. Regioselective Synthesis of β-Silyl-Substituted Vinylphosphine Oxides via Copper-Catalyzed Protosilylation of Dialkynylphosphine Oxides[J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3598-3607.
Entry | Catalyst | Base (equiv.) | Additive (equiv.) | Solvent | Yieldb/% | |
---|---|---|---|---|---|---|
3a | 4a | |||||
1 | CuCN | NaOMe (0.75) | MeOH (1.5) | THF | N.D. | 0 |
2 | CuCN | Cs2CO3 (0.75) | MeOH (1.5) | THF | Trace | 0 |
3 | CuBr | Cs2CO3 (0.75) | MeOH (1.5) | DCM | 12 | 0 |
4 | CuBr | Cs2CO3 (0.15) | MeOH (1.5) | DCM | 21 | 0 |
5 | CuBr·Me2S | Cs2CO3 (0.15) | MeOH (3.0) | DCM | 58 | 4 |
6 | CuBr·Me2S | Cs2CO3 (0.15) | EtOH (3.0) | DCM | 61 | 9 |
7 | CuBr·Me2S | Cs2CO3 (0.15) | H2O (3.0) | DCM | 17 | 0 |
8 | CuBr·Me2S | Cs2CO3 (0.15) | Phenol (3.0) | DCM | 76 | 8 |
9 | CuBr·Me2S | CsF (0.15) | Phenol (3.0) | DCM | 64 | 3 |
10 | CuBr·Me2S | CsOAc (0.15) | Phenol (3.0) | DCM | 51 | 3 |
11 | CuBr·Me2S | Na2CO3 (0.15) | Phenol (3.0) | DCM | N.R. | 0 |
12 | CuBr·Me2S | NaOEt (0.15) | Phenol (3.0) | DCM | N.R. | 0 |
13 | CuBr·Me2S | Cs2CO3 (0.15) | Phenol (5.0) | DCM | 83 | 6 |
14 | CuBr·Me2S | Cs2CO3 (0.15) | 4-Nitrophenol (5.0) | DCM | 57 | 0 |
15 | CuBr·Me2S | Cs2CO3 (0.15) | 1-Naphtol (5.0) | DCM | 46 | 0 |
16 | CuBr·Me2S | Cs2CO3 (0.15) | 4-Methoxyphenol (5.0) | DCM | 72 | 2 |
17 | CuBr·Me2S | Cs2CO3 (0.15) | 3-Methoxyphenol (5.0) | DCM | 93 (86) | 5 |
Entry | Catalyst | Base (equiv.) | Additive (equiv.) | Solvent | Yieldb/% | |
---|---|---|---|---|---|---|
3a | 4a | |||||
1 | CuCN | NaOMe (0.75) | MeOH (1.5) | THF | N.D. | 0 |
2 | CuCN | Cs2CO3 (0.75) | MeOH (1.5) | THF | Trace | 0 |
3 | CuBr | Cs2CO3 (0.75) | MeOH (1.5) | DCM | 12 | 0 |
4 | CuBr | Cs2CO3 (0.15) | MeOH (1.5) | DCM | 21 | 0 |
5 | CuBr·Me2S | Cs2CO3 (0.15) | MeOH (3.0) | DCM | 58 | 4 |
6 | CuBr·Me2S | Cs2CO3 (0.15) | EtOH (3.0) | DCM | 61 | 9 |
7 | CuBr·Me2S | Cs2CO3 (0.15) | H2O (3.0) | DCM | 17 | 0 |
8 | CuBr·Me2S | Cs2CO3 (0.15) | Phenol (3.0) | DCM | 76 | 8 |
9 | CuBr·Me2S | CsF (0.15) | Phenol (3.0) | DCM | 64 | 3 |
10 | CuBr·Me2S | CsOAc (0.15) | Phenol (3.0) | DCM | 51 | 3 |
11 | CuBr·Me2S | Na2CO3 (0.15) | Phenol (3.0) | DCM | N.R. | 0 |
12 | CuBr·Me2S | NaOEt (0.15) | Phenol (3.0) | DCM | N.R. | 0 |
13 | CuBr·Me2S | Cs2CO3 (0.15) | Phenol (5.0) | DCM | 83 | 6 |
14 | CuBr·Me2S | Cs2CO3 (0.15) | 4-Nitrophenol (5.0) | DCM | 57 | 0 |
15 | CuBr·Me2S | Cs2CO3 (0.15) | 1-Naphtol (5.0) | DCM | 46 | 0 |
16 | CuBr·Me2S | Cs2CO3 (0.15) | 4-Methoxyphenol (5.0) | DCM | 72 | 2 |
17 | CuBr·Me2S | Cs2CO3 (0.15) | 3-Methoxyphenol (5.0) | DCM | 93 (86) | 5 |
[1] |
(a) Yamada M.; Honma I. Polymer 2005, 46, 2986.
doi: 10.1016/j.polymer.2005.02.056 |
(b) Ajellal N.; Thomas C. M.; Carpentier J.-F. Polymer 2008, 49, 4344.
doi: 10.1016/j.polymer.2008.07.059 |
|
(c) Macarie L.; Ilia G. Prog. Polym. Sci. 2010, 35, 1078.
doi: 10.1016/j.progpolymsci.2010.04.001 |
|
(d) Li Y.; Josowicz M.; Tolbert L. M. J. Am. Chem. Soc. 2010, 132, 10374.
doi: 10.1021/ja101585z |
|
[2] |
(a) Bialy L.; Waldmann H. Angew. Chem., Int. Ed. 2005, 44, 3814.
doi: 10.1002/anie.v44:25 pmid: 27787975 |
(b) Kumar T. S.; Zhou S.-Y.; Joshi B. V.; Balasubramanian R.; Yang T.; Liang B.-T.; Jacobson K. A. J. Med. Chem. 2010, 53, 2562.
doi: 10.1021/jm9018542 pmid: 27787975 |
|
(c) Sivendran S.; Jones V.; Sun D.; Wang Y.; Grzegorzewicz A. E.; Scherman M. S.; Napper A. D.; McCammon J. A.; Lee R. E.; Diamond S. L.; McNeil M. Bioorg. Med. Chem. 2010, 18, 896.
doi: 10.1016/j.bmc.2009.11.033 pmid: 27787975 |
|
(d) Horsman G. P.; Zechel D. L. Chem. Rev. 2017, 117, 5704.
doi: 10.1021/acs.chemrev.6b00536 pmid: 27787975 |
|
(e) Gao M.; Liu H.; Lian Y.; Gao X.; Geng Y.; Li W. Chin. J. Org. Chem. 2019, 39, 974.
doi: 10.6023/cjoc201808018 pmid: 27787975 |
|
[3] |
(a) Russell G. A.; Yao C.-F.; Tashtoush H. I.; Russell J. E.; Dedolph D. F. J. Org. Chem. 1991, 56, 663.
doi: 10.1021/jo00002a032 pmid: 27479243 |
(b) Enders D.; Wahl H.; Papadopoulos K. Tetrahedron 1997, 53, 12961.
doi: 10.1016/S0040-4020(97)00814-4 pmid: 27479243 |
|
(c) Kouno R.; Okauchi T.; Nakamura M.; Ichikawa. J.; Minami T. J. Org. Chem. 1998, 63, 6239.
doi: 10.1021/jo980467g pmid: 27479243 |
|
(d) Kouno R.; Tsubota T.; Okauchi. T.; Minami T. J. Org. Chem. 2000, 65, 4326.
pmid: 27479243 |
|
(e) Fernández-Pérez H.; Etayo P.; Panossian A.; Vidal-Ferran A. Chem. Rev. 2011, 111, 2119.
doi: 10.1021/cr100244e pmid: 27479243 |
|
(f) Dutartre M.; Bayardon J.; Jugé S. Chem. Soc. Rev. 2016, 45, 5771.
pmid: 27479243 |
|
[4] |
For selected papers on hydrophosphorylation of alkynes, see: (a) Han L.-B.; Tanaka M. J. Am. Chem. Soc. 1996, 118, 1571.
doi: 10.1021/ja953690t pmid: 29688020 |
(b) Takaki K.; Takeda M.; Koshoji G.; Shishido T.; Takehira K. Tetrahedron Lett. 2001, 42, 6357.
doi: 10.1016/S0040-4039(01)01280-1 pmid: 29688020 |
|
(c) Zhao C.-Q.; Han L.-B.; Goto M.; Tanaka M. Angew. Chem., Int. Ed. 2001, 40, 1929.
doi: 10.1002/(ISSN)1521-3773 pmid: 29688020 |
|
(d) Han L.-B.; Zhang C.; Yazawa H.; Shimada S. J. Am. Chem. Soc. 2004, 126, 5080.
doi: 10.1021/ja0494297 pmid: 29688020 |
|
(e) Nune S. K.; Tanaka M. Chem. Commun. 2007, 27, 2858.
pmid: 29688020 |
|
(f) Han L.-B.; Ono Y.; Shimada S. J. Am. Chem. Soc. 2008, 130, 2752.
doi: 10.1021/ja7108272 pmid: 29688020 |
|
(g) Ananikov V. P.;. Khemchyan L. L; Beletskaya I. P.; Starikova Z. A. Adv. Synth. Catal. 2010, 352, 2979.
doi: 10.1002/adsc.v352.17 pmid: 29688020 |
|
(h) Fadel A.; Legrand F.; Evano G.; Rabasso N. Adv. Synth. Catal. 2011, 353, 263.
doi: 10.1002/adsc.v353.2/3 pmid: 29688020 |
|
(i) Khemchyan L. L.; Ivanova J. V.; Zalesskiy S. S.; Ananikov V. P.; Beletskaya I. P.; Starikova Z. A. Adv. Synth. Catal. 2014, 356, 771.
doi: 10.1002/adsc.v356.4 pmid: 29688020 |
|
(j) Braun R. A.; Bradfield J. L.; Henderson C. B.; Mobarrez N.; Sheng Y.; O'Brien R. A.; Stenson A. C.; Davis J. H.; Mirjafari A. Green Chem. 2015, 17, 1259.
doi: 10.1039/C4GC01933D pmid: 29688020 |
|
(k) Fortunato L.; Moglie Y.; Dorn V.; Radivoy G. RSC Adv. 2017, 7, 18707.
doi: 10.1039/C7RA01037K pmid: 29688020 |
|
(l) Islas R. E.; García J. J. ChemCatChem 2017, 9, 4125.
doi: 10.1002/cctc.v9.21 pmid: 29688020 |
|
(m) Chen T.; Zhao C.-Q.; Han L.-B. J. Am. Chem. Soc. 2018, 140, 3139.
doi: 10.1021/jacs.8b00550 pmid: 29688020 |
|
(n) Huang H.; Zhu H.; Kang J. Y. Org. Lett. 2018, 20, 2778.
doi: 10.1021/acs.orglett.8b01065 pmid: 29688020 |
|
(o) Yang Z.; Gu X.;. Han L.-B; Wang J. Chem. Sci. 2020, 11, 7451.
doi: 10.1039/D0SC01049A pmid: 29688020 |
|
(p) Liu X.-T.; Han X.-Y.; Wu Y.; Sun Y.-Y.; Gao L.; Huang Z.; Zhang Q.-W. J. Am. Chem. Soc. 2021, 143, 11309.
doi: 10.1021/jacs.1c05649 pmid: 29688020 |
|
(q) Qian D.-W.; Yang J.; Wang G.-W.; Yang S.-D. J. Org. Chem. 2023, 88, 3539.
doi: 10.1021/acs.joc.2c02741 pmid: 29688020 |
|
(r) Wang W.-H.; Wu Y.; Qi P.-J.; Zhang Q.-W. ACS Catal. 2023, 13, 6994.
doi: 10.1021/acscatal.3c00539 pmid: 29688020 |
|
[5] |
(a) Mulla K.; Aleshire K. L.; Forster P. M.; Kang J. Y. J. Org. Chem. 2016, 81, 77.
doi: 10.1021/acs.joc.5b02184 |
(b) Kwak S.; Choi J.; Han J.; Lee S. Y. ACS Catal. 2022, 12, 212.
doi: 10.1021/acscatal.1c04242 |
|
[6] |
For selected papers on the transformation of functionalized alkenes via cross-coupling, see: (a) Hirao T.; Masunaga T.; Yamada N.; Ohshiro Y.; Agawa T. Bull. Chem. Soc. Jpn. 1982, 55, 909.
doi: 10.1246/bcsj.55.909 pmid: 15704924 |
(b) Kabalka G. W.; Guchhait S. K. Org. Lett. 2003, 5, 729.
pmid: 15704924 |
|
(c) Thielges S.; Bisseret P.; Eustache J. Org. Lett. 2005, 7, 681.
pmid: 15704924 |
|
(d) Evano G.; Tadiparthi K.; Couty F. Chem. Commun. 2011, 47, 179.
doi: 10.1039/C0CC01617A pmid: 15704924 |
|
(e) Hu J.; Zhao N.; Yang B.; Wang G.; Guo L.-N.; Liang Y.-M.; Yang S.-D. Chem.-Eur. J. 2011, 17, 5516.
doi: 10.1002/chem.v17.20 pmid: 15704924 |
|
(f) Liu L.; Wang Y.; Zeng Z.; Xu P.; Gao Y.; Yin Y.; Zhao Y. Adv. Synth. Catal. 2013, 355, 659.
doi: 10.1002/adsc.v355.4 pmid: 15704924 |
|
(g) Liu L. L.; Lv Y.; Wu Y.; Gao X.; Zeng Z.; Gao Y.; Tang G.; Zhao Y. RSC Adv. 2014, 4, 2322.
doi: 10.1039/C3RA45212C pmid: 15704924 |
|
(h) Li X.; Yang F.; Wu Y.; Wu Y. Org. Lett. 2014, 16, 992.
doi: 10.1021/ol4037242 pmid: 15704924 |
|
(i) Hu G.; Gao Y.; Zhao Y. Org. Lett. 2014, 16, 4464.
doi: 10.1021/ol502009b pmid: 15704924 |
|
(j) Wu Y.; Liu L. L.; Yan K.; Xu P.; Gao Y.; Zhao Y. J. Org. Chem. 2014, 79, 8118.
doi: 10.1021/jo501321m pmid: 15704924 |
|
(k) Xue J.-F.; Zhou S.-F.; Liu Y.-Y.; Pan X.; Zou J.-P.; Asekun O. T. Org. Biomol. Chem. 2015, 13, 4896.
doi: 10.1039/C5OB00404G pmid: 15704924 |
|
(l) Yuan J.-W.; Yang L.-R.; Mao P.; Qu L.-B. RSC Adv. 2016, 6, 87058.
doi: 10.1039/C6RA19002B pmid: 15704924 |
|
(m) Tang L.; Wen L.; Sun T.; Zhang D.; Yang Z.; Feng C.; Wang Z. Asian J. Org. Chem. 2017, 6, 1683.
doi: 10.1002/ajoc.v6.11 pmid: 15704924 |
|
(n) Liu L.; Zhou D.; Dong J.; Zhou Y.; Yin S.-F.; Han L.-B. J. Org. Chem. 2018, 83, 4190.
doi: 10.1021/acs.joc.8b00187 pmid: 15704924 |
|
(o) Liu T.; Wei L.; Zhao B.; Liu Y.; Wan J.-P. J. Org. Chem. 2021, 86, 9861.
doi: 10.1021/acs.joc.1c00862 pmid: 15704924 |
|
(p) Lu X.-Y.; Pan H.-Y.; Huang R.; Yang K.; Zhang X.; Wang Z.-Z.; Tao Q.-Q.; Yang G.-X.; Wang X.-J.; Zhou H.-P. Org. Lett. 2023, 25, 2476.
doi: 10.1021/acs.orglett.3c00631 pmid: 15704924 |
|
[7] |
For selected papers on transformation of functionalized alkenes via radical way, see: (a) Mao L.-L; Zhou A.-X.; Liu N.; Yang S.-D. Synlett 2014, 25, 2727.
doi: 10.1055/s-00000083 |
(b) Gui Q.; Hu L.; Chen X.; Liu J.; Tan Z. Chem. Commun. 2015, 51, 13922.
doi: 10.1039/C5CC04826E |
|
(c) Gu J.; Cai C. Org. Biomol. Chem. 2017, 15, 4226.
doi: 10.1039/C7OB00505A |
|
(d) Shen J.; Yu R.-X.; Luo Y.; Zhu L.-X.; Zhang Y.; Wang X.; Xiao B.; Cheng J.-B.; Yang B.; Li G.-Z. Eur. J. Org. Chem. 2019, 10, 2065.
|
|
(e) Xu Y.; Zhou X.; Chen L.; Ma Y.; Wu G. Org. Chem. Front. 2022, 9, 2471.
doi: 10.1039/D2QO00184E |
|
[8] |
(a) Wei X.-H.; Bai C.-Y.; Zhao L.-B.; Zhang P.; Li Z.-H.; Wang Y.-B.; Su Q. Chin. J. Chem. 2021, 39, 1855.
doi: 10.1002/cjoc.v39.7 |
(b) Xin N.; Lv Y.; Lian Y.; Lin Z.; Huang X.-Q.; Zhao C.-Q.; Wang Y. J. Org. Chem. 2023, 88, 2898.
doi: 10.1021/acs.joc.2c02563 |
|
[9] |
Dziuba K.; Frynas S.; Szwaczko K. Synthesis 2021, 53, 2142.
doi: 10.1055/s-0040-1705993 |
[10] |
(a) Houk K.; Hopf H.; Stang P.; Nicholas K. M.; Schore N.; Regitz M.; Nicolaou K. C.; Gleiter R.; Scott L.; Grubbs R.; Iwamura H.; Moore J.; Diederich F. Modern Acetylene Chemistry, Eds.: Stang, P. J.; Diederich, F., Wiley-VCH: Weinheim, Germany, New York, 2008.
|
(b) Trost B. M.; Genet J.-P.; Toullec P. Y.; Michelet V.; Fürstner A.; Schoffelen S.; Uhlig N.; Chinchilla R. Modern Alkyne Chemistry: Catalytic and Atom-economic Transformations, Eds.: Trost, B. M.; Li, C.-J., Wiley-VCH: Weinheim, Germany, New York, 2015.
|
|
[11] |
(a) Gil J. M.; Oh D. Y. J. Org. Chem. 1999, 64, 2950.
doi: 10.1021/jo982123w pmid: 30371092 |
(b) Braga A. L.; Alves E. F.; Silveira C. C.; Andrade L. H. ; Tetrahedron Lett. 2000, 41, 161.
doi: 10.1016/S0040-4039(99)02044-4 pmid: 30371092 |
|
(c) Braga A. L.; Andrade L. H.; Silveira C. C.; Moro A. V.; Zeni G. Tetrahedron Lett. 2001, 42, 8563.
doi: 10.1016/S0040-4039(01)01867-6 pmid: 30371092 |
|
(d) Braga A. L.; Vargas F.; Zeni G.; Silveira C. C.; Andrade L. H. Tetrahedron Lett. 2002, 43, 4399.
doi: 10.1016/S0040-4039(02)00778-5 pmid: 30371092 |
|
(e) Quntar A. A. A. A.; Dembitsky V. M.; Srebnik M. Org. Lett. 2003, 5, 357.
pmid: 30371092 |
|
(f) Quntar A. A. A.; Srebnik M. Chem. Commun. 2003, 1, 58.
doi: 10.1038/s42004-018-0061-8 pmid: 30371092 |
|
(g) Huang X.; Xu L. Synthesis 2006, 2, 231.
pmid: 30371092 |
|
(h) Kondoh A.; Yorimitsu H.; Oshima K. Chem. Asian. J. 2010, 5, 398.
doi: 10.1002/asia.v5:3 pmid: 30371092 |
|
(i) Fopp C.; Isaac K.; Romain E.; Chemla F.; Ferreira F.; Jackowski O.; Oestreich M.; Perez-Luna A. Synthesis 2017, 49, 724.
doi: 10.1055/s-0036-1588106 pmid: 30371092 |
|
(j) Zheng Y.; Guo L.; Zi W. Org. Lett. 2018, 20, 7039.
doi: 10.1021/acs.orglett.8b02982 pmid: 30371092 |
|
(k) Zhang Y.; Zhang F.; Chen L.; Xu J.; Liu X.; Feng X. ACS Catal. 2019, 9, 4834.
doi: 10.1021/acscatal.9b00860 pmid: 30371092 |
|
[12] |
(a) Mortensen M.; Husmann R.; Veri E.; Bolm C. Chem. Soc. Rev. 2009, 38, 1002.
doi: 10.1039/b816769a pmid: 29039662 |
(b) Franz A. K. Wilson S. O. J. Med. Chem. 2013, 56, 388.
doi: 10.1021/jm3010114 pmid: 29039662 |
|
(c) Rémond E.; Martin C.; Martinez J.; Cavelier F. Chem. Rev. 2016, 116, 11654.
doi: 10.1021/acs.chemrev.6b00122 pmid: 29039662 |
|
(d) Fujii S.; Hashimoto Y. Future Med. Chem. 2017, 9, 485.
doi: 10.4155/fmc-2016-0193 pmid: 29039662 |
|
(e) Barraza S. J.; Denmark S. E. J. Am. Chem. Soc. 2018, 140, 6668.
doi: 10.1021/jacs.8b03187 pmid: 29039662 |
|
(f) Ramesh R.; Reddy D. S. J. Med. Chem. 2018, 61, 3779.
doi: 10.1021/acs.jmedchem.7b00718 pmid: 29039662 |
|
[13] |
For selected reviews and papers on the transformation of silylboronates, see: (a) Suginome M.; Nakamura H.; Ito Y.; Chem. Commun. 1996, 2777.
pmid: 23163551 |
(b) Ohmura T.; Suginome M. Bull. Chem. Soc. Jpn. 2009, 82, 29.
doi: 10.1246/bcsj.82.29 pmid: 23163551 |
|
(c) Oestreich M.; Hartmann E.; Mewald M. Chem. Rev. 2013, 113, 402.
doi: 10.1021/cr3003517 pmid: 23163551 |
|
(d) Hoveyda A. H.; Wu H.; Radomkit S.; Garcia J. M.; Haeffner F.; Lee K.-S. Activation of B-B and B-Si Bonds and Synthesis of Organoboron and Organosilicon Compounds through Lewis Base-Catalyzed Transformations (n→n*) in Lewis Base Catalysis in Organic Chemistry, Eds.: Vedejs, E.; Denmark, S. E., Wiley-VCH: Weinheim, Germany: 2016; Vol. 3.
pmid: 23163551 |
|
(e) Feng J.-J.; Mao W.; Zhang L.; Oestreich M. Chem. Soc. Rev. 2021, 50, 2010.
doi: 10.1039/D0CS00965B pmid: 23163551 |
|
(f) Han B.; Li W.; Chen S.; Zhang Z.; Zhao X.; Zhang Y.; Zhu L. Chin. J. Org. Chem. 2023, 43, 555.
doi: 10.6023/cjoc202207043 pmid: 23163551 |
|
[14] |
For selected recent examples on constructing the silicon-containing compounds reported by our group, see: (a) Wang M.; Liu Z.-L.; Zhang X.; Tian P.-P.; Xu Y.-H.; Loh T.-P. J. Am. Chem. Soc. 2015, 137, 14830.
doi: 10.1021/jacs.5b08279 pmid: 26560851 |
(b) Liu Z.-L.; Yang C.; Xue Q.-Y.; Zhao M.; Shan C.-C.; Xu Y.-H.; Loh T.-P. Angew. Chem., Int. Ed. 2019, 58, 16538.
doi: 10.1002/anie.v58.46 pmid: 26560851 |
|
(c) Yang C.; Liu Z.-L.; Dai D.-T.; Li Q.; Ma W.-W.; Zhao M.; Xu Y.-H. Org. Lett. 2020, 22, 1360.
doi: 10.1021/acs.orglett.9b04647 pmid: 26560851 |
|
(d) Li Q.; Wang Z.-L.; Lu H.-X.; Xu Y.-H. Org. Lett. 2022, 24, 2832.
doi: 10.1021/acs.orglett.2c00739 pmid: 26560851 |
|
(e) Li Q.; Wang Z.-L.; Xu Y.-H. Chin. Chem. Lett. 2023, 108150.
pmid: 26560851 |
|
(f) Qian Y.-S.; Wang Z.-L.; Jiang B.; Xiao Z.-Y.; Xu Y.-H. Org. Lett. 2023, 25, 3364.
doi: 10.1021/acs.orglett.3c00765 pmid: 26560851 |
|
[15] |
For representative papers on the protosilylation of alkynes, see: (a) Wang P.; Yeo X.-L.; Loh T.-P. J. Am. Chem. Soc. 2011, 133, 1254.
doi: 10.1021/ja109464u |
(b) Calderone J. A.; Santos W. L. Angew. Chem., Int. Ed. 2014, 53, 4154.
doi: 10.1002/anie.v53.16 |
|
(c) Hazra C. K.; Fopp C.; Oestreich M. Chem. Asian. J. 2014, 9, 3005.
doi: 10.1002/asia.v9.10 |
|
(d) Xu Y.-H.; Wu L.-H.; Wang J.; Loh T.-P. Chem. Commun. 2014, 50, 7195.
doi: 10.1039/C4CC01722F |
|
(e) Xuan Q.-Q.; Ren C.-L.; Liu L.; Li C.-J. Org. Biomol. Chem. 2015, 13, 5871.
doi: 10.1039/C5OB00694E |
|
(f) Garcia-Rubia A.; Romero-Revilla J. A.; Mauleon P.; Arrayás R. G.; Carretero J. C. J. Am. Chem. Soc. 2015, 137, 6857.
doi: 10.1021/jacs.5b02667 |
|
(g) Vercruysse S.; Jouvin K.; Riant O.; Evano G. Synthesis 2016, 48, 3373.
doi: 10.1055/s-0035-1562460 |
[1] | 张瑶瑶, 周丽洁, 韩彪, 李维双, 李博解, 朱磊. 壳聚糖负载铜催化剂在有机反应中的应用研究进展[J]. 有机化学, 2022, 42(1): 33-53. |
[2] | 王东琳, 阚玲珑, 马玉道, 刘磊. 叔丁醇钠催化的δ-腈基-δ-芳基-双取代的对亚甲基苯醌和二芳基氧磷的磷氢化反应研究[J]. 有机化学, 2021, 41(8): 3192-3203. |
[3] | 吴媚, 于玲, 侯慧青, 陈厚铮, 庄庆龙, 周孙英, 林小燕. 水相中电化学促进铜催化苯甲醇氧化合成喹唑啉酮[J]. 有机化学, 2021, 41(6): 2326-2334. |
[4] | 陈鑫, 陈春霞, 彭进松. 纤维素及其衍生物负载铜催化有机反应的研究进展[J]. 有机化学, 2021, 41(4): 1319-1336. |
[5] | 阮利衡, 刘畅, 孙京, 周明东. β-羰基膦氧化合物的合成研究进展[J]. 有机化学, 2019, 39(9): 2403-2411. |
[6] | 陈铁桥, 刘龙, 黄添增, 韩立彪. 烯基膦氧配位的第10族过渡金属配位化合物的合成和性质[J]. 有机化学, 2019, 39(8): 2183-2187. |
[7] | 蔡良珍, 黄振, 杨立群, 谢小敏, 陶晓春. CuBr/1,8-二氮杂双环[5.4.0]十一碳-7-烯催化苄醇的选择性空气氧化反应[J]. 有机化学, 2018, 38(12): 3326-3331. |
[8] | 杨琴, 郎文成, 宋雪平, 尹梦云, 周丽梅. 铜双季铵盐蒙脱土催化卤代芳烃与氨水的偶联[J]. 有机化学, 2017, 37(11): 3000-3005. |
[9] | 赵苏艳, 王祖利. 水相中由壳聚糖-铜催化合成苯酚的方法研究[J]. 有机化学, 2016, 36(4): 862-866. |
[10] | 周丽梅, 郎文成, 蒋晓慧, 黄强, 尹梦云. L-酪氨酸修饰的石墨烯铜催化含氮杂环化合物的N-芳基化反应[J]. 有机化学, 2015, 35(11): 2340-2346. |
[11] | 王刚,张智勇,未本美,张开诚,戴志群. 氯化铜催化偶联合成4-烷基联苯[J]. 有机化学, 2008, 28(03): 538-541. |
[12] | 石启英. Pd(PPh3)2Cl2-CuCl体系催化有机高价碘杂环化合物与末端炔烃的化学选择性交叉偶联反应[J]. 有机化学, 2004, 24(8): 912-915. |
[13] | 史海健,魏琦,吴蕙君. 手性3-氧杂双环[3.1.0]-己-2-酮类化合物的不对称合成[J]. 有机化学, 1997, 17(1): 76-81. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||