有机化学 ›› 2024, Vol. 44 ›› Issue (6): 1853-1861.DOI: 10.6023/cjoc202402012 上一篇 下一篇
研究论文
收稿日期:
2024-02-22
修回日期:
2024-03-24
发布日期:
2024-05-10
基金资助:
Wenduo Lia,*(), Na'na Weib, Nan Fengc
Received:
2024-02-22
Revised:
2024-03-24
Published:
2024-05-10
Contact:
* E-mail: Supported by:
文章分享
发展了有机光氧化还原催化下, 四芳基硼酸酯作为硼基自由基前体构建C—C键的简单方法. 该策略不仅可以用于制备对称和不对称的联芳基化合物, 而且还可以用于苄醇的直接脱氧羧基化. 控制实验和机理研究表明, 芳基硼自由基作为可能的反应活性中间体.
李文多, 魏娜娜, 冯楠. 硼自由基促进的C—C键形成反应构筑联芳基和苄基羧酸甲酯[J]. 有机化学, 2024, 44(6): 1853-1861.
Wenduo Li, Na'na Wei, Nan Feng. Boryl Radical-Promoted Synthesis of Biaryls and Benzylcarboxylic Acids Methyl Ester via C—C Bond Formation Reactions[J]. Chinese Journal of Organic Chemistry, 2024, 44(6): 1853-1861.
Entry | Variations from “standard conditions”' | Yieldb/% of 2a |
---|---|---|
1 | None | 93 (91)c |
2 | Ir[dF(CF3)ppy]2(dtbbpy)PF6 instead of 4-CzIPN | 92 |
3 | N2 instead of O2 | 63 |
4 | Open to air instead of under O2 | 78 |
5 | Under N2 and with degassed CH3CN | 26 |
6 | DMF instead of CH3CN | 90 |
7 | 1,4-Dioxane instead of CH3CN | 70 |
8 | DCM instead of CH3CN | 43 |
9 | B-1 instead of NaBPh4 | 89 |
10 | B-2 instead of NaBPh4 | 84 |
11 | B-3 instead of NaBPh4 | 93 |
12 | B-4 instead of NaBPh4 | 92 |
13 | B-5 instead of NaBPh4 | 88 |
14 | Without photocatalyst | 0 |
15 | Without blue LEDs | 0 |
Entry | Variations from “standard conditions”' | Yieldb/% of 2a |
---|---|---|
1 | None | 93 (91)c |
2 | Ir[dF(CF3)ppy]2(dtbbpy)PF6 instead of 4-CzIPN | 92 |
3 | N2 instead of O2 | 63 |
4 | Open to air instead of under O2 | 78 |
5 | Under N2 and with degassed CH3CN | 26 |
6 | DMF instead of CH3CN | 90 |
7 | 1,4-Dioxane instead of CH3CN | 70 |
8 | DCM instead of CH3CN | 43 |
9 | B-1 instead of NaBPh4 | 89 |
10 | B-2 instead of NaBPh4 | 84 |
11 | B-3 instead of NaBPh4 | 93 |
12 | B-4 instead of NaBPh4 | 92 |
13 | B-5 instead of NaBPh4 | 88 |
14 | Without photocatalyst | 0 |
15 | Without blue LEDs | 0 |
[1] |
(a) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850.
doi: 10.1021/acs.chemrev.5b00662 pmid: 27070820 |
(b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
pmid: 27070820 |
|
(c) Campeau, L.-C.; Hazari, N. Organometallics 2019, 38, 3.
pmid: 27070820 |
|
(d) Milligan, J. A.; Phelan, J. P.; Badir, S. O.; Molander, G. A. Angew. Chem., Int. Ed. 2019, 58, 6152.
pmid: 27070820 |
|
(e) Sestelo, J. P.; Sarandeses, L. A. Molecules 2020, 25, 4500.
pmid: 27070820 |
|
(f) Buglioni, L.; Raymenants, F.; Slattery, A.; Zondag, S. D. A.; Noël, T. Chem. Rev. 2022, 122, 2752.
pmid: 27070820 |
|
(g) Pitre, S. P.; Overman, L. E. Chem. Rev. 2022, 122, 1717.
pmid: 27070820 |
|
(h) Tabassum, S.; Zahoor, A. F.; Ahmad, S.; Noreen, R.; Khan, S. G.; Ahmad, H. Mol. Diversity 2022, 26, 647.
pmid: 27070820 |
|
(i) Bellotti, P.; Huang, H.-M.; Faber, T.; Glorius, F. Chem. Rev. 2023, 123, 4237.
pmid: 27070820 |
|
[2] |
(a) Renaud, P.; Sibi, M. P. Radicals in Organic Synthesis, Wiley-VCH, Weinheim, 2001.
pmid: 30101272 |
(b) Chatgilialoglu, C.; Studer, A. Encyclopedia of Radicals in Chemistry, Biology and Materials, John Wiley & Sons, Chichester, 2012.
pmid: 30101272 |
|
(c) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692.
pmid: 30101272 |
|
(d) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2016, 55, 58.
pmid: 30101272 |
|
(e) Zard, S. Z. Org. Lett. 2017, 19, 1257.
pmid: 30101272 |
|
(f) Romero, K. J.; Galliher, M. S.; Pratt, D. A.; Stephenson, C. R. J. Chem. Soc. Rev. 2018, 47, 7851.
doi: 10.1039/c8cs00379c pmid: 30101272 |
|
(g) Wang, S.; Tang, S.; Lei, A. Sci. Bull. 2018, 63, 1006.
pmid: 30101272 |
|
(h) Leifert, D.; Studer, A. Angew. Chem., Int. Ed. 2020, 59, 74.
pmid: 30101272 |
|
(i) Wu, X.; Zhu, C. Acc. Chem. Res. 2020, 53, 1620.
pmid: 30101272 |
|
(j) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
pmid: 30101272 |
|
(k) Chen, J.; Zhu, G.; Wu, J. Acta Chim. Sinica 2023, 81, 1609. (in Chinese)
pmid: 30101272 |
|
(陈健强, 朱钢国, 吴劼, 化学学报, 2023, 81, 1609.)
doi: 10.6023/A23070339 pmid: 30101272 |
|
[3] |
(a) Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed., Vols. 1 and 2, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011.
|
(b) Dhillon, R. S. Hydroboration and Organic Synthesis, Springer, Germany, 2007.
|
|
[4] |
(a) Aramaki, Y.; Omiya, H.; Yamashita, M.; Nakabayashi, K.; Ohkoshi, S.-I.; Nozaki, K. J. Am. Chem. Soc. 2012, 134, 19989.
|
(b) Wu, C.; Hou, X.; Zheng, Y.; Li, P.; Lu, D. J. Org. Chem. 2017, 82, 2898.
|
|
(c) Duret, G.; Quinlan, R.; Bisseret, P.; Blanchard, N. Chem. Sci. 2015, 6, 5366.
|
|
(d) Duan, K.; Yan, X.; Liu, Y.; Li, Z. Adv. Synth. Catal. 2018, 360, 2781.
|
|
(e) Shi, D.; Wang, L.; Xia, C.; Liu, C. Chin J. Org. Chem. 2020, 40, 3605. (in Chinese)
|
|
(史敦发, 王露, 夏春谷, 刘超, 有机化学, 2020, 40, 3605.)
doi: 10.6023/cjoc202006033 |
|
(f) Crespi, S.; Fagnoni, M. Chem. Rev. 2020, 120, 9790.
|
|
(g) Yu, Y.-J.; Zhang, F.-L.; Peng, T.-Y.; Wang, C.-L.; Cheng, J.; Chen, C.; Houk, K. N.; Wang, Y.-F. Science 2021, 371, 1232.
|
|
(h) Peng, T.-Y.; Zhang, F.-L.; Wang, Y.-F. Acc. Chem. Res. 2023, 56, 169.
|
|
(i) Jin, J.; Xia, H.; Zhang, F.; Wang, Y.-F. Chin J. Org. Chem, 2020, 40, 2185. (in Chinese)
|
|
(靳继康, 夏慧敏, 张凤莲, 汪义丰, 有机化学, 2020, 40, 2185.)
doi: 10.6023/cjoc202005017 |
|
[5] |
(a) Yasu, Y.; Koike, T.; Akita, M. Adv. Synth. Catal. 2012, 354, 3414.
pmid: 24903560 |
(b) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
doi: 10.1126/science.1253647 pmid: 24903560 |
|
(c) Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 2280.
pmid: 24903560 |
|
(d) Huo, H.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2016, 138, 6936.
pmid: 24903560 |
|
(e) Stache, E. E.; Rovis, T.; Doyle, A. G. Angew. Chem., Int. Ed. 2017, 56, 3679.
pmid: 24903560 |
|
[6] |
(a) Lima, F.; Kabeshov, M. A.; Tran, D. N.; Battilocchio, C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S. V. Angew. Chem., Int. Ed. 2016, 55, 14085.
|
(b) Lima, F.; Sharma, U. K.; Grunenberg, L.; Saha, D.; Johannsen, S.; Sedelmeier, J.; Eycken, E. V. V. d.; Ley, S. V. Angew. Chem., Int. Ed. 2017, 56, 15136.
|
|
(c) Shu, C.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2019, 58, 3870.
|
|
(d) Kaiser, D.; Noble, A.; Fasano, V.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 14104.
|
|
(e) Sato, Y.; Nakamura, K.; Sumida, Y.; Hashizume, D.; Hosoya, T.; Ohmiya, H. J. Am. Chem. Soc. 2020, 142, 9938.
|
|
(f) Shi, D.; Xia, C.; Liu, C. CCS Chem. 2020, 2, 1718.
|
|
[7] |
(a) Li, G.-X.; Morales-Rivera, C. A.; Wang, Y.; Gao, F.; He, G.; Liu, P.; Chen, G. Chem. Sci. 2016, 7, 6407.
|
(b) Xie, S.; Li, D.; Huang, H.; Zhang, F.; Chen, Y. J. Am. Chem. Soc. 2019, 141, 16237.
|
|
[8] |
(a) Geske, D. H. J. Phys. Chem. 1959, 63, 1062.
|
(b) Geske, D. H. J. Phys. Chem. 1962, 66, 1743.
|
|
[9] |
(a) Abley, P.; Halpern, J. J. Chem. Soc. D 1971, 20, 1238.
pmid: 33306228 |
(b) Mizuno, H.; Sakurai, H.; Amayaa, T.; Hirao, T. Chem. Commun. 2006, 5042.
pmid: 33306228 |
|
(c) Dhital, R. N.; Sakurai, H. Asian J. Org. Chem. 2014, 3, 668.
pmid: 33306228 |
|
(d) Beil, S. B.; Möhle, S.; Endersa, P.; Waldvogel, S. R. Chem. Commun. 2018, 54, 6128.
pmid: 33306228 |
|
(e) Lu, Z.; Lavendomme, R.; Burghaus, O.; Nitschke, J. R. Angew. Chem., Int. Ed. 2019, 58, 9073.
pmid: 33306228 |
|
(f) Music, A.; Baumann, A. N.; Spieß, P.; Plantefol, A.; Jagau, T. C.; Didier, D. J. Am. Chem. Soc. 2020, 142, 4341.
doi: 10.1021/jacs.9b12300 pmid: 33306228 |
|
(g) Baumann, A. N.; Music, A.; Dechent, J.; Müller, N.; Jagau, T. C.; Didier, D. Chem.-Eur. J. 2020, 26, 8382.
pmid: 33306228 |
|
(h) Gerleve, C.; Studer, A. Angew. Chem., Int. Ed. 2020, 59, 15468.
pmid: 33306228 |
|
(i) Music, A.; Baumann, A. N.; Boser, F.; Müller, N.; Matz, F.; Jagau, T. C.; Didier, D. Chem.-Eur. J. 2021, 27, 4322.
doi: 10.1002/chem.202005282 pmid: 33306228 |
|
(j) Matz, F.; Music, A.; Didier, D.; Jagau, T.-C. Electrochem. Sci. Adv. 2022, 2, e2100032.
pmid: 33306228 |
|
(k) Didier, D. Synthesis 2023, 55, 232.
pmid: 33306228 |
|
[10] |
(a) Li, W.-D.; Wu, Y.; Li, S.-J.; Jiang, Y.-Q.; Li, Y.-L.; Lan, Y.; Xia, J.-B. J. Am. Chem. Soc. 2022, 144, 8551.
|
(b) Liu, X.; Lu, M.; Guo, X.; Xu, H.; Xu, J. Chem.-Eur. J. 2023, 29, e202302041.
|
|
(c) Yue, F.; Ma, H.; Ding, P.; Song, H.; Liu, Y.; Wang, Q. ACS Cent. Sci. 2023, 9, 2268.
|
|
[11] |
(a) Li, W.-D.; Jiang, Y.-Q.; Li, Y.-L.; Xia, J.-B. CCS Chem. 2021, 3, 1710.
|
(b) Gu, Z.-Y.; Li, W.-D.; Li, Y.-L.; Cui, K.; Xia, J.-B. Angew. Chem., Int. Ed. 2023, 62, e202213281.
|
|
(c) Li, Y.-L.; Li, W.-D.; Gu, Z.-Y.; Chen, J.; Xia, J.-B. ACS Catal. 2020, 10, 1528.
|
|
[12] |
Henkel, T.; Brunne, R. M.; Müller, H.; Reichel, F. Angew. Chem., Int. Ed. 1999, 38, 643.
|
[13] |
(a) Ran, C.-K.; Niu, Y.-N.; Song, L.; Wei, M.-K.; Cao, Y.-F.; Luo, S.-P.; Yu, Y.-M.; Liao, L.-L.; Yu, D.-G. ACS Catal. 2022, 12, 18.
|
(b) Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Acc. Chem. Res. 2021, 54, 2518.
|
|
(c) Zhang, Z.; Ye, J.-H.; Ju, T.; Liao, L.-L.; Huang, H.; Gui, Y.-Y.; Zhou, W.-J.; Yu, D.-G. ACS Catal. 2020, 10, 10871.
|
|
[14] |
(a) Fan, Z.; Chen, S.; Zou, S.; Xi, C. ACS Catal. 2022, 12, 2781.
|
(b) Fan, Z.; Zhang, Z.; Xi, C. ChemSusChem 2020, 13, 6201.
|
|
[15] |
(a) Jin, Y.; Toriumi, N.; Iwasawa, N. ChemSusChem 2021, 14, e202102095.
|
(b) Dou, Q.; Wang, T.; Li, S.; Fang, L.; Zhai, H.; Cheng, B. Chin J. Org. Chem. 2022, 42, 4257. (in Chinese)
|
|
(窦谦, 汪太民, 李嗣锋, 房丽晶, 翟宏斌, 程斌, 有机化学, 2022, 42, 4257.)
doi: 10.6023/cjoc202206003 |
|
[16] |
Moustafa, M. S.; Al-Mousawi, S. M.; El-Seedi, H. R.; Elnagdi, M. H. Mini-Rev. Med. Chem. 2018, 18, 992.
|
[17] |
(a) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.
|
(b) Luo, J.; Zhang, J. ACS Catal. 2016, 6, 873.
|
|
[18] |
Bunda, S.; Udvardy, A.; Voronova, K.; Joó, F. J. Org. Chem. 2018, 83, 15486.
|
[19] |
Li, C.; Shi, Y.; Chen, Q.; Zhang, K.; Yang, G. J. Org. Chem. 2023, 88, 2306.
|
[20] |
Wang, Y.-H.; Xu, M.-C.; Liu, J.; Zhang, L.-J.; Zhang, X.-M. Tetrahedron 2015, 71, 9598.
|
[21] |
Velasco, R.; Silva López, C.; Nieto Faza, O.; Sanz, R. Chem.-Eur. J. 2016, 22, 15058.
doi: 10.1002/chem.201602254 pmid: 27592551 |
[22] |
Abe, T.; Mino, T.; Watanabe, K.; Yagishita, F.; Sakamoto, M. Eur. J. Org. Chem. 2014, 2014, 3909.
|
[23] |
Niwa, T.; Ochiai, H.; Watanabe, Y.; Hosoya, T. J. Am. Chem. Soc. 2015, 137, 14313.
|
[24] |
Hannah, J.; Ruyle, W.; Jones, H.; Matzuk, A.; Kelly, K.; Witzel, B.; Holtz, W.; Houser, R.; Shen, T. J. Med. Chem. 1978, 21, 1093.
pmid: 309947 |
[25] |
Shigeno, M.; Hanasaka, K.; Tohara, I.; Izumi, K.; Yamakoshi, H.; Kwon, E.; Nozawa-Kumada, K.; Kondo, Y. Org. Lett. 2022, 24, 809
|
[26] |
He, Z. T.; Hartwig, J. F. J. Am. Chem. Soc. 2019, 141, 11749.
|
[1] | 吕帅, 朱钢国, 姚金忠, 周宏伟. 电化学介导的氧化羧化及二氧化碳还原羧化制备羧酸的研究进展[J]. 有机化学, 2024, 44(3): 780-808. |
[2] | 陶苏艳, 项紫欣, 白俊杰, 万潇, 万小兵. 亚硝酸叔丁酯参与的酰胺水解反应[J]. 有机化学, 2024, 44(2): 550-560. |
[3] | 赵红琼, 于淼, 宋冬雪, 贾琦, 刘颖杰, 季宇彬, 许颖. 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024, 44(1): 70-84. |
[4] | 普佳霞, 贾小英, 韩丽荣, 李清寒. 可见光诱导C—N键断裂构建C—C键的研究进展[J]. 有机化学, 2023, 43(8): 2591-2613. |
[5] | 吴敏, 刘博, 袁佳龙, 付强, 汪锐, 娄大伟, 梁福顺. 可见光媒介的C—S键构建反应研究进展[J]. 有机化学, 2023, 43(7): 2269-2292. |
[6] | 张维舒, 聂礼飞, Khurshed Bozorov, 阿吉艾克拜尔•艾萨, 赵江瑜. 2,5-二氨基噻吩-3,4-二羧酸二乙酯衍生物的合成及抗肿瘤活性研究[J]. 有机化学, 2023, 43(7): 2543-2552. |
[7] | 田维娜, 徐亮, 韦玉, 李鹏飞. 异喹啉-3-羧酸根螯合的B,B-二芳基四配位硼络合物的合成[J]. 有机化学, 2023, 43(5): 1792-1798. |
[8] | 潘永周, 蒙秀金, 王迎春, 何慕雪. 电化学固定CO2构建羧酸衍生物的研究进展[J]. 有机化学, 2023, 43(4): 1416-1434. |
[9] | 李倩敏, 王漫漫, 于文全, 常俊标. 碘介导下通过氧化性C—C键形成合成β-硝基胺与α-胺基腈类化合物[J]. 有机化学, 2023, 43(11): 3966-3976. |
[10] | 郭广青, 练仲. 硅基羧酸在有机合成中的应用进展[J]. 有机化学, 2023, 43(10): 3580-3589. |
[11] | 易文静, 孙威, 胡信全, 刘超, 靳立群. 羧酸酯合成酮类化合物的研究进展[J]. 有机化学, 2022, 42(6): 1626-1639. |
[12] | 王朝彧, 董书达, 朱天阳, 刘玉琴, 武梓涵, 冯若昆. 钴催化的1-萘胺衍生物与α-羰基羧酸的脱羰C(8)-位酰氧基化反应[J]. 有机化学, 2022, 42(6): 1799-1810. |
[13] | 孙鑫, 屈超凡, 马超蕊, 赵筱薇, 柴国璧, 江智勇. 光氧化还原催化串联自由基加成反应构建1,4-二酮官能团化喹喔啉-2(1H)-酮衍生物[J]. 有机化学, 2022, 42(5): 1396-1406. |
[14] | 楚治良, 陈晖娟, 单帅, 王晓娜, 高春芳, 渠桂荣, 刘忠于, 郭海明. 一步法合成1,2,4-三氮唑[3,4-i]嘌呤类化合物[J]. 有机化学, 2022, 42(5): 1551-1556. |
[15] | 肖潜, 佟庆笑, 钟建基. 基于自由基串联环化反应合成苯并吖庚因衍生物的研究进展[J]. 有机化学, 2022, 42(12): 3979-3994. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||