有机化学 ›› 2022, Vol. 42 ›› Issue (6): 1626-1639.DOI: 10.6023/cjoc202201028 上一篇 下一篇
综述与进展
易文静a,b, 孙威b, 胡信全a, 刘超b,*(), 靳立群a,b,*()
收稿日期:
2022-01-19
修回日期:
2022-03-08
发布日期:
2022-03-21
通讯作者:
刘超, 靳立群
基金资助:
Wenjing Yia,b, Wei Sunb, Xinquan Hua, Chao Liub(), Liqun Jina,b()
Received:
2022-01-19
Revised:
2022-03-08
Published:
2022-03-21
Contact:
Chao Liu, Liqun Jin
Supported by:
文章分享
羧酸酯来源广泛, 廉价易得, 其转化受到广泛关注. 酮是一类重要的合成中间体, 可用于合成具有生物活性的复杂药物分子和功能材料. 近二十年来, 羧酸酯合成酮的研究工作取得了重要进展, 主要对近年来羧酸酯转化为酮类化合物的方法进行了综述.
易文静, 孙威, 胡信全, 刘超, 靳立群. 羧酸酯合成酮类化合物的研究进展[J]. 有机化学, 2022, 42(6): 1626-1639.
Wenjing Yi, Wei Sun, Xinquan Hu, Chao Liu, Liqun Jin. Recent Advance of Ketones Synthesis from Carboxylic Esters[J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1626-1639.
[1] |
Okita, T.; Kumazawa, K.; Takise, R.; Muto, K.; Itami, K.; Yamaguchi, J. Chem. Lett. 2017, 46, 218.
doi: 10.1246/cl.161001 |
[2] |
Goossen, L. J.; Paetzold, J. Angew. Chem., Int. Ed. 2004, 43, 1095.
|
[3] |
Liu, X. Q.; Jia, J. Q. ACS Catal. 2017, 7, 4491.
doi: 10.1021/acscatal.7b00941 |
[4] |
Muto, K.; Yamaguchi, J.; Musaev, D. G.; Itami, K. Nat. Commun. 2015, 6, 8.
|
[5] |
Amaike, K.; Muto, K.; Yamaguchi, J.; Itami, K. J. Am. Chem. Soc. 2012, 134, 13573.
doi: 10.1021/ja306062c |
[6] |
Yue, H. F.; Guo, L.; Liao, H. H.; Cai, Y. F.; Zhu, C.; Rueping, M. Angew. Chem., Int. Ed. 2017, 56, 4282.
doi: 10.1002/anie.201611819 |
[7] |
Pu, X. H.; Hu, J. F.; Zhao, Y.; Shi, Z. Z. ACS Catal. 2016, 6, 6692.
doi: 10.1021/acscatal.6b01956 |
[8] |
Guo, L.; Chatupheeraphat, A.; Rueping, M. Angew. Chem., Int. Ed. 2016, 55, 11810.
doi: 10.1002/anie.201604696 |
[9] |
Hie, L.; Nathel, N. F. F.; Hong, X.; Yang, Y. F.; Houk, K. N.; Garg, N. K. Angew. Chem., Int. Ed. 2016, 55, 2810.
doi: 10.1002/anie.201511486 |
[10] |
Guan, B. T.; Wang, Y.; Li, B. J.; Yu, D. G.; Shi, Z. J. J. Am. Chem. Soc. 2008, 130, 14468.
doi: 10.1021/ja8056503 |
[11] |
Wagner, R.; Randolph, J. T.; Patel, S. V.; Nelson, L.; Matulenko, M. A.; Keddy, R.; Pratt, J. K.; Liu, D. C.; Krueger, A. C.; Donner, P. L.; Hutchinson, D. K.; Flentge, C.; Betebenner, D.; Rockway, T.; Maring, C. J.; Ng, T. I.; Krishnan, P.; Pilot-Matias, T.; Collins, C.; Panchal, N.; Reisch, T.; Dekhtyar, T.; Mondal, R.; Stolarik, D. F.; Gao, Y.; Gao, W. Q.; Beno, D. A.; Kati, W. M. J. Med. Chem. 2018, 61, 4052.
doi: 10.1021/acs.jmedchem.8b00082 pmid: 29653491 |
[12] |
(a) Sletten, E. M.; Bertozzi, C. R. Angew. Chem., Int. Ed. 2009, 48, 6974.
doi: 10.1002/anie.200900942 |
(b) Jabeen, I.; Pleban, K.; Rinner, U.; Chiba, P.; Ecker, G. F. J. Med. Chem. 2012, 55, 3261.
doi: 10.1021/jm201705f |
|
(c) Xiong, L.; Hu, H.; Wei, C. W.; Yu, B. Eur. J. Org. Chem. 2020, 2020, 1588.
doi: 10.1002/ejoc.201901581 |
|
[13] |
Bhattacherjee, D.; Rahman, M.; Ghosh, S.; Bagdi, A. K.; Zyryanov, G. V.; Chupakhin, O. N.; Das, P.; Hajra, A. Adv. Synth. Catal. 2021, 363, 1597.
doi: 10.1002/adsc.202001509 |
[14] |
Wu, X. F.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2011, 40, 4986.
doi: 10.1039/c1cs15109f |
[15] |
Peng, J. B.; Wu, F. P.; Wu, X. F. Chem. Rev. 2019, 119, 2090.
doi: 10.1021/acs.chemrev.8b00068 |
[16] |
Li, Y. H.; Hu, Y. Y.; Wu, X. F. Chem. Soc. Rev. 2018, 47, 172.
doi: 10.1039/C7CS00529F |
[17] |
(a) Dieter, R. K. Tetrahedron 1999, 55, 4177.
|
(b) Li, X. J.; Zou, G. J. Organomet. Chem. 2015, 794, 136.
doi: 10.1016/j.jorganchem.2015.07.009 |
|
[18] |
(a) Wang, Z. H.; Wang, X.; Nishihara, Y. Chem.-Asian J. 2020, 15, 1234.
doi: 10.1002/asia.202000117 |
(b) Takise, R.; Muto, K.; Yamaguchi, J. Chem. Soc. Rev. 2017, 46, 5864.
doi: 10.1039/C7CS00182G |
|
(c) Li, Z.; Zhang, S. L.; Fu, Y.; Guo, Q. X.; Liu, L. J. Am. Chem. Soc. 2009, 131, 8815.
doi: 10.1021/ja810157e |
|
[19] |
Kakino, R.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 2001, 74, 371.
|
[20] |
Ben Halima, T.; Zhang, W. Y.; Yalaoui, I.; Hong, X.; Yang, Y. F.; Houk, K. N.; Newman, S. G. J. Am. Chem. Soc. 2017, 139, 1311.
|
[21] |
Lei, P.; Meng, G. R.; Shi, S. C.; Ling, Y.; An, J.; Szostak, R.; Szostak, M. Chem. Sci. 2017, 8, 6525.
doi: 10.1039/C7SC02692G |
[22] |
Dardir, A. H.; Melvin, P. R.; Davis, R. M.; Hazari, N.; Beromi, M. M. J. Org. Chem. 2018, 83, 469.
doi: 10.1021/acs.joc.7b02588 pmid: 29191023 |
[23] |
Shi, S. C.; Lei, P.; Szostak, M. Organometallics 2017, 36, 3784.
doi: 10.1021/acs.organomet.7b00565 |
[24] |
Li, G. C.; Shi, S. C.; Lei, P.; Szostak, M. Adv. Synth. Catal. 2018, 360, 1538.
doi: 10.1002/adsc.201701563 |
[25] |
Lei, P.; Ling, Y.; An, J.; Nolan, S. P.; Szostak, M. Adv. Synth. Catal. 2019, 361, 5654.
doi: 10.1002/adsc.201901188 |
[26] |
Yang, S. Y.; Zhou, T. L.; Poater, A.; Cavallo, L.; No lan, S. P.; Szostak, M. Catal. Sci. Technol. 2021, 11, 3189.
doi: 10.1039/D1CY00312G |
[27] |
Dardir, A. H.; Hazari, N.; Miller, S. J.; Shugrue, C. R. Org. Lett. 2019, 21, 5762.
doi: 10.1021/acs.orglett.9b02214 pmid: 31290674 |
[28] |
Sambamoorthy, M. T.; Rengan, R.; Grzegorz, M. J. Appl. Organomet. Chem. 2019, 33, 12.
|
[29] |
Masson-Makdissi, J.; Vandavasi, J. K.; Newman, S. G. Org. Lett. 2018, 20, 4094.
doi: 10.1021/acs.orglett.8b01646 pmid: 29939758 |
[30] |
Buchspies, J.; Pyle, D. J.; He, H. X.; Szostak, M. Molecules 2018, 23, 10.
doi: 10.3390/molecules23010010 |
[31] |
Banovetz, H. K.; Vickerman, K. L.; David, C. M.; Alkan, M.; Stanley, L. M. Org. Lett. 2021, 23, 3507.
doi: 10.1021/acs.orglett.1c00940 pmid: 33843239 |
[32] |
Chatupheeraphat, A.; Liao, H. H.; Srimontree, W.; Guo, L.; Minenkov, Y.; Poater, A.; Cavallo, L.; Rueping, M. J. Am. Chem. Soc. 2018, 140, 3724.
doi: 10.1021/jacs.7b12865 pmid: 29461813 |
[33] |
Tatamidani, H.; Kakiuchi, F.; Chatani, N. Org. Lett. 2004, 6, 3597.
pmid: 15387557 |
[34] |
Wu, H. X.; Xu, B. P.; Li, Y.; Hong, F. Y.; Zhu, D. Z.; Jian, J. S.; Pu, X. E.; Zeng, Z. J. Org. Chem. 2016, 81, 2987.
doi: 10.1021/acs.joc.5b02667 |
[35] |
Ma, H. P.; Bai, C. L. M.; Bao, Y. S. RSC Adv. 2019, 9, 17266.
doi: 10.1039/C9RA02394A |
[36] |
Yu, B.; Sun, H. M.; Xie, Z. Y.; Zhang, G. F.; Xu, L. W.; Zhang, W. Q.; Gao, Z. W. Org. Lett. 2015, 17, 3298.
doi: 10.1021/acs.orglett.5b01466 |
[37] |
Yang, D. D.; Wang, Z. H.; Wang, X.; Sun, H. M.; Xie, Z. Y.; Fan, J.; Zhang, G. F.; Zhang, W. Q.; Gao, Z. W. J. Mol. Catal. A-Chem. 2017, 426, 24.
doi: 10.1016/j.molcata.2016.10.030 |
[38] |
Yang, F. Y.; Ding, D. C.; Wang, C. Org. Lett. 2020, 22, 9203.
doi: 10.1021/acs.orglett.0c03342 |
[39] |
Wang, J. J.; Zuo, S. J.; Chen, W. Q.; Zhang, X. R.; Tan, K. X.; Tian, Y.; Wang, J. H. J. Org. Chem. 2013, 78, 8217.
doi: 10.1021/jo400949p |
[40] |
Hoang, G. A. T.; Reddy, V. J.; Nguyen, H. H. K.; Douglas, C. J. Angew. Chem., Int. Ed. 2011, 50, 1882.
doi: 10.1002/anie.201005767 |
[41] |
Hoang, G. T.; Pan, Z.; Brethorst, J. T.; Douglas, C. J. J. Org. Chem. 2014, 79, 11383.
doi: 10.1021/jo501814n |
[42] |
Tatamidani, H.; Yokota, K.; Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69, 5615.
pmid: 15307730 |
[43] |
Hansford, K. A.; Dettwiler, J. E.; Lubell, W. D. Org. Lett. 2003, 5, 4887.
pmid: 14653699 |
[44] |
Dorr, A. A.; Lubell, W. D. Can. J. Chem. 2007, 85, 1006.
doi: 10.1139/v07-114 |
[45] |
Douchez, A.; Geranurimi, A.; Lubell, W. D. Acc. Chem. Res. 2018, 51, 2574.
doi: 10.1021/acs.accounts.8b00388 |
[46] |
Zheng, Y. L.; Newman, S. G. Angew. Chem., Int. Ed. 2019, 58, 18159.
doi: 10.1002/anie.201911372 |
[47] |
Zheng, Y. L.; Xie, P. P.; Daneshfar, O.; Houk, K. N.; Hong, X.; Newman, S. G. Angew. Chem., Int. Ed. 2021, 60, 13476.
doi: 10.1002/anie.202103327 |
[48] |
Zheng, M.; Xue, W.; Xue, T.; Gong, H. Org. Lett. 2016, 18, 6152.
pmid: 27934381 |
[49] |
Rerat, A.; Michon, C.; Agbossou-Niedercorn, F.; Gosmini, C. Eur. J. Org. Chem. 2016, 2016, 4554.
doi: 10.1002/ejoc.201600738 |
[50] |
Shi, R. Y.; Hu, X. L. Angew. Chem., Int. Ed. 2019, 58, 7454.
doi: 10.1002/anie.201903330 |
[51] |
Xu, S.; Wang, K.; Kong, W. Q. Org. Lett. 2019, 21, 7498.
doi: 10.1021/acs.orglett.9b02788 |
[52] |
Chen, J.; Zhu, S. L. J. Am. Chem. Soc. 2021, 143, 14089.
doi: 10.1021/jacs.1c07851 |
[53] |
Lee, J. I. Bull. Korean Chem. Soc. 2007, 28, 863.
doi: 10.5012/bkcs.2007.28.5.863 |
[54] |
Lee, J. I. Bull. Korean Chem. Soc. 2010, 31, 749.
doi: 10.5012/bkcs.2010.31.03.749 |
[55] |
Genna, D. T.; Posner, G. H. Tetrahedron 2016, 72, 5968.
doi: 10.1016/j.tet.2016.05.003 |
[56] |
Funabiki, K.; Hayakawa, A.; Inuzuka, T. Org. Biomol. Chem. 2018, 16, 913.
doi: 10.1039/C7OB02862H |
[57] |
Farah, A. O.; Rabah, M.; Beng, T. K. RSC Adv. 2020, 10, 22454.
doi: 10.1039/D0RA03885G |
[58] |
Heinz, B.; Djukanovic, D.; Ganiek, M. A.; Martin, B.; Schenke, B.; Knochel, P. Org. Lett. 2020, 22, 493.
doi: 10.1021/acs.orglett.9b04254 |
[59] |
Lima, F.; Meisenbach, M.; Schenkel, B.; Sedelmeier, J. Org. Biomol. Chem. 2021, 19, 2420.
doi: 10.1039/D1OB00288K |
[60] |
Sun, M. L.; Li, J. C.; Liang, C. M.; Shan, C.; Shen, X. Y.; Cheng, R. H.; Ma, Y. Y.; Ye, J. X. J. Flow Chem. 2021, 11, 91.
doi: 10.1007/s41981-020-00120-7 |
[61] |
Ni, C. F.; Zhang, L. J.; Hu, J. B. J. Org. Chem. 2009, 74, 3767.
|
[62] |
Prakash, G. K. S.; Jog, P. V.; Batamack, P. T. D.; Olah, G. A. Science 2012, 338, 1324.
doi: 10.1126/science.1227859 pmid: 23224551 |
[63] |
(a) Nallagonda, R.; Padala, K.; Masarwa, A. Org. Biomol. Chem. 2018, 16, 1050.
doi: 10.1039/c7ob02978k pmid: 29379940 |
(b) Lin, S.; Wang, L.; Aminoleslami, N.; Lao, Y.; Yagel, C.; Sharma, A. Chem. Sci. 2019, 10, 4684.
doi: 10.1039/C9SC00378A pmid: 29379940 |
|
(c) Miralles, N.; Maza, R. J.; Fernandez, E. Adv. Synth. Catal. 2018, 360, 1306.
doi: 10.1002/adsc.201701390 pmid: 29379940 |
|
(d) Hu, Y.; Sun, W.; Liu, C. Synlett 2019, 30, 1105.
doi: 10.1055/s-0037-1611728 pmid: 29379940 |
|
(e) Wu, C. Q.; Wang, J. B. Tetrahedron Lett. 2018, 59, 2128.
pmid: 29379940 |
|
[64] |
Matteson, D. S.; Moody, R. J. J. Am. Chem. Soc. 1977, 99, 3196.
doi: 10.1021/ja00451a071 |
[65] |
Iacono, C. E.; Stephens, T. C.; Rajan, T. S.; Pattison, G. J. Am. Chem. Soc. 2018, 140, 2036.
doi: 10.1021/jacs.7b12941 |
[66] |
Mukaiyama, T.; Murakami, M.; Oriyama, T.; Yama guchi, M. Chem. Lett. 1981, 10, 1193.
doi: 10.1246/cl.1981.1193 |
[67] |
Lee, B.; Chirik, P. J. J. Am. Chem. Soc. 2020, 142, 2429.
doi: 10.1021/jacs.9b11944 |
[68] |
Hwang, J. P.; Prakash, G.; Olah, G. A. Tetrahedron 2000, 56, 7199.
doi: 10.1016/S0040-4020(00)00633-5 |
[69] |
Xiao, J.; Guo, F. Z.; Li, Y. F.; Li, F. S.; Li, Q.; Tang, Z. L. J. Org. Chem. 2021, 86, 2028.
doi: 10.1021/acs.joc.0c02794 |
[70] |
Ren, S. C.; Lv, W. X.; Yang, X.; Yan, J. L.; Xu, J.; Wang, F. X.; Hao, L.; Chai, H. F.; Jin, Z. C.; Chi, Y. R. ACS Catal. 2021, 11, 2925.
doi: 10.1021/acscatal.1c00165 |
[71] |
Xi, X. X.; Luo, Y. X.; Li, W. R.; Xu, M. H.; Zhao, H. P.; Chen, Y. K.; Zheng, S. L.; Qi, X. T.; Yuan, W. M. Angew. Chem., Int. Ed. 2022, 61, 1.
|
[1] | 蒙玲, 汪君. 硫代黄烷酮类衍生物的合成研究进展[J]. 有机化学, 2023, 43(3): 873-891. |
[2] | 张宇轩, 许立民, 卢岩, 张兆国. 二酮的不对称催化还原反应研究进展[J]. 有机化学, 2022, 42(10): 3221-3239. |
[3] | 常哲, 王佳鑫, 陆熹, 傅尧. 镍促进电化学还原交叉偶联合成偕二氟烯烃[J]. 有机化学, 2022, 42(1): 147-159. |
[4] | 李世杰, 聂秋玥, 季珍瑜, 华会明, 唐功利. 组合生物合成介导C-4羟基异构的新型四环素类化合物的发现[J]. 有机化学, 2021, 41(8): 3297-3302. |
[5] | 郑梦霞, 曾竟, 买里克扎提•买合木提, 阿布都热西提•阿布力克木. HBr催化α-溴代甲基酮类化合物的全脱溴反应研究[J]. 有机化学, 2021, 41(5): 2121-2126. |
[6] | 李庆雪, 李梦伟, 时绍青, 季晓霜, 何春兰, 姜波, 郝文娟. 醋酸碘苯介导的α-重氮羰基化合物的去重氮双氧合反应[J]. 有机化学, 2020, 40(2): 384-390. |
[7] | 许露露, 叶倩雯, 程冬萍, 李小年, 许孝良. N-溴代丁二酰亚胺促进的环丙烯羧酸酯的区域选择性开环反应[J]. 有机化学, 2019, 39(9): 2645-2649. |
[8] | 颜世强, 谢明现, 王玉杰, 李英霞. 灯盏花乙素半合成柳穿鱼叶苷研究[J]. 有机化学, 2019, 39(2): 412-418. |
[9] | 薛红, 董玉, 冯磊, 李海波, 李津, 张志伟. 3-吲哚羧酸酯类化合物合成方法的研究进展[J]. 有机化学, 2018, 38(5): 1029-1034. |
[10] | 樊亚琴, 朱国良, 王乂, 朱晓翠, 宫倩红, 贾茜, 付鹏, 朱伟明. 红树林真菌Penicillium camemberti OUCMDZ-1492产生的细菌群体感应抑制活性的α-吡喃酮类化合物[J]. 有机化学, 2018, 38(10): 2798-2804. |
[11] | 陈翠, 邱会华. 芳酮类化合物羰基邻位sp3-C-H键的乙酰氧基化反应研究[J]. 有机化学, 2016, 36(4): 826-829. |
[12] | 李明, 宁加彬, 于乐, 文丽荣. 铜促进硫代色酮类化合物的合成研究[J]. 有机化学, 2016, 36(11): 2715-2722. |
[13] | 张浩, 李奇博, 刘克昌, 刘瑞全, 李青阳, 汪清民, 刘尚钟. N-(2-氟-4-氯-5-取代苯基)异吲哚-1,3-二酮衍生物的合成及除草活性[J]. 有机化学, 2015, 35(1): 159-166. |
[14] | 田拴宝, 郝永兵. 磺酸功能化的聚乙二醇6000催化下合成二氢吡咯酮类化合物[J]. 有机化学, 2013, 33(10): 2232-2236. |
[15] | 颜世强, 张伟, 丁宁, 李英霞 . 硅胶及其负载酸在糖化学中的应用研究进展[J]. 有机化学, 2012, 32(11): 2081-2089. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||