Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (7): 2676-2683.DOI: 10.6023/cjoc202102039 Previous Articles Next Articles
Special Issue: 有机光催化虚拟合辑
ARTICLES
收稿日期:
2021-02-22
修回日期:
2021-04-02
发布日期:
2021-04-29
通讯作者:
沈悦海
基金资助:
Ziyan Shao, Qingli Zhou, Jiancheng Wang, Rui Tang, Yuehai Shen()
Received:
2021-02-22
Revised:
2021-04-02
Published:
2021-04-29
Contact:
Yuehai Shen
Supported by:
Share
Ziyan Shao, Qingli Zhou, Jiancheng Wang, Rui Tang, Yuehai Shen. Sodium Iodide-Triphenylphosphine-Mediated Photoredox Alkylation of Aldimines[J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2676-2683.
Entry | Variations from the “standard condition”a | Yieldb/% |
---|---|---|
1 | None | 96 |
2 | NaI (0.5 equiv.) | 80 |
3 | NaI (1.0 equiv.) | 84 |
4 | TPP (0.2 equiv.) | 86 |
5 | TPP (0.5 equiv.) | 95 |
6 | HE (0.5 equiv.) | 80 |
7 | HE (1.5 equiv.) | 96 |
8 | In acetonitrile | 23 |
9 | In acetone | 35 |
10 | In THF | 65 |
11 | In 1,2-dichloroethane | 10 |
12 | No Na2CO3 | 85 |
13 | 4 Å MS instead of Na2CO3 | 71 |
14 | Na2SO4 instead of Na2CO3 | 88 |
15 | K2CO3 instead of Na2CO3 | 54 |
16 | Cs2CO3 instead of Na2CO3 | 40 |
17 | KI instead of NaI | 73 |
18 | Add I2(0.05 equiv.) | 10 |
19 | No TPP | 27 |
20 | No NaI | 20 |
21 | No TPP and NaI | 25 |
22 | No HE | n.r.c |
23 | No light | n.r.c |
24 | Add TEMPO (5.0 equiv.) | n.r.c |
Entry | Variations from the “standard condition”a | Yieldb/% |
---|---|---|
1 | None | 96 |
2 | NaI (0.5 equiv.) | 80 |
3 | NaI (1.0 equiv.) | 84 |
4 | TPP (0.2 equiv.) | 86 |
5 | TPP (0.5 equiv.) | 95 |
6 | HE (0.5 equiv.) | 80 |
7 | HE (1.5 equiv.) | 96 |
8 | In acetonitrile | 23 |
9 | In acetone | 35 |
10 | In THF | 65 |
11 | In 1,2-dichloroethane | 10 |
12 | No Na2CO3 | 85 |
13 | 4 Å MS instead of Na2CO3 | 71 |
14 | Na2SO4 instead of Na2CO3 | 88 |
15 | K2CO3 instead of Na2CO3 | 54 |
16 | Cs2CO3 instead of Na2CO3 | 40 |
17 | KI instead of NaI | 73 |
18 | Add I2(0.05 equiv.) | 10 |
19 | No TPP | 27 |
20 | No NaI | 20 |
21 | No TPP and NaI | 25 |
22 | No HE | n.r.c |
23 | No light | n.r.c |
24 | Add TEMPO (5.0 equiv.) | n.r.c |
[1] |
Liu, Q.; Wu,L. Z. Nat. Sci. Rev. 2017, 4,359.
doi: 10.1093/nsr/nwx039 |
[2] |
(a) Marzo, L.; Pagire,S. K.; Reiser, O.; König, B. Angew. Chem.,Int. Ed. 2018, 57,10034.
doi: 10.1002/anie.v57.32 |
(b) Shaw,M. H.; Twilton, J.; MacMillan,D. W.C. J. Org. Chem. 2016, 81,6898.
doi: 10.1021/acs.joc.6b01449 |
|
[3] |
(a) Song, H.; Liu,X. Y.; Qin, Y. Acta Chim. Sinica 2017, 75,1137 (in Chinese).
doi: 10.6023/A17080384 |
( 宋颢, 刘小宇, 秦勇, 化学学报, 2017, 75,1137.)
|
|
(b) Song,C. H.; Shen, X.; Yu, F.; He,Y. P.; Yu,S. Y. Chin. J. Org. Chem. 2020, 40,3748 (in Chinese).
doi: 10.6023/cjoc202004008 |
|
( 宋常华, 沈许, 于芳, 何宇鹏, 俞寿云, 有机化学, 2020, 40,3748.)
|
|
(c) Xiao, L.; Li,J. H.; Wang, T. Acta Chim. Sinica 2019, 77,841 (in Chinese).
doi: 10.6023/A19050183 |
|
( 肖丽, 李嘉恒, 王挺, 化学学报, 2019, 77,841.)
|
|
(d) Kong,Y. L.; Xu,W. X.; Ye,F. X.; Weng,J. Q. Chin. J. Org. Chem. 2019, 39,3065 (in Chinese).
doi: 10.6023/cjoc201905016 |
|
( 孔瑶蕾, 徐雯秀, 叶飞霞, 翁建全, 有机化学, 2019, 39,3065.)
|
|
[4] |
Yan, M.; Lo,J. C.; Edwards,J. T.; Baran,P. S. J. Am. Chem. Soc. 2016, 138,12692.
doi: 10.1021/jacs.6b08856 |
[5] |
(a) Romero,N. A.; Nicewicz,D. A. Chem. Rev. 2016, 116,10075.
doi: 10.1021/acs.chemrev.6b00057 |
(b) Bogdos,M. K.; Pinard, E.; Murphy,J. A. Beilstein J. Org. Chem. 2018, 14,2035.
doi: 10.3762/bjoc.14.179 |
|
[6] |
Twilton, J.; Le, C.; Zhang, P.; Shaw,M. H.; Evans R. W.; MacMillan,D. W.C. Nat. Rev. Chem. 2017, 1,0052.
doi: 10.1038/s41570-017-0052 |
[7] |
For recent reviews, see: (a) Crisenza,G. E. M.; Mazzarella, D.; Melchiorre, P. J. Am. Chem. Soc. 2020, 142,5461.
doi: 10.1021/jacs.0c01416 |
(b) Lima,C. G.S.; Lima,T. d.M.; Duarte, M.; Jurberg,I. D.; Paixão,M. W. ACS Catal. 2016, 6, 1389.
doi: 10.1021/acscatal.5b02386 |
|
(c) Yuan,Y. -Q.; Majumder, S.; Yang,M. -H.; Guo,S. -R. Tetrahedron Lett. 2020, 61,151506.
doi: 10.1016/j.tetlet.2019.151506 |
|
[8] |
For recent examples, see: (a) Pitre,S. P.; Allred,T. K.; Overman,L. E. Org. Lett. 2021, 23,1103.
doi: 10.1021/acs.orglett.1c00023 |
(b) Xia, Q.; Li,Y. F.; Cheng, L.; Liang, X.; Cao,C. L.; Dai, P.; Deng,H. P.; Zhang,W. H.; Wang,Q. M. Org. Lett. 2020, 22,9638.
doi: 10.1021/acs.orglett.0c03703 |
|
(c) Xie,S. S.; Li,D. F.; Huang,H. C.; Zhang,F. Y.; Chen,Y. Y. J. Am. Chem. Soc. 2019, 141,16237.
doi: 10.1021/jacs.9b09099 |
|
(d) Liang,K. J.; Li, N.; Zhang, Y.; Li, T.; Xia,C. F. Chem. Sci. 2019, 10,3049.
doi: 10.1039/C8SC05170D |
|
(e) Zhang,H. H.; Yu,S. Y. Org. Lett. 2019, 21,3711.
doi: 10.1021/acs.orglett.9b01169 |
|
(f) Cao,Z. Y.; Ghosh, T.; Melchiorre, P. Nat. Commun. 2018, 9,3274.
doi: 10.1038/s41467-018-05375-2 |
|
(g) Guo,Q. P.; Wang,M. R.; Liu, H.; Wang, R.; Xu,Z. Q. Angew. Chem.,Int. Ed. 2018, 57,4747.
doi: 10.1002/anie.201800767 |
|
(h) Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers,E. L.; Aggarwal,V. K. Science 2017, 357,283.
doi: 10.1126/science.aan3679 |
|
[9] |
Fu,M. C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Science 2019, 363,1429.
doi: 10.1126/science.aav3200 |
[10] |
Jiao,M. J.; Liu, D.; Hu,X. Q.; Xu,P. F. Org. Chem. Front. 2019, 6,3834.
doi: 10.1039/C9QO01166H |
[11] |
Wadekar, K.; Aswale, S.; Yatham,V. R. RSC Adv. 2020, 10,16510.
doi: 10.1039/D0RA03211E |
[12] |
Wang,Y. T.; Fu,M. C.; Zhao, B.; Shang, R.; Fu, Y. Chem. Commun. 2020, 56,2495.
doi: 10.1039/C9CC09654J |
[13] |
Wang,H. Y.; Zhong,L. J.; Lü,G. F.; Li, Y.; Li,J. H. Org. Biomol. Chem. 2020, 18,5589.
doi: 10.1039/D0OB01242D |
[14] |
Liu,H. Y.; Lu, Y.; Li, Y.; Li,J. H. Org. Lett. 2020, 22,8819.
doi: 10.1021/acs.orglett.0c03182 |
[15] |
(a) Sheng, H.; Liu, Q.; Su,X. D.; Lu, Y.; Wang,Z. X.; Chen,X. Y. Org. Lett. 2020, 22,7187.
doi: 10.1021/acs.orglett.0c02523 |
(b) Zhang,C. S.; Bao, L.; Chen,K. Q.; Wang,Z. X.; Chen,X. Y. Org. Lett. 2021, 23,1577.
doi: 10.1021/acs.orglett.0c04287 |
|
[16] |
For recent reviews, see: (a) Friestad,G. K. Top. Curr. Chem. 2014, 343,1.
|
(b) Friestad,G. K. Top. Curr. Chem. 2012, 320,61.
|
|
[17] |
Garrido-Castro,A. F.; Maestro,M. C.; Alemán, J. Catalysts 2020, 10,562.
doi: 10.3390/catal10050562 |
[18] |
For recent examples: (a) Jia,J. Q.; Lefebvre, Q.; Rueping, M. Org. Chem. Front. 2020, 7,602.
doi: 10.1039/C9QO01428D |
(b) Pantaine,L. R.E.; Milligan,J. A.; Matsui,J. K.; Kelly,C. B.; Molander,G. A. Org. Lett. 2019, 21,7, 2317.
|
|
(c) Cullen,S. T.J.; Friestad,G. K. Org. Lett. 2019, 21,8290.
doi: 10.1021/acs.orglett.9b03053 |
|
(d) Ji, P.; Zhang,Y. T.; Wei,Y. Y.; Huang, H.; Hu,W. B.; Mariano,P. A.; Wang, W. Org. Lett. 2019, 21,3086.
doi: 10.1021/acs.orglett.9b00724 |
|
(e) Garrido-Castro,A. F.; Choubane, H.; Daaou, M.; Maestro,M. C.; Alemán, J. Chem. Commun. 2017, 53,7764.
doi: 10.1039/C7CC03724D |
|
[19] |
For recent examples: (a) Weigel,W. K., III. Dang,H. T.; Yang,H. B.; Martin, D. B. C. Chem. Commun. 2020, 56,9699.
doi: 10.1039/D0CC02804E |
(b) Jia,J. Q.; Kancherla, R.; Rueping, M.; Huang, L. Chem. Sci. 2020, 11,4954.
doi: 10.1039/D0SC00819B |
|
(c) Yang, S.; Zhu,S. Y.; Lu,D. F.; Gong,Y. F. Org. Lett. 2019, 21,8464.
doi: 10.1021/acs.orglett.9b03238 |
|
[20] |
For recent examples: (a) Leitch,J. A.; Rogova, T.; Duarte, F; Dixon, D. J. Angew. Chem.,Int. Ed. 2020, 59,4121.
doi: 10.1002/anie.v59.10 |
(b) Rong,J. W.; Seeberger,P. H.; Gilmore, K. Org. Lett. 2018, 20,4081.
doi: 10.1021/acs.orglett.8b01637 |
|
(c) Chen, M.; Zhao,X. X.; Yang, C.; Xia,W. J. Org. Lett. 2017, 19,3807.
doi: 10.1021/acs.orglett.7b01677 |
|
(d) Qi, L.; Chen,Y. Y. Angew. Chem.,Int. Ed. 2016, 55,13312.
doi: 10.1002/anie.201607813 |
|
(e) Uraguchi, D.; Kinoshita, N.; Kizu, T.; Ooi, T. J. Am. Chem. Soc. 2015, 137,13768.
doi: 10.1021/jacs.5b09329 |
|
(f) Jeffrey,J. L.; Petronijević,F. R.; MacMillan,D. W.C. J. Am. Chem. Soc. 2015, 137,8404.
doi: 10.1021/jacs.5b05376 |
|
[21] |
Tang, R.; Shao,Z. Y.; Wang,J. C.; Liu,Z. X.; Li,Y. M.; Shen,Y. H. J. Org. Chem. 2019, 84,8177.
doi: 10.1021/acs.joc.9b01163 |
[22] |
Wang,J. C.; Shao,Z. Y.; Tan, K.; Tang, R.; Zhou,Q. L.; Xu, M.; Li,Y. M.; Shen,Y. H. J. Org. Chem. 2020, 85,9944.
doi: 10.1021/acs.joc.0c01246 |
[23] |
(a) Jung, J.; Kim, J.; Park, G.; You, Y.; Cho,E. J. Adv. Synth. Catal. 2016, 358,74.
doi: 10.1002/adsc.v358.1 |
(b) Chen,W. X.; Tao,H. C.; Huang,W. H.; Wang,G. Q.; Li,S. H.; Cheng, X.; Li,G. G. Chem.-Eur. J. 2016, 22,9546.
doi: 10.1002/chem.201601819 |
|
(c) Zhang, J.; Li, Y.; Xu,R. Y.; Chen,Y. Y. Angew. Chem.,Int. Ed. 2017, 56,12619.
doi: 10.1002/anie.v56.41 |
|
(d) Yu, J.; Lin,J. H.; Cao,Y. C.; Xiao,J. C. Org. Chem. Front. 2019, 6,3580.
doi: 10.1039/C9QO00919A |
[1] | Jiyu Liu, Shengyu Li, Kuan Chen, Yin Zhu, Yuan Zhang. Triphenylamine-Based Ordered Mesoporous Polymer as a Metal-Free Photocatalyst for Oxidation of Thiols to Disulfide [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 605-612. |
[2] | Jianghu Dong, Liangming Xuan, Chi Wang, Chenxi Zhao, Haifeng Wang, Qiongjiao Yan, Wei Wang, Fen'er Chen. Recent Advances in Visible-Light-Induced C(3)—H Functionalization of Quinoxalinones under Transition-Metal-Free or Photocatalyst-Free [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 111-136. |
[3] | Chunming Gui, Tongyao Zhou, Haifeng Wang, Qiongjiao Yan, Wei Wang, Jin Huang, Fener Chen. Recent Advances in Visible Light Photoredox-Catalyzed Alkynylation [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2647-2663. |
[4] | Changjun Liu, Huiling Hu, Chenghong Liu, Chaojie Zhu, Tiandi Tang. Pd Supported on Mesoporous ETS-10 Zeolite Catalyst with Superior Catalytic Performances in Synthesizing 1,2-Diones from the Oxidation of Internal Alkynes [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2953-2960. |
[5] | Min Wu, Bo Liu, Jialong Yuan, Qiang Fu, Rui Wang, Dawei Lou, Fushun Liang. Recent Progress in the C—S Bond Formation Reactions Mediated by Visible Light [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2269-2292. |
[6] | Yadong Li, Pengju Wu, Zhiyong Yang. Synthesis of 2-Aryl Benzoxazoles from Benzoxazoles and α-Ketoic Acids by Photoredox Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1770-1777. |
[7] | Xin Sun, Chaofan Qu, Chaorui Ma, Xiaowei Zhao, Guobi Chai, Zhiyong Jiang. Photoredox Catalytic Cascade Radical Addition to Construct 1,4- Diketone-Functionalized Quinoxalin-2(1H)-one Derivatives [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1396-1406. |
[8] | Tianyi Sun, Yifan Zhang, Yuanjie Meng, Yi Wang, Qifeng Zhu, Yuxin Jiang, Shihui Liu. Photoredox-Copper Dual-Catalyzed Site-Selective O-Alkylation of Glycosides [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1414-1422. |
[9] | Meng Li, Dongyang Zhao, Kai Sun. Visible Light Driving Alkene Difunctionalization Reaction Involving Group Migration [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4152-4168. |
[10] | Qian Xiao, Qing-Xiao Tong, Jian-Ji Zhong. Recent Progress on the Synthesis of Benzazepine Derivatives via Radical Cascade Cyclization Reactions [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 3979-3994. |
[11] | Yang Xie, Jun Xuan. Photocatalytic Reactions Involving Diazo Compounds as Radical Precursors [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4247-4256. |
[12] | Pan-Pan Gao, Wen-Jing Xiao, Jia-Rong Chen. Recent Progresses in Visible-Light-Driven Alkene Synthesis [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 3923-3943. |
[13] | Lei Xu, Fang Wang, Fan Chen, Shengqing Zhu, Lingling Chu. Recent Advances in Photoredox/Nickel Dual-Catalyzed Difunctionalization of Alkenes and Alkynes [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 1-15. |
[14] | Yingjie Liu, Zhichuan Wang, Jianping Meng, Chen Li, Kai Sun. Research Progress of Photoelectric Co-catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 100-110. |
[15] | Shurui Zhou, Kaige Wen, Xingping Zeng. Recent Progress in Catalytic Asymmetric Alkynylation of Imines [J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 471-489. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||