Chinese Journal of Organic Chemistry ›› 2025, Vol. 45 ›› Issue (9): 3163-3174.DOI: 10.6023/cjoc202506025 Previous Articles     Next Articles

REVIEWS

细微差别取代化合物的手性识别及不对称催化反应研究进展

吕亚, 何贵含, 刘剑剑, 陈永正*()   

  1. 遵义医科大学药学院 贵州省化学药物创制全省重点实验室 贵州遵义 563003
  • 收稿日期:2025-06-18 修回日期:2025-09-03 发布日期:2025-09-11
  • 基金资助:
    国家自然科学基金(32271537); 国家自然科学基金(22061049); 贵州省科技厅(QKHRCPTGCC-2023-003); 贵州省科技厅(GHJD-2025-001); 及遵义市科技局(ZSKRPT2020-5); 及遵义市科技局(ZSKH-2018-3); 及遵义市科技局(ZSKRPT-2021-5)

Advances in Chiral Recognition and Asymmetric Catalysis of Minimal Structural Differences Compounds

LüYa, Guihan He, Jianjian Liu, Yongzheng Chen*()   

  1. Guizhou Provincial Key Laboratory of Innovation and Manufacturing for Pharmaceuticals, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003
  • Received:2025-06-18 Revised:2025-09-03 Published:2025-09-11
  • Contact: E-mail: yzchen@zmu.edu.cn
  • About author:

    Academic Papers of the 27th Annual Meeting of the China Association for Science and Technology.

  • Supported by:
    National Natural Science Foundation of China(32271537); National Natural Science Foundation of China(22061049); Science and Technology Department of Guizhou Province(QKHRCPTGCC-2023-003); Science and Technology Department of Guizhou Province(GHJD-2025-001); Science and Technology Department of Zunyi City(ZSKRPT2020-5); Science and Technology Department of Zunyi City(ZSKH-2018-3); Science and Technology Department of Zunyi City(ZSKRPT-2021-5)

Asymmetric catalysis is a direct and efficient method for synthesizing chiral compounds, with its core focus lying in the development of highly efficient chiral catalysts to achieve precise chiral recognition of prochiral faces or prochiral centers in substrates. Although significant progress has been made in this field over the past few decades, most current studies concentrate on substrates containing aryl and alkyl groups, while achieving high enantioselectivity remains challenging when substituents exhibit minimal steric and electronic differences. The precise chiral discrimination of substituents with subtle differences still constitutes a major challenge. In traditional approaches, chiral catalysts primarily rely on steric interactions between the catalyst and substrate to control stereoselectivity, whereas enzymes in nature utilize confined active sites to achieve precise regulation of organic transformations. The recent advances in the precise recognition of minimally diffe- rentiated substrates and their applications in asymmetric catalytic reactions, covering metal catalysis, organocatalysis, biocatalysis, and related areas are summarized.

Key words: minimal structural difference, accurate identification, asymmetric synthesis, enzyme catalysis