Chin. J. Org. Chem. ›› 2016, Vol. 36 ›› Issue (1): 60-71.DOI: 10.6023/cjoc201507037 Previous Articles     Next Articles

Reviews

第VIII族过渡金属配合物催化羰基化合物硅氢化的反应机理

秦晓飞, 刘晓燕, 郭彩红, 武海顺   

  1. 山西师范大学化学与材料科学学院 临汾 041004
  • 收稿日期:2015-07-29 修回日期:2015-09-21 发布日期:2015-09-30
  • 通讯作者: 郭彩红 E-mail:sxgch2006@163.com
  • 基金资助:

    国家自然科学基金(No. 21203115)和山西省回国留学人员科研(No. 2012-057)资助项目.

Reaction Mechanisms of Carbonyl Compounds Hydrosilylation Catalyzed by Group VIII Transition Metal Complexes

Qin Xiaofei, Liu Xiaoyan, Guo Caihong, Wu Haishun   

  1. School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004
  • Received:2015-07-29 Revised:2015-09-21 Published:2015-09-30
  • Supported by:

    Project supported by the National Natural Science Foundation of China (No. 21203115) and the Shanxi Scholarship Council of China (No. 2012-057)

Hydrosilylation is an important reaction widely used in the silicone industries. Especially, the hydrosilylation of carbonyl compounds is of great value in synthetic organic chemistry. A variety of transition-metal complexes, such as iron, palladium, rhodium, ruthenium, platinum, etc., are now known to show catalytic activity in the hydrosilylation of ketones. Since organohydrosilanes may involve one, two, or three Si—H bonds in tertiary, secondary or primary silanes, respectively. The various types of compounds were produced in their reactions with the unsaturated substrates catalyzed by transition-metal complexes. In this paper, several reaction mechanisms of carbonyl compounds hydrosilylation catalyzed by group VIII transition metal complexes under different reaction conditions are mainly introduced. In particular, the new developments on mechanistic pathways for Rh, Ru, Fe and Ir catalytic systems from the type of reaction mechanism and the influence of reaction conditions are highlighted. In addition, some key intermediates and transition states, and their energetics are presented. Not only a summary of previous work is given, but also some ideas and inspirations are provided for future research.

Key words: transition metal complexes, carbonyl compounds, organosilanes, hydrosilylation, reaction mechanism