Chinese Journal of Organic Chemistry ›› 2019, Vol. 39 ›› Issue (11): 3132-3144.DOI: 10.6023/cjoc201903008 Previous Articles Next Articles
Special Issue: 荧光探针-生物传感合辑; 有机超分子化学合辑
收稿日期:
2019-03-04
发布日期:
2019-06-19
通讯作者:
张继东
E-mail:akuzjd@aku.edu.cn
基金资助:
Zhang Jidonga*(), Liu Hongzea, Meng Lib
Received:
2019-03-04
Published:
2019-06-19
Contact:
Zhang Jidong
E-mail:akuzjd@aku.edu.cn
Supported by:
Share
Zhang Jidong, Liu Hongze, Meng Li. Research Progress in the Fluorescent Probes for Alkaline Phosphatase[J]. Chinese Journal of Organic Chemistry, 2019, 39(11): 3132-3144.
[1] | ColemanJ. E. Annu. Rev. 1992, 21, 411. |
[2] |
ChristensonR. H. Clin. Biochem. 1997, 30, 573.
doi: 10.1016/S0009-9120(97)00113-6 |
[3] |
OoiK.; ShirakiK.; MorishitaY. J. Clin. Lab. Anal. 2007, 21, 133.
doi: 10.1002/jcla.20178 |
[4] |
WolfP. L. J. Clin. Lab. Anal. 1994, 8, 172.
doi: 10.1002/jcla.1860080311 |
[5] |
YeungM. C.-L.; YamV. W.-W. Chem. Sci. 2013, 4, 2928.
doi: 10.1039/c3sc50383f |
[6] |
LiuY.; SchanzeK. S. Anal. Chem. 2008, 80, 8605.
doi: 10.1021/ac801508y |
[7] |
RuanC.; WangW.; GuB. Anal. Chem. 2006, 78, 3379.
doi: 10.1021/ac0522106 |
[8] |
IqbalJ. Anal. Biochem. 2011, 414, 226.
doi: 10.1016/j.ab.2011.03.021 |
[9] |
MwiluS. K.; OkelloV. A.; OsongaF. J.; MillerS.; Sadik O. A. Analyst 2014, 139, 5472.
doi: 10.1039/C4AN00931B |
[10] |
Yin, C.; Huo, F.; Zhang, J. Martínez-Má ez, R.; Yang, Y.; Lv, H.; Li, S. Chem. Soc. Rev. 2013, 42, 6032.
doi: 10.1039/c3cs60055f |
[11] |
Xu, Q.; Jin, C.; Zhu, X. Chin. J. Org. Chem. 2014, 34, 647 (in Chinese).
doi: 10.6023/cjoc201311043 |
徐勤超, 金灿, 朱雪慧, 邢国文, 有机化学, 2014, 34, 647.
doi: 10.6023/cjoc201311043 |
|
[12] |
Huang, X.; Zhang, F.; Zhu, L.; Choi, K. Y.; Guo, N.; Guo, J.; Tackett, K.; Anilkumar, P.; Liu, G.; Sun, Y. P.; Lee, S.; Chen, X ACS Nano 2013, 7, 5684.
doi: 10.1021/nn401911k |
[13] |
Wang, J.; Chu, H.; Chen, W. Chin. J. Org. Chem. 2016, 36, 2545 (in Chinese).
doi: 10.6023/cjoc201605040 |
王军, 初紅涛, 陈微微, 孙荣国, 有机化学, 2016, 36, 2545.
doi: 10.6023/cjoc201605040 |
|
[14] |
KimJ. S.; QuangD. T. Chem. Rev. 2007, 107, 3780.
doi: 10.1021/cr068046j |
[15] |
BozdemirO. A.; GuliyevR.; BuyukcakirO.; SelcukS.; KolemenS.; GulserenG.; NalbantogluT.; BoyaciH.; AkkayaE. U. J. Am. Chem. Soc. 2010, 132, 8029.
doi: 10.1021/ja1008163 |
[16] |
HuQ.; ZengF.; YuC.; WuS. Sens. Actuators, B 2015, 220, 720.
doi: 10.1016/j.snb.2015.05.111 |
[17] |
SongZ.; KwokR. T.; ZhaoE.; HeZ.; HongY.; LamJ. W. Y.; LiuB.; TangB. Z. ACS Appl. Mater. Interfaces 2014, 6, 17245.
doi: 10.1021/am505150d |
[18] |
KimT. I.; KimH.; ChoiY.; KimY. Chem. Commun. 2011, 47, 9825.
doi: 10.1039/c1cc13819g |
[19] |
JiaY.; LiP.; HanK. Chem.-Asian J 2015, 10, 2444.
doi: 10.1002/asia.201500280 |
[20] |
FanC.; LuoS.; QiH. Luminescence 2016, 31, 423.
doi: 10.1002/bio.2977 |
[21] |
LuZ.; WuJ.; LiuW.; ZhangG.; WangP. RSC Adv. 2016, 6, 32046.
doi: 10.1039/C6RA00983B |
[22] |
HongY.; LamJ. W. Y.; TangB. Z. Chem. Soc. Rev. 2011, 40, 5361.
doi: 10.1039/c1cs15113d |
[23] | LuoJ.; XieZ.; LamJ. W. Y.; ChengL.; ChenH.; QiuC.; KwokH. S.; ZhanX.; LiuY.; ZhuD.; TangB. Z. Chem. Commun. 2001, 1740 |
[24] |
LiangJ.; KwokR. T.; ShiH.; TangB. Z.; LiuB. ACS Appl. Mater. Interfaces 2013, 5, 8784.
doi: 10.1021/am4026517 |
[25] |
GuX.; ZhangG.; WangZ.; LiuW.; XiaoL.; ZhangD. Analyst 2013, 138, 2427.
doi: 10.1039/c3an36784c |
[26] |
LiuH.; LvZ.; DingK. J.; LiuX.; YuanL.; ChenH.; LiX. J. Mater. Chem. B 2013, 1, 5550.
doi: 10.1039/c3tb21024c |
[27] |
LinM.; HuangJ.; ZengF.; WuS. Chem.-Asian J 2018, 14, 802.
doi: 10.1002/asia.v14.6 |
[28] |
ChenQ.; BianN.; CaoC.; QiuX. L.; QiA. D.; HanB. H. Chem. Commun. 2010, 46, 4067.
doi: 10.1039/c002894k |
[29] |
ZhangW.; YangH.; LiN.; ZhaoN. RSC Adv. 2018, 8, 14995.
doi: 10.1039/C8RA01786G |
[30] |
OwensE. A.; HenaryM.; El FakhriG.; SooC. H. Acc. Chem. Res. 2016, 49, 1731.
doi: 10.1021/acs.accounts.6b00239 |
[31] |
TanY.; ZhangL.; ManK. H.; PeltierR.; ChenG.; ZhangH.; ZhouL.; WangF.; HoD.; YaoS. Q.; HuY.; SunH. ACS Appl. Mater. Interfaces 2017, 9, 6796.
doi: 10.1021/acsami.6b14176 |
[32] |
LiS. J.; LiC. Y.; LiY. F.; FeiJ.; WuP.; YangB.; YangJ. O.; NieS. X. Anal. Chem 2017, 89, 6854.
doi: 10.1021/acs.analchem.7b01351 |
[33] |
ZhangQ.; LiS.; FuC.; XiaoY.; ZhangP. DingC. J. Mater. Chem. B 2019, 7, 443.
doi: 10.1039/C8TB02799D |
[34] |
XuL.; HeX.; HuangY.; MaP.; JiangY.; LiuX.; TaoS.; SunY.; SongD.; WangX. J. Mater. Chem. B 2019, 7, 1284.
doi: 10.1039/C8TB03230K |
[35] |
GaoZ.; SunJ.; GaoM.; YuF.; ChenL.; ChenQ. Sens. Actuators, B 2018, 265, 565.
doi: 10.1016/j.snb.2018.03.078 |
[36] |
FreemanR.; FinderT.; GillR.; WillnerI. Nano Lett. 2010, 10, 2192.
doi: 10.1021/nl101052f |
[37] |
LiG.; FuH.; ChenX.; GongP.; ChenG.; XiaL.; WangH.; YouJ.; WuY. Anal. Chem. 2016, 88, 2720.
doi: 10.1021/acs.analchem.5b04193 |
[38] |
MaoG.; ZhangQ.; YangY.; JiX.; HeZ. Anal. Chim. Acta 2019, 1047, 208.
doi: 10.1016/j.aca.2018.10.009 |
[39] |
LiuH.; LiM.; XiaY.; RenX. ACS Appl. Mater. Interfaces 2017, 9, 120.
doi: 10.1021/acsami.6b11920 |
[40] |
DongL.; MiaoQ.; HaiZ.; YuanY.; LiangG. Anal. Chem. 2015, 87, 6475.
doi: 10.1021/acs.analchem.5b01657 |
[41] |
MeiY.; HuQ.; ZhouB.; ZhangY.; HeM.; XuT.; LiF.; KongJ. Talanta 2018, 176, 52.
doi: 10.1016/j.talanta.2017.07.095 |
[42] |
ZhangH.; XuC.; LiuJ.; LiX.; GuoL.; LiX. Chem. Commun. 2015, 51, 7031.
doi: 10.1039/C5CC01005E |
[43] | ChenJ.; JiaoH.; LiW.; LiaoD.; ZhouH.; YuC. Chem.-Asian J. 2013, 8, 8276. |
[44] |
HouX.; YuQ.; ZengF.; YeJ.; WuS. J. Mater. Chem. B 2015, 3, 1042.
doi: 10.1039/C4TB01744G |
[45] |
GoraiT.; MaitraU. J. Mater. Chem. B 2018, 6, 2143.
doi: 10.1039/C7TB02657A |
[1] | Chongyang Zeng, Ping Hu, Biqin Wang, Wenyan Fang, Keqing Zhao. Cyanostilbene Bridged Triphenylene Dyad Stimuli-Responsive Discotic Liquid Crystal: Synthesis, Properties and Applications [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3287-3296. |
[2] | Yang Zhao, Panpan Chen, Lizhi Han, Enju Wang. Aggregation-Induced Emission and Cell Imaging of Triphenylimidazole Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2454-2461. |
[3] | Yang Zhao, Panpan Chen, Gaonan Li, Zhigang Niu, Enju Wang. Tetraarylimidazole-Based Aggregation-Induced Emission Luminogens and Their Cell-Imaging Application [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2156-2162. |
[4] | Ling Liu, Taotao Hao, Wanhua Wu, Cheng Yang. Stilbene-Based Molecular Switches with Aggregation Induced Emission (AIE) Function Constructed by Supramolecular Strategy [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2189-2196. |
[5] | Yuehua Zhang, Fei Nie, Lu Zhou, Xiaofeng Wang, Yuan Liu, Yanping Huo, Wencheng Chen, Zujin Zhao. Synthesis and Optoelectronic Studies of Thermally Activated Delayed Fluorescence Materials Based on Benzothiazolyl Ketones [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3876-3887. |
[6] | Meng Liu, Yanru Huang, Xiaofei Sun, Lijun Tang. An “Aggregation-Induced Emission+Excited-State Intramolecular Proton Transfer” Mechanisms-Based Benzothiazole Derived Fluorescent Probe and Its ClO– Recognition [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 345-351. |
[7] | Yangyang Li, Xiaofei Sun, Xiaoling Hu, Yuanyuan Ren, Keli Zhong, Xiaomei Yan, Lijun Tang. Synthesis of Triphenylamine Derivative and Its Recognition for Hg2+ with “OFF-ON” Fluorescence Response Based on Aggregation-Induced Emission (AIE) Mechanism [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 320-325. |
[8] | Jidong Zhang, Wanlin Yan, Wenqiang Hu, Dian Guo, Dalong Zhang, Xiaoxin Quan, Xianpan Bu, Siyu Chen. Design and Synthesis of a Zn2+ Fluorescent Probe Based on Aggregation Induced Luminescence Properties [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 326-331. |
[9] | Weikang Xia, Chuang Liu, Sheng Ye, Lei Wang, Ruiyuan Liu. Synthesis of A Sulfonamide-Substituted Benzothiadiazole-Based Fluorescent Dye and Study of Its Application for Long-Term Cancer Cell Tracking [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2535-2541. |
[10] | Zhaohua Chen, Xiying Cao, Sihong Chen, Shiwei Yu, Yanlan Lin, Shuting Lin, Zhaoyang Wang. Design, Synthesis and Application of Trisubstituted Olefinic Aggregation-Induced Emission Molecules [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2355-2363. |
[11] | Ze Guo, Di Wu, Lili Wang, Zheng Duan. BF3•Et2O Promoted Dienone-Phenol Type Rearrangement to Synthesize Phosphepine with Aggregation Induced Luminescence (AIE) Effect [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2481-2487. |
[12] | Yuetian Guo, Yongxin Pan, Lijun Tang. Progresses in Reactive Fluorescent Probes with Fused Aggregation- Induced Emission (AIE) and Excited State Intramolecular Proton Transfer (ESIPT) Structures [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1640-1650. |
[13] | Sihong Chen, Jiamin Xu, Yuemei Li, Baoru Peng, Lingyu Luo, Huiye Feng, Zhaohua Chen, Zhaoyang Wang. Research Progress of Aggregation-Caused Quenching (ACQ) to Aggregation-Induced Emission (AIE) Transformation Based on Organic Small Molecules [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1651-1666. |
[14] | Wei Ding, Bowen Cheng, Meng Wang, Qingyu Dou, Siying Li, Peng Zhang, Qianfu Luo. Advances in Aggregation-Induced Emission Molecules Based on Organic Photochromism [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 363-383. |
[15] | Jiamin Tan, Yajun Yu, Meng Guan, Yunhui Zhao, Zilong Tang, Zhihua Zhou, Tao Guo. Design and Synthesis of Novel Aggregation-Induced Luminescence Molecules Based on Isoquinoline [J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3776-3783. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||