Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (6): 1573-1585.DOI: 10.6023/cjoc202201033 Previous Articles Next Articles
ACCOUNT
收稿日期:
2022-01-20
修回日期:
2022-02-25
发布日期:
2022-03-08
通讯作者:
李晖, 殷亮
基金资助:
Received:
2022-01-20
Revised:
2022-02-25
Published:
2022-03-08
Contact:
Hui Li, Liang Yin
Supported by:
Share
Hui Li, Liang Yin. Research Progress of Copper-Catalyzed Direct Vinylogous Reactions[J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1573-1585.
[1] |
Fuson, R. C. Chem. Rev. 1935, 16, 1.
doi: 10.1021/cr60053a001 |
[2] |
For selective reviews, see: (a) Denmark, S. E.; Heemstra, J. R.; Beutner, G. L. Angew. Chem., Int. Ed. 2005, 44, 4682.
doi: 10.1002/anie.200462338 pmid: 21732451 |
(b) Casiraghi, G.; Battistini, L.; Curti, C.; Rassu, G.; Zanardi, F. Chem. Rev. 2011, 111, 3076.
doi: 10.1021/cr100304n pmid: 21732451 |
|
(c) Pansare, S.V.; Paul, E. K. Chem.-Eur. J. 2011, 17, 8770.
doi: 10.1002/chem.201101269 pmid: 21732451 |
|
(d) Bisai, V. Synthesis 2012, 44, 1453.
doi: 10.1055/s-0031-1290981 pmid: 21732451 |
|
(e) Schneider, C.; Abels, F. Org. Biomol. Chem. 2014, 12, 3531.
doi: 10.1039/c4ob00332b pmid: 21732451 |
|
(f) Jusseau, X.; Chabaud, L.; Guillou, C. Tetrahedron 2014, 70, 2595.
doi: 10.1016/j.tet.2014.01.057 pmid: 21732451 |
|
(g) Roselló, M. S.; Pozo, C. D.; Fustero, S. Synthesis 2016, 48, 2553.
doi: 10.1055/s-0035-1561650 pmid: 21732451 |
|
(h) Yin, Y.; Jiang, Z. ChemCatChem 2017, 9, 4306.
doi: 10.1002/cctc.201700941 pmid: 21732451 |
|
(i) Li, H.; Yin, L. Tetrahedron Lett. 2018, 59, 4121.
doi: 10.1016/j.tetlet.2018.10.012 pmid: 21732451 |
|
(j) Li, Z.; Noda, H.; Kumagai, N.; Shibasaki, M. Tetrahedron 2018, 74, 3301.
doi: 10.1016/j.tet.2018.03.073 pmid: 21732451 |
|
[3] |
For some recent examples for transition-metal-catalyzed asymmetric vinylogous reaction, see: (a) Tang, Q.; Lin, L.; Ji, J.; Hu, H.; Liu, X.; Feng, X. Chem.-Eur. J. 2017, 23, 16447.
doi: 10.1002/chem.201704100 pmid: 30079186 |
(b) Trost, B. M.; Gnanamani, E.; Tracy, J. S.; Kalnmals, C. A. J. Am. Chem. Soc. 2017, 139, 18198.
doi: 10.1021/jacs.7b11361 pmid: 30079186 |
|
(c) Ji, J.; Lin, L.; Tang, Q.; Kang, T.; Liu, X.; Feng, X. ACS Catal. 2017, 7, 3763.
doi: 10.1021/acscatal.7b00590 pmid: 30079186 |
|
(d) Mei, H.; Lin, L.; Wang, L.; Dai, L.; Liu, X.; Feng, X. Chem. Commun. 2017, 53, 8763.
doi: 10.1039/C7CC05164F pmid: 30079186 |
|
(e) Sarkar, R.; Mitra, S.; Mukherjee, S. Chem. Sci. 2018, 9, 5767.
doi: 10.1039/c8sc02041h pmid: 30079186 |
|
(f) Shi, C.-Y.; Xiao, J.-L.; Yin, L. Chem. Commun. 2018, 54, 11957.
doi: 10.1039/C8CC07249C pmid: 30079186 |
|
(g) Xu, H.; Laraia, L.; Schneider, L.; Louven, K.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Angew. Chem., Int. Ed. 2017, 56, 11232.
doi: 10.1002/anie.201706005 pmid: 30079186 |
|
[4] |
For some recent examples for organocatalyzed asymmetric vinylogous reaction, see: (a) Han, J.-L.; Tsai, Y.-D.; Chang, C.-H. Adv. Synth. Catal. 2017, 359, 4043.
doi: 10.1002/adsc.201701104 |
(b) Sakai, T.; Hirashima, S.; Yamashita, Y.; Arai, R.; Nakashima, K.; Yoshida, A.; Koseki, Y.; Miura, T. J. Org. Chem. 2017, 82, 4661.
doi: 10.1021/acs.joc.7b00287 |
|
(c) Kumar, K.; Jaiswal, M. K.; Singh, R. P. Adv. Synth. Catal. 2017, 359, 4136.
doi: 10.1002/adsc.201700758 |
|
(d) Han, M.-Y.; Luan, W.-Y.; Mai, P.-L.; Li, P.; Wang, L. J. Org. Chem. 2018, 83, 1518.
doi: 10.1021/acs.joc.7b02546 |
|
(e) Bai, X.; Zeng, G.; Shao, T.; Jiang, Z. Angew. Chem., Int. Ed. 2017, 56, 3684.
doi: 10.1002/anie.201700190 |
|
(f) Rout, S.; Joshi, H.; Singh, V. K. Org. Lett. 2018, 20, 2199.
doi: 10.1021/acs.orglett.8b00493 |
|
(g) Arlt, A.; Toyama, H.; Takada, K.; Hashimoto, T.; Maruoka, K. Chem. Commun. 2017, 53, 4779.
doi: 10.1039/C7CC01058C |
|
(h) Silva, S.; Matsuo, B. T.; da Silva, R. C.; Pozzi, L. V.; Correa, A. G.; Rollin, P.; Zukerman-Schpector, J.; Ferreira, M. A. B.; Paixão, M. W. J. Org. Chem. 2018, 83, 1701.
doi: 10.1021/acs.joc.7b02236 |
|
[5] |
Curti, C.; Brindani, N.; Battistini, L.; Sartori, A.; Pelosi, G.; Mena, P.; Brighenti, F.; Zanardi, F.; Del Rio, D. Adv. Synth. Catal. 2015, 357, 4082.
doi: 10.1002/adsc.201500705 |
[6] |
Denmark, S. E.; Heemstra, J. R.,Jr.; Beutner, G. L. Angew. Chem., Int. Ed. 2005, 44, 4682.
|
[7] |
(a) Cui, J.; Ohtsuki, A.; Watanabe, T.; Kumagai, N.; Shibasaki, M. Chem.-Eur. J. 2018, 24, 2598.
doi: 10.1002/chem.201800020 |
(b) Takeuchi, T.; Kumagai, N.; Shibasaki, M. J. Org. Chem. 2018, 83, 5851.
doi: 10.1021/acs.joc.8b00743 |
|
[8] |
Jing, Z.; Bai, X.; Chen, W.; Zhang, G.; Zhu, B.; Jiang, Z. Org. Lett. 2016, 18, 260.
doi: 10.1021/acs.orglett.5b03412 |
[9] |
Boucard, V.; Broustal, G.; Campagne, J. M. Eur. J. Org. Chem. 2007, 2007, 225.
doi: 10.1002/ejoc.200600570 |
[10] |
Zhang, H.-J.; Yin, L. J. Am. Chem. Soc. 2018, 140, 12270.
doi: 10.1021/jacs.8b07929 |
[11] |
(a) Yuan, C.; Yao, J.; Li, S. Phosphorus Sulfur Silicon Relat. Elem. 1990, 53, 21.
doi: 10.1080/10426509008038009 pmid: 14570502 |
(b) Yuan, C.; Yao, J.; Li, S. Phosphorus Sulfur Silicon Relat. Elem. 1991, 55, 125.
doi: 10.1080/10426509108045931 pmid: 14570502 |
|
(c) Kisanga, K.; Verkade, J. G. J. Org. Chem. 2002, 67, 426.
pmid: 14570502 |
|
(d) Chinkov, N.; Majumdar, S.; Marek, I. J. Am. Chem. Soc. 2003, 125, 13258.
pmid: 14570502 |
|
[12] |
Yue, W.-J.; Zhang, C.-Y.; Yin, L. iScience 2019, 14, 88.
doi: 10.1016/j.isci.2019.03.010 |
[13] |
Narasimhulu, M.; Reddy, T. S.; Mahesh, K. C.; Krishna, A. S.; Rao, J. V.; Venkateswarlu, Y. Bioorg. Med. Chem. Lett. 2009, 19, 3125.
doi: 10.1016/j.bmcl.2009.03.061 pmid: 19410455 |
[14] |
Rivera-Fuentes, P.; Diederich, F. Angew. Chem., Int. Ed. 2012, 51, 2818.
doi: 10.1002/anie.201108001 |
[15] |
(a) Zimmer, R.; Reissig, H.-U. Chem. Soc. Rev. 2014, 43, 2888.
doi: 10.1039/C3CS60429B |
(b) Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
doi: 10.1039/C4CS00054D |
|
[16] |
(a) Pu, X.; Qi, X.; Ready, J. M. J. Am. Chem. Soc. 2009, 131, 10364.
doi: 10.1021/ja9041127 |
(b) Cai, F.; Pu, X.; Qi, X.; Lynch, V.; Radha, A.; Ready, J. M. J. Am. Chem. Soc. 2011, 133, 18066.
doi: 10.1021/ja207748r |
|
[17] |
(a) Zhong, F.; Xue, Q.-Y.; Yin, L. Angew. Chem., Int. Ed. 2020, 59, 1562.
doi: 10.1002/anie.201912140 |
(b) Ran, G.; Chen, Y. Chin. J. Org. Chem. 2020, 40, 814. (in Chinese)
doi: 10.6023/cjoc202000015 |
|
( 冉光尧, 陈应春, 有机化学, 2020, 40, 814.)
doi: 10.6023/cjoc202000015 |
|
[18] |
Ran, G.-Y.; Chen, C.; Yang, X.-X.; Zhao, Z.; Du, W.; Chen, Y.-C. Org. Lett. 2020, 22, 4732.
doi: 10.1021/acs.orglett.0c01534 |
[19] |
Bai, X.; Zeng, G.; Shao, T.; Jiang, Z. Angew. Chem., Int. Ed. 2017, 56, 3684.
doi: 10.1002/anie.201700190 |
[20] |
Wang, S.-Q.; Liu, Z.-C.; Yue, W.-J.; Yin, L. Angew. Chem., Int. Ed. 2021, 60, 4604.
doi: 10.1002/anie.202013207 |
[21] |
Wei, X.-F.; Xie, X.-W.; Shimizu, Y.; Kanai, M. J. Am. Chem. Soc. 2017, 139, 4647.
doi: 10.1021/jacs.7b01254 |
[22] |
(a) Zhong, F.; Pan, Z.-Z.; Zhou, S.-W.; Zhang, H.-J.; Yin, L. J. Am. Chem. Soc. 2021, 143, 4556.
doi: 10.1021/jacs.1c02084 pmid: 33734679 |
(b) Gu, X.; Xu, L. Chin. J. Org. Chem. 2021, 41, 2528. (in Chinese)
doi: 10.6023/cjoc202100046 pmid: 33734679 |
|
( 顾幸威, 徐利文, 有机化学, 2021, 41, 2528.)
doi: 10.6023/cjoc202100046 pmid: 33734679 |
|
[23] |
Ruan, S.-T.; Luo, J.-M.; Du, Y.; Huang, P.-Q. Org. Lett. 2011, 13, 4938.
doi: 10.1021/ol2020384 |
[24] |
Trost, B. M.; Gnanamani, E.; Tracy, J. S.; Kalnmals, C. A. J. Am. Chem. Soc. 2017, 139, 18198.
doi: 10.1021/jacs.7b11361 |
[25] |
Zhang, H.-J.; Shi, C.-Y.; Zhong, F.; Yin, L. J. Am. Chem. Soc. 2017, 139, 2196.
doi: 10.1021/jacs.6b13042 |
[26] |
(a) Zhou, Z.; Feng, X.; Yin, X.; Chen, Y.-C. Org. Lett. 2014, 16, 2370.
doi: 10.1021/ol500700d pmid: 24762258 |
(b) Dell’Amico, L.; Rassu, G.; Zambrano, V.; Sartori, A.; Curti, C.; Battistini, L.; Pelosi, G.; Casiraghi, G.; Zanardi, F. J. Am. Chem. Soc. 2014, 136, 11107.
doi: 10.1021/ja5054576 pmid: 24762258 |
|
(c) Ratjen, L.; García-García, P.; Lay, F.; Beck, M. E.; List, B. Angew. Chem., Int. Ed. 2011, 50, 754.
doi: 10.1002/anie.201005954 pmid: 24762258 |
|
[27] |
Zhong, F.; Yue, W.-J.; Zhang, H.-J.; Zhang, C.-Y.; Yin, L. J. Am. Chem. Soc. 2018, 140, 15170.
doi: 10.1021/jacs.8b09484 pmid: 30384596 |
[28] |
Gribble, G. W. Environ. Chem. 2015, 12, 396.
doi: 10.1071/EN15002 |
[29] |
Zhang, H.-J.; Zhong, F.; Xie, Y.-C.; Yin, L. Chin. J. Chem. 2021, 39, 55.
|
[30] |
(a) Shiina, I.; Takasuna, Y.; Suzuki, R.; Oshiumi, H.; Komiyama, Y.; Hitomi, S.; Fukui, H. Org. Lett. 2006, 8, 5279.
pmid: 17078697 |
(b) Fukui, H.; Shiina, I. Org. Lett. 2008, 10, 3153.
doi: 10.1021/ol801066y pmid: 17078697 |
|
[31] |
Keeri, A. R.; Gualandi, A.; Mazzanti, A.; Lewinski, J.; Cozzi, P. G. Chem.-Eur. J. 2015, 21, 18949.
doi: 10.1002/chem.201504362 |
[32] |
(a) Arai, T.; Sato, T.; Noguchi, H.; Kanoh, H.; Kaneko, K.; Yanagisawa, A. Chem. Lett. 2006, 35, 1094.
doi: 10.1246/cl.2006.1094 |
(b) Tsang, A. S.-K.; Kapat, A.; Schoenebeck, F. J. Am. Chem. Soc. 2016, 138, 518.
doi: 10.1021/jacs.5b08347 |
|
[33] |
Zhang, H.-J.; Schuppe, A. W.; Pan, S.-T.; Chen, J.-X.; Wang, B.-R.; Newhouse, T. R.; Yin, L. J. Am. Chem. Soc. 2018, 140, 5300.
doi: 10.1021/jacs.8b01886 |
[1] | Shuang Yang, Xinqiang Fang. Kinetic Resolutions Enabled by N-Heterocyclic Carbene Catalysis: An Update [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 448-480. |
[2] | Wanting Chen, Xiongwei Zhong, Jiale Xing, Changshu Wu, Yang Gao. Progress in Asymmetric Catalytic Synthesis of C—N Axis Chiral Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 349-377. |
[3] | Quanbin Jiang. Progress in Synthesis of Axially Chiral Compounds through aza-Vinylidene o-Quinone Methide Intermediates [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 159-172. |
[4] | Chun-Xia Cheng, Lu-Ping Wu, Feng Sha, Xin-Yan Wu. Enantioselective Vinylogous Allylic Alkylation of Coumarins with Morita-Baylis-Hillman Carbonates Catalyzed by Chiral Phosphine-Amide [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3188-3195. |
[5] | Cheng Luo, Yanli Yin, Zhiyong Jiang. Recent Advances in Asymmetric Synthesis of P-Chiral Phosphine Oxides [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1963-1976. |
[6] | Zhicheng Bao, Muyao Li, Jianbo Wang. Copper-Catalyzed Cross-Coupling of Aryldiazoacetates with Bis[(pinacolato)boryl]methane [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1808-1814. |
[7] | Chunsheng Li, Xiaoqi Lian, Lianfen Chen. Copper-Catalyzed [4+2] Annulations of Sulfoxonium Ylides and o-Phenylenediamines [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1492-1498. |
[8] | Yang Liu, Xiang Huang, Min Wang, Jian Liao. Enantioselective Copper-Catalyzed Mannich-Type Reaction of Cycic Ketimines and β,γ-Unsaturated N-Acylpyrazoles [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1499-1509. |
[9] | Haiqing Wang, Shuang Yang, Yuchen Zhang, Feng Shi. Advances in Catalytic Asymmetric Reactions Involving o-Hydroxybenzyl Alcohols [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 974-999. |
[10] | Weidi Cao, Xiaohua Liu. Recent Advances on Catalytic Enantioselective Protonation for Construction of α-Tertiary Carbonyl Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 961-973. |
[11] | Siqiang Fang, Zanjiao Liu, Tianli Wang. Recent Advances of the Atherton-Todd Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1069-1083. |
[12] | Biao Han, Weishuang Li, Shuhan Chen, Zelang Zhang, Xue Zhao, Yaoyao Zhang, Lei Zhu. Recent Advances in Copper-Catalyzed Silyl Addition of Unsaturated Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 555-572. |
[13] | Li Xu, Lanlan Lü, Xiangshan Wang. Copper-Catalyzed Synthesis of β-Keto Sulfones from Enol Silyl Ether and Sodium Arylsulfinates [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3644-3651. |
[14] | Xin Kuang, Changhua Ding, Yichen Wu, Peng Wang. Catalytic Enantioselective Preparation of Chiral Allylsilanes [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3367-3387. |
[15] | Yan Zeng, Fei Ye. Research Progress on New Catalytic Reaction Systems for Asymmetric Synthesis of Silicon-Stereogenic Center Containing Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3388-3413. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||