Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (8): 2885-2894.DOI: 10.6023/cjoc202301007 Previous Articles Next Articles
收稿日期:
2023-01-08
修回日期:
2023-03-19
发布日期:
2023-04-13
基金资助:
Xiaoyu Zhang, Xinyan Li, Bing Cui, Zhihui Shao(), Mingqin Zhao()
Received:
2023-01-08
Revised:
2023-03-19
Published:
2023-04-13
Contact:
*E-mail: Supported by:
Share
Xiaoyu Zhang, Xinyan Li, Bing Cui, Zhihui Shao, Mingqin Zhao. Design, Synthesis and Antioxidant Activity of Tetrahydro-β-carbolines[J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2885-2894.
Compound | Structure | IC50/(mmol•mL-1) | |||
---|---|---|---|---|---|
ABTS+• | DPPH• | ||||
3a | | 0.170 | 1.621 | ||
3b | | 0.192 | >10 | ||
3c | | 0.114 | 1.115 | ||
3d | | 0.168 | 2.737 | ||
3e | | 0.115 | 1.115 | ||
3f | | 0.165 | >10 | ||
3g | | 0.166 | >10 | ||
3h | | 0.102 | 1.090 | ||
3i | | 0.137 | 8.581 | ||
3j | | 0.109 | 4.275 | ||
3k | | 0.126 | 9.476 | ||
3l | | 0.111 | 6.141 | ||
Vc | 0.099 | 1.003 |
Compound | Structure | IC50/(mmol•mL-1) | |||
---|---|---|---|---|---|
ABTS+• | DPPH• | ||||
3a | | 0.170 | 1.621 | ||
3b | | 0.192 | >10 | ||
3c | | 0.114 | 1.115 | ||
3d | | 0.168 | 2.737 | ||
3e | | 0.115 | 1.115 | ||
3f | | 0.165 | >10 | ||
3g | | 0.166 | >10 | ||
3h | | 0.102 | 1.090 | ||
3i | | 0.137 | 8.581 | ||
3j | | 0.109 | 4.275 | ||
3k | | 0.126 | 9.476 | ||
3l | | 0.111 | 6.141 | ||
Vc | 0.099 | 1.003 |
[1] |
Daugan, A.; Grondin, P.; Ruault, C.; Le Monnier de Gouville, A.-C.; Coste, H.; Kirilovsky, J.; Hyafil, F.; Labaudinière, R. J. Med. Chem. 2003, 46, 4525.
pmid: 14521414 |
[2] |
Miller, J. F.; Turner, E. M.; Sherrill, R. G.; Gudmundsson, K.; Spaltenstein, A.; Sethna, P.; Brown, K. W.; Harvey, R.; Romines, K. R.; Golden, P. Bioorg. Med. Chem. Lett. 2010, 20, 256.
doi: 10.1016/j.bmcl.2009.10.123 pmid: 19914830 |
[3] |
Shankaraiah, N.; Nekkanti, S.; Chudasama, K. J.; Senwar, K. R.; Sharma, P.; Jeengar, M. K.; Naidu, V. G. M.; Srinivasulu, V.; Srinivasulu, G.; Kamal, A. Bioorg. Med. Chem. Lett. 2014, 24, 5413
pmid: 25453799 |
[4] |
Ma, Y.; Wu, H.; Zhang, J.; Li, Y. Chirality 2013, 25, 656.
doi: 10.1002/chir.22193 |
[5] |
Goh, T. B.; Koh, R. Y.; Yam, M. F.; Azhar, M. E.; Mordi, M. N.; Mansor, S. M. Food Chem. 2015, 183, 208.
doi: 10.1016/j.foodchem.2015.03.044 |
[6] |
Lim, K.-H.; Komiyama, K.; Kam, T.-S. Tetrahedron Lett. 2007, 48, 1143.
doi: 10.1016/j.tetlet.2006.12.070 |
[7] |
Yamada, H.; Kawate, T.; Matsumizu, M.; Nishida, A.; Yamaguchi, K.; Nakagawa, M. J. Org. Chem. 1998, 63, 6348
doi: 10.1021/jo980810h |
[8] |
Bou-Hamdan, F. R.; Leighton, J. L. Angew. Chem., Int. Ed. 2009, 48, 2403.
doi: 10.1002/anie.200806110 |
[9] |
Ryabukhin, S. V.; Panov, D. M.; Plaskon, A. S.; Tolmachev, A. A.; Smaliy, R. V. Monatsh. Chem. 2012, 143, 1507.
doi: 10.1007/s00706-012-0804-7 |
[10] |
Muratore, M. E.; Holloway, C. A.; Pilling, A. W.; Storer, R. I.; Trevitt, G.; Dixon, D. J. J. Am. Chem. Soc. 2009, 131, 10796.
doi: 10.1021/ja9024885 pmid: 19606900 |
[11] |
Wendlandt, A. E.; Stahl, S. S. J. Am. Chem. Soc. 2014, 136, 506.
doi: 10.1021/ja411692v pmid: 24328193 |
[12] |
Wanner, M. J.; van der Haas, R. N. S.; de Cuba, K. R.; van Maarseveen, J. H.; Hiemstra, H. Angew. Chem., Int. Ed. 2007, 46, 7485
doi: 10.1002/(ISSN)1521-3773 |
[13] |
Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J. Adv. Synth. Catal. 2007, 349, 1555.
doi: 10.1002/(ISSN)1615-4169 |
[14] |
Hollmann, D. ChemSusChem 2014, 7, 2411.
doi: 10.1002/cssc.201402320 pmid: 24889988 |
[15] |
Corma, A.; Navas, J.; Sabater, M. J. Chem. Rev. 2018, 118, 1410.
doi: 10.1021/acs.chemrev.7b00340 |
[16] |
Nalikezhathu, A.; Cherepakhin, V.; Williams, T. J. Org. Lett. 2020, 22, 4979.
doi: 10.1021/acs.orglett.0c01485 pmid: 32558575 |
[17] |
Yang, P.; Zhang, C.; Gao, W.-C.; Ma, Y.; Wang, X.; Zhang, L.; Yue, J.; Tang, B. ChemComm 2019, 55, 7844.
|
[18] |
Mukherjee, A.; Nerush, A.; Leitus, G.; Shimon, L. J. W.; Ben David, Y.; Espinosa Jalapa, N. A.; Milstein, D. J. Am. Chem. Soc. 2016, 138, 4298.
doi: 10.1021/jacs.5b13519 pmid: 26924231 |
[19] |
Elangovan, S.; Neumann, J.; Sortais, J.-B.; Junge, K.; Darcel, C.; Beller, M. Nat. Commun. 2016, 7, 12641.
doi: 10.1038/ncomms12641 |
[20] |
Maji, B.; Barman, M. K. Synthesis 2017, 49, 3377.
doi: 10.1055/s-0036-1590818 |
[21] |
Bauer, J. O.; Chakraborty, S.; Milstein, D. ACS Catal. 2017, 7, 4462.
doi: 10.1021/acscatal.7b01729 |
[22] |
Wang, Y.; Shao, Z.; Zhang, K.; Liu, Q. Angew. Chem., Int. Ed. 2018, 57, 15143.
doi: 10.1002/anie.v57.46 |
[23] |
Moulton, C. J.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1976, 1020.
|
[24] |
Sandoval, C. A.; Ohkuma, T.; Muñiz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 13490.
doi: 10.1021/ja030272c |
[25] |
Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol. Chem. 2006, 4, 393.
pmid: 16446796 |
[26] |
Gunanathan, C.; Milstein, D. Chem. Rev. 2014, 114, 12024.
doi: 10.1021/cr5002782 |
[27] |
Shao, Z.; Li, Y.; Liu, C.; Ai, W.; Luo, S.-P.; Liu, Q. Nat. Commun. 2020, 11, 591.
doi: 10.1038/s41467-020-14380-3 |
[28] |
Shao, Z.; Wang, Y.; Liu, Y.; Wang, Q.; Fu, X.; Liu, Q. Org. Chem. Front. 2018, 5, 1248.
doi: 10.1039/C8QO00023A |
[29] |
Liu, Y.; Shao, Z.; Wang, Y.; Xu, L.; Yu, Z.; Liu, Q. ChemSusChem 2019, 12, 3069.
doi: 10.1002/cssc.v12.13 |
[30] |
Fu, S.; Shao, Z.; Wang, Y.; Liu, Q. J. Am. Chem. Soc. 2017, 139, 11941.
doi: 10.1021/jacs.7b05939 |
[31] |
Shan, H.-Y.; Yu, Y.-J.; Lv, Y.-P. Food Sci. Technol. 2018, 43, 197. (in Chinese)
|
( 单虹宇, 于雅静, 吕远平, 食品科技, 2018, 43, 197.)
|
|
[32] |
Zhan, P.-Q.; Zeng, H.-P. Chin. J. Org. Chem. 2008, 1035. (in Chinese)
|
( 张培全, 曾和平, 有机化学, 2008, 1035.)
|
|
[33] |
Elderwish, S.; Audebrand, A.; Nebigil, C. G.; Désaubry, L. Eur. J. Med. Chem. 2020, 186, 111859.
doi: 10.1016/j.ejmech.2019.111859 |
[34] |
Wu, T. Y. H.; Schultz, P. G. Org. Lett. 2002, 4, 4033.
doi: 10.1021/ol026729p |
[35] |
Chan, Y.-C.; Sak, M. H.; Frank, S. A.; Miller, S. J. Angew. Chem., Int. Ed. 2021, 60, 24573.
doi: 10.1002/anie.v60.46 |
[36] |
Cai, J.-H.; Yang, Y.-Q.; Zeng, Y.-F. Mod. Chem. Ind. 2022, 42, 201. (in Chinese)
|
( 蔡杰慧, 杨英全, 郑燕菲, 现代化工, 2022, 42, 201.)
|
|
[37] |
Huang, L.-L.; Zheng, Y.; Wang, X.; Feng, L.; Ye, L.; Hu, P.; Yan, X.; Feng, W.-W.; Wang, J.-R.; Xia, H.-L. J. Chin. Pharm. Sci. 2022, 39, 2489. (in Chinese)
|
( 黄李璐, 郑雨, 王希, 冯丽, 叶磊, 胡攀, 严鑫, 冯五文, 汪俊汝, 夏厚林, 中国现代应用药学, 2022, 39, 2489.)
|
[1] | Boyu Yan, Jieliang Wu, Jinfei Deng, Dan Chen, Xiushen Ye, Qiuli Yao. Recent Progress in Light-Driven Direct Dehydroxylation and Derivation of Alcohols [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3055-3066. |
[2] | Yanhua Gao, Yinpan Zhang, Yan Zhang, Tao Song, Yong Yang. Visible-Light-Induced Aerobic Oxidation of Alcohols over Surface Oxygen Vacancies-Enriched Nb2O5 [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2572-2579. |
[3] | Guijie Liu, Zhengqiang Fu, Fei Chen, Caixia Xu, Min Li, Ning Liu. N-Heterocyclic Carbene-Pyridine Manganese Complex/ Tetrabutylammonium Iodide Catalyzed Synthesis of Cyclic Carbonate from CO2 and Epoxide [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 629-635. |
[4] | Jiantao Zhang, Yawen Deng, Nuolin Mo, Lianfen Chen. Advances in Radical Mediated 1,2-Aryl Migration Reactions of α,α-Diarylallyl Alcohols [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 426-435. |
[5] | Tianyu Chen, Feng Han, Shuangyan Li, Jianping Liu, Jianhui Chen, Qing Xu. Transition Metal-Free Selective Aerobic C-Alkylation of Methyl N-Heteroarenes with Alcohols [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2914-2924. |
[6] | Yunrong Chen, Wei Liu, Xiaoyu Yang. Recent Advances in Kinetic Resolution of Tertiary Alcohols [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 679-697. |
[7] | Yuanzhi Li, Mengqian Zhu, Liang Xu. A Concise Biogenetically Inspired Formal Synthesis of Camptothecin [J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2885-2890. |
[8] | Jiahao Liu, Shidong Zhang, Zihong Luan, Yan Liu, Zhuofeng Ke. Ruthenium Catalyzed Selective Acceptorless Dehydrogenation of Allylic Alcohols to α,β-Unsaturated Carbonyls [J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4361-4369. |
[9] | Jianing Che, Tao Song, Xianchi Gao, Yong Yang. Borrowing Hydrogen Reductive Coupling of Nitroarenes with Benzyl Alcohols to Imines Catalyzed by Pd Nanoparticles on N Doped Carbon Materials [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 276-283. |
[10] | Ma Xiantao, Yu Jing, Wang Zilong, Zhang Yun, Zhou Qiuju. Efficient Activation of Allylic Alcohols in Pd-Catalyzed Allylic Substitution Reactions [J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2669-2677. |
[11] | Zhang Shunji, Liu Huili. Sulfuric Acid Catalyzed Rapid Nucleophilic Substitution of Propargyl Alcohols [J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1257-1265. |
[12] | Zhu Dong-Xing, Xu Ming-Hua. Transition Metal-Catalyzed Asymmetric Addition of Organoboron Reagents to Aldehydes and Ketones [J]. Chinese Journal of Organic Chemistry, 2020, 40(2): 255-275. |
[13] | Cao Zhicheng, Liu Jianchao, Chu Youqun, Zhao Fengming, Zhu Yinghong, She Yuanbin. Paired Electro-synthesis of Aryl Nitriles [J]. Chin. J. Org. Chem., 2019, 39(9): 2499-2506. |
[14] | Ma Xiantao, Yu Jing, Ma Ruitian, Yan Ran, Zhang Zhenlei. Palladium-Catalyzed Dehydrative Cross Couplings of Stabilized Phosphorus Ylides with Allylic Alcohols [J]. Chin. J. Org. Chem., 2019, 39(3): 830-835. |
[15] | Xu Jiao, Zhang Lihong, Zhang Meiqi, Liu Xiubo, Ma Wei, Tang Yixin, Wang Daolin. Iodine-Dimethyl sulfoxide Promoted Synthesis of Novel TetracyclicThiazolo[3',2':2,3]pyrido[4,5-d]pyrido[1,2-a]pyrimidinones [J]. Chinese Journal of Organic Chemistry, 2019, 39(10): 2808-2812. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||