Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (10): 3491-3507.DOI: 10.6023/cjoc202306024 Previous Articles Next Articles
Special Issue: 有机氟化学虚拟合辑; 有机硅化学专辑-2023
收稿日期:
2023-06-27
修回日期:
2023-08-23
发布日期:
2023-08-30
基金资助:
Zhi Tua, Jinsheng Yua(), Jian Zhoua,b,c
Received:
2023-06-27
Revised:
2023-08-23
Published:
2023-08-30
Contact:
*E-mail: Supported by:
Share
Zhi Tu, Jinsheng Yu, Jian Zhou. Synthesis of (Bromodifluoromethyl)trimethylsilane and Its Applications in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3491-3507.
[1] |
(a) Uneyama K. Organofluorine Chemistry, Blackwell, Oxford, 2006.
|
(b) Chambers R. D. Fluorine in Organic Chemistry, Blackwell, Oxford, 2004.
|
|
(c) Kirsch P. Modern Fluoroorganic Chemistry: Synthesis Reactivity, Applications, 2nd ed., Wiley-VCH, Weinheim, 2013.
|
|
[2] |
(a) Erickson J. A.; McLoughlin J. I. J. Org. Chem. 1995, 60, 1626.
doi: 10.1021/jo00111a021 pmid: 32027173 |
(b) Sap J. B.; Meyer C. F.; Straathof N. J.; Iwumene N.; Am Ende C. W.; Trabanco A. A.; Gouverneur V. J. Am. Chem. Soc. 2017, 139, 9325.
doi: 10.1021/jacs.7b04457 pmid: 32027173 |
|
(c) Zafrani Y.; Saphier S.; Gershonov E. Future Med. Chem. 2020, 12, 361.
doi: 10.4155/fmc-2019-0309 pmid: 32027173 |
|
(d) Sap J. B.; Meyer C. F; Straathof N. J.; Iwumene N.; Am Ende C. W.; Trabanco A. A.; Gouverneur V. Chem. Soc. Rev. 2021, 50, 8214.
doi: 10.1039/D1CS00360G pmid: 32027173 |
|
[3] |
(a) Prakash G. K. S.; Yudin A. K. Chem. Rev. 1997, 97, 757.
pmid: 11848888 |
(b) Liu X.; Xu C.; Wang M.; Liu Q. Chem. Rev. 2015, 115, 683.
doi: 10.1021/cr400473a pmid: 11848888 |
|
(c) Dilman A. D.; Levin V. V. Mendeleev Commun. 2015, 25, 239.
doi: 10.1016/j.mencom.2015.07.001 pmid: 11848888 |
|
(d) Rong J.; Ni C.-F.; Hu J.-B. Asian J. Org. Chem. 2017, 6, 139.
doi: 10.1002/ajoc.v6.2 pmid: 11848888 |
|
(e) Chen D.-B.; Gao X.; Song S.-R.; Kou M.; Ni C.-F.; Hu J.-B. Sci. Sin.: Chim. 2023, 53, 375.
pmid: 11848888 |
|
[4] |
Wang F.; Zhang W.; Zhu J.-M.; Li H.-F.; Huang K.-W.; Hu J.-B. Chem. Commun. 2011, 47, 2411
doi: 10.1039/C0CC04548A |
[5] |
Li L.-C.; Wang F.; Ni C.-F.; Hu J.-B. Angew. Chem., Int. Ed. 2013, 52, 12390.
doi: 10.1002/anie.v52.47 |
[6] |
(a) Hu J.-B.; Zhang W.; Wang F. Chem. Commun. 2009, 7465.
pmid: 28051859 |
(b) Hu J.-B. J. Fluorine Chem. 2009, 130, 1130.
doi: 10.1016/j.jfluchem.2009.05.016 pmid: 28051859 |
|
(c) Qing F.-L.; Zheng F. Synlett 2011, 2011, 1052.
doi: 10.1055/s-0030-1259947 pmid: 28051859 |
|
(d) Meanwell N. A. J. Med. Chem. 2011, 54, 2529.
doi: 10.1021/jm1013693 pmid: 28051859 |
|
(e) Ni C.-F.; Hu J.-B. Synthesis 2014, 46, 842.
doi: 10.1055/s-00000084 pmid: 28051859 |
|
(f) Belhomme M. C.; Besset T.; Poisson T.; Pannecoucke X. Chem.-Eur. J. 2015, 21, 12836.
doi: 10.1002/chem.v21.37 pmid: 28051859 |
|
(g) Zafrani Y.; Yeffet D.; Sod-Moriah G.; Berliner A.; Amir D.; Marciano D.; Gershonov E.; Saphier S. J. Med. Chem. 2017, 60, 797.
doi: 10.1021/acs.jmedchem.6b01691 pmid: 28051859 |
|
[7] |
(a) Wang J.; Sánchez-Roselló M.; Aceña J. L.; Del Pozo C.; Srochinsky A. E.; Fustero S.; Soloshonok V. A.; Liu H. Chem. Rev. 2014, 114, 2432.
doi: 10.1021/cr4002879 pmid: 19296694 |
(b) Chowdhury M. A.; Abdellatif K. R.; Dong Y.; Das D.; Suresh M. R.; Knaus E. E. J. Med. Chem. 2009, 52, 1525.
doi: 10.1021/jm8015188 pmid: 19296694 |
|
(c) Gewehr M.; Gladwin R. J.; Brahm L. US 2012/0245031, 2012.
pmid: 19296694 |
|
(d) Pérez R. A.; Sánchez-Brunete C.; Miguel E.; Tadeo J. L. J. Agric. Food Chem. 1998, 46, 1864.
doi: 10.1021/jf970854b pmid: 19296694 |
|
[8] |
(a) Wang X.; Pan S.-T.; Luo Q.-Y.; Wang Q.; Ni C.-F.; Hu J.-B. J. Am. Chem. Soc. 2022, 144, 12202.
doi: 10.1021/jacs.2c03104 pmid: 35786906 |
(b) Trang B.; Li Y.-L.; Xue X.-S.; Ateia M.; Houk K. N.; Dichtel W. R. Science 2022, 377, 839.
doi: 10.1126/science.abm8868 pmid: 35786906 |
|
(c) Tsyrulnikova A. S.; Vershilov S. V.; Popova L. M.; Lebedev N. V.; Litvinenko E. V.; Ismagilov N. G. J. Fluorine Chem. 2022, 257, 109972.
pmid: 35786906 |
|
[9] |
Evich M. G.; Davis M. J. B.; McCord J. P.; Acrey B.; Awkerman J. A.; Knappe D. R. U.; Lindstrom A. B.; Speth T. F.; Tebes-Stevens C.; Strynar M. J.; Wang Z.-Y.; Weber E. J.; Henderson W. M.; Washington J. W. Science 2022, 375, eabg9065.
|
[10] |
(a) Krishnamoorthy S.; Prakash G. K. S. Synthesis 2017, 49, 3394.
doi: 10.1055/s-0036-1588489 |
(b) Yerien D. E.; Barata-Vallejo S.; Postigo A. Chem. Eur. J. 2017, 23, 14676.
doi: 10.1002/chem.v23.59 |
|
(c) Sap J. B.; Meyer C. F.; Straathof N. J.; Iwumene N.; Am Ende C. W.; Trabanco A. A.; Gouverneur V. Chem. Soc. Rev. 2021, 50, 8214.
doi: 10.1039/D1CS00360G |
|
(d) Dilman A. D.; Levin V. V. Acc. Chem. Res. 2018, 51, 1272.
doi: 10.1021/acs.accounts.8b00079 |
|
[11] |
(a) Broicher V.; Geffken D. J. Organomet. Chem. 1990, 381, 315.
doi: 10.1016/0022-328X(90)80061-4 |
(b) Ruppert I.; Schlich K.; Volbach W. Tetrahedron Lett. 1984, 25, 2195.
doi: 10.1016/S0040-4039(01)80208-2 |
|
(c) Yudin A. K.; Prakash G. K. S.; Deffieux D.; Bradley M.; Bau R.; Olah G. A. J. Am. Chem. Soc. 1997, 119, 1572.
doi: 10.1021/ja962990n |
|
[12] |
Kosobokov M. D.; Dilman A. D.; Levin V. V.; Struchkova M. I. J. Org. Chem. 2012, 77, 5850.
doi: 10.1021/jo301094b pmid: 22708637 |
[13] |
(a) Kosobokov M. D.; Levin V. V.; Struchkova M. I.; Dilman A. D. Org. Lett. 2014, 16, 3784.
doi: 10.1021/ol501674n pmid: 24968144 |
(b) Levin V. V.; Smirnov V. O.; Struchkova M. I.; Dilman A. D. J. Org. Chem. 2015, 80, 9349.
doi: 10.1021/acs.joc.5b01590 pmid: 24968144 |
|
[14] |
Maslov A. S.; Smirnov V. O.; Struchkova M. I.; Arkhipov D. E.; Dilman A. D. Tetrahedron Lett. 2015, 56, 5048.
doi: 10.1016/j.tetlet.2015.07.018 |
[15] |
Xie Q.-Q.; Zhu Z.-Y.; Ni C.-F.; Hu J.-B. Org. Lett. 2019, 21, 9138.
doi: 10.1021/acs.orglett.9b03520 |
[16] |
Liu A.; Ni C.-F.; Xie Q.-Q.; Hu J.-B. Angew. Chem., Int. Ed. 2022, 61, e202115467.
|
[17] |
Liu A.; Ni C.-F.; Xie Q.-Q.; Hu J.-B. Angew. Chem., Int. Ed. 2023, 62, e202217088.
|
[18] |
Tsymbal A. V.; Kosobokov M. D.; Levin V. V.; Struchkova M. I.; Dilman A. D. J. Org. Chem. 2014, 79, 7831.
doi: 10.1021/jo501644m pmid: 25116859 |
[19] |
Trifonov A. L.; Zemtsov A. A.; Levin V. V.; Struchkova M. I.; Dilman A. D. Org. Lett. 2016, 18, 3458.
doi: 10.1021/acs.orglett.6b01641 pmid: 27336618 |
[20] |
Trifonov A. L.; Dilman A. D. Org. Lett. 2021, 23, 6977
doi: 10.1021/acs.orglett.1c02603 |
[21] |
Trifonov A. L.; Levin V. V.; Struchkova M. I.; Dilman A. D. Org. Lett. 2017, 19, 5304.
doi: 10.1021/acs.orglett.7b02601 pmid: 28915059 |
[22] |
(a) Glenadel Q.; Ismalaj E.; Billard T. J. Org. Chem. 2016, 81, 8268.
doi: 10.1021/acs.joc.6b01344 pmid: 34823360 |
(b) Fang Y.; Li X.; Liu C.-Y.; Tang J.; Chen Z.-P. J. Org. Chem. 2021, 86, 18081.
doi: 10.1021/acs.joc.1c02349 pmid: 34823360 |
|
[23] |
(a) Kosobokov M. D.; Levin V. V.; Struchkova M. I.; Dilman A. D. Org. Lett. 2015, 17, 760.
doi: 10.1021/acs.orglett.5b00097 pmid: 25965426 |
(b) Fedorov O. V.; Kosobokov M. D.; Levin V. V.; Struchkova M. I.; Dilman A. D. J. Org. Chem. 2015, 80, 5870.
doi: 10.1021/acs.joc.5b00904 pmid: 25965426 |
|
[24] |
(a) Song X.-N.; Chang J.; Zhu D.-S.; Li J.-H.; Xu C.; Liu Q.; Wang M. Org. Lett. 2015, 17, 1712.
doi: 10.1021/acs.orglett.5b00488 |
(b) Chang J.; Song X.-N.; Huang W.-Q.; Zhu D.-S.; Wang M. Chem. Commun. 2015, 51, 15362.
doi: 10.1039/C5CC06825H |
|
[25] |
(a) Song X.-N.; Tian S.-Q.; Zhao Z.-M.; Zhu D.-S.; Wang M. Org. Lett. 2016, 18, 3414.
doi: 10.1021/acs.orglett.6b01567 pmid: 28332846 |
(b) Chang J.; Xu C.; Gao J.; Gao F.-Y.; Zhu D.-S.; Wang M. Org. Lett. 2017, 19, 1850.
doi: 10.1021/acs.orglett.7b00611 pmid: 28332846 |
|
[26] |
Zhu J.; Xu M.-H.; Gong B.-H.; Lin A.-J.; Gao S. Org. Lett. 2023, 25, 3271.
doi: 10.1021/acs.orglett.3c01007 |
[27] |
(a) Xie Q.-Q.; Ni C.-F.; Zhang R.-Y.; Li L.-C.; Rong J.; Hu J.-B. Angew. Chem., Int. Ed. 2017, 56, 3206.
doi: 10.1002/anie.v56.12 |
(b) Zhang R.-Y.; Ni C.-F.; Xie Q.-Q.; Hu J.-B. Tetrahedron 2020, 76, 131676.
doi: 10.1016/j.tet.2020.131676 |
|
[28] |
Smirnov V. O.; Maslov A. S.; Struchkova M. I.; Arkhipov D. E.; Dilman A. D. Mendeleev Commun. 2015, 25, 452.
doi: 10.1016/j.mencom.2015.11.018 |
[29] |
Krishnamurti V.; Barrett C.; Ispizua-Rodriguez X.; Coe M.; Prakash G. K. S. Org. Lett. 2019, 21, 9377.
doi: 10.1021/acs.orglett.9b03604 pmid: 31742416 |
[30] |
(a) Zhang R.-Y.; Li Q.-G.; Ni C.-F.; Hu J.-B. Chem. Eur. J. 2021, 27, 17773.
doi: 10.1002/chem.v27.71 |
(b) Zhu X.-J.; Wei J.; Hu C.-X.; Xiao Q.-T.; Cai L.-T.; Wang H.; Xie Y.-Y.; Sheng R. Eur. J. Org. Chem. 2022, e202200629.
|
|
(c) Sheng H.-Y.; Su J.-K.; Li X.; Song Q.-L. CCS Chem. 2022, 4, 3820.
doi: 10.31635/ccschem.022.202101576 |
|
[31] |
Huang Y.-B.; Lin Z.-M.; Chen Y.; Fang S.-J.; Jiang H.-F.; Wu W.-Q. Org. Chem. Front. 2019, 6, 2462.
doi: 10.1039/C9QO00506D |
[32] |
Kim Y.; Heo J.; Kim D.; Chang S.; Seo S. Nat. Commun. 2020, 11, 4761.
doi: 10.1038/s41467-020-18557-8 |
[33] |
Hayashi H.; Takano H.; Katsuyama H.; Harabuchi Y.; Maeda S.; Mita T. Chem. Eur. J. 2021, 27, 10040.
doi: 10.1002/chem.v27.39 |
[34] |
Zhu Z.; Krishnamurti V.; Ispizua-Rodriguez X.; Barrett C.; Prakash G. K. S. Org. Lett. 2021, 23, 6494.
doi: 10.1021/acs.orglett.1c02305 |
[35] |
Zhu Z.-Y.; Xu Y.-J.; Krishnamurti V.; Koch C. J.; Ispizua-Rodriguez X.; Barrett C.; Prakash G. K. S. J. Fluorine Chem. 2022, 261, 110023.
|
[36] |
Song H.-H.; Li W.-H.; Wang X.-Y.; Wang K.-T.; Li J.-W.; Liu S.; Gao P.; Duan X.-H.; Hu J.-B.; Hu M.-Y. CCS Chem. 2023, DOI: 10.31635/ccschem.023.202302980.
|
[37] |
(a) Levin V. V.; Zemtsov A. A.; Struchkova M. I.; Dilman A. D. Org. Lett. 2013, 15, 917.
doi: 10.1021/ol400122k pmid: 26664635 |
(b) Smirnov V. O.; Maslov A. S.; Levin V. V.; Struchkova M. I.; Dilman A. D. Russ. Chem. Bull. 2014, 63, 2564.
doi: 10.1007/s11172-014-0778-1 pmid: 26664635 |
|
(c) Zemtsov A. A.; Kondratyev N. S.; Levin V. V.; Struchkova M. I.; Dilman A. D. J. Org. Chem. 2014, 79, 818.
doi: 10.1021/jo4024705 pmid: 26664635 |
|
(d) Smirnov V. O.; Struchkova M. I.; Arkhipov D. E.; Korlyukov A. A.; Dilman A. D. J. Org. Chem. 2014, 79, 11819.
doi: 10.1021/jo5023537 pmid: 26664635 |
|
(e) Kondratyev N. S.; Levin V. V.; Zemtsov A. A.; Struchkova M. I.; Dilman A. D. J. Fluorine Chem. 2015, 176, 89.
doi: 10.1016/j.jfluchem.2015.06.001 pmid: 26664635 |
|
(f) Zemtsov A. A.; Volodin A. D.; Levin V. V.; Struchkova M. I.; Dilman A. D. Beilstein J. Org. Chem. 2015, 11, 2145.
doi: 10.3762/bjoc.11.231 pmid: 26664635 |
|
(g) Zemtsov A. A.; Kondratyev N. S.; Levin V. V.; Struchkova M. I.; Dilman A. D. Russ. Chem. Bull. 2016, 65, 2760.
doi: 10.1007/s11172-016-1649-8 pmid: 26664635 |
|
(h) Ashirbaev S. S.; Levin V. V.; Struchkova M. I.; Dilman A. D. J. Fluorine Chem. 2016, 191, 143.
doi: 10.1016/j.jfluchem.2016.07.018 pmid: 26664635 |
|
[38] |
(a) Wang J.-D.; Tokunaga E.; Shibata N. Chem. Commun. 2018, 54, 8881.
doi: 10.1039/C8CC05135F |
(b) Wang Y.-K.; Wang S.-F.; Zhang C.-H.; Zhao T.; Hu Y.-Q.; Zhang M.-W.; Fu Y. Synlett 2021, 32, 1123.
doi: 10.1055/a-1507-5878 |
|
(c) Wang Y.-K.; Wang S.-F.; Qiu P.-Y.; Fang L.-Z.; Wang K.; Zhang Y.-W.; Zhao C.-H.; Zhao T. Org. Biomol. Chem. 2021, 19, 4788.
doi: 10.1039/D1OB00511A |
|
[39] |
Xie Q.-Q.; Zhu Z.-Y.; Li L.-C.; Ni C.-F.; Hu J.-B. Angew. Chem., Int. Ed. 2019, 58, 6405.
doi: 10.1002/anie.v58.19 |
[40] |
(a) Hu M.-Y.; Ni C.-F.; Li L.-C.; Han Y.-X.; Hu J.-B. J. Am. Chem. Soc. 2015, 137, 14496.
doi: 10.1021/jacs.5b09888 |
(b) Zhang Z.-K.; Yu W.-Z.; Wu C.-G.; Wang C.-P.; Zhang Y.; Wang J.-B. Angew. Chem., Int. Ed. 2016, 55, 273.
doi: 10.1002/anie.v55.1 |
|
[41] |
(a) Fu X.-P.; Xue X.-S.; Zhang X.-Y.; Xiao Y.-L.; Zhang S.; Guo Y.-L.; Leng X.-B.; Houk K. N.; Zhang X.-G. Nat. Chem. 2019, 11, 948.
doi: 10.1038/s41557-019-0331-9 pmid: 31548670 |
(b) Zeng X.; Li Y.; Min Q.-Q.; Xue X.-S.; Zhang X.-G. Nat. Chem. 2023, 15, 1064.
doi: 10.1038/s41557-023-01236-8 pmid: 31548670 |
|
[42] |
Yang R.-Y.; Wang H.; Xu B. Chem. Commun. 2021, 57, 4831.
doi: 10.1039/D1CC01132D |
[43] |
(a) Zhang R.; Zhang Z.-K.; Zhou Q.; Yu L.-F.; Wang J.-B. Angew. Chem., Int. Ed. 2019, 58, 5744.
doi: 10.1002/anie.v58.17 pmid: 32633508 |
(b) Zhang R.; Zhang Z.-K.; Wang K.; Wang J.-B. J. Org. Chem. 2020, 85, 9791.
doi: 10.1021/acs.joc.0c01120 pmid: 32633508 |
|
[44] |
Wang X.; Pan S.-T.; Luo Q.-Y.; Wang Q.; Ni C.-F.; Hu J.-B. J. Am. Chem. Soc. 2022, 144, 12202.
doi: 10.1021/jacs.2c03104 pmid: 35786906 |
[45] |
Supranovich V. I.; Levin V. V.; Struchkova M. I.; Korlyukov A. A.; Dilman A. D. Org. Lett. 2017, 19, 3215.
doi: 10.1021/acs.orglett.7b01334 pmid: 28541046 |
[46] |
Supranovich V. I.; Levin V. V.; Dilman A. D. Beilstein J. Org. Chem. 2020, 16, 1550.
doi: 10.3762/bjoc.16.126 pmid: 32704320 |
[47] |
(a) Liu L.; Aguilera M. C.; Lee W.; Youshaw C. R.; Neidig M. L.; Gutierrez O. Science 2021, 374, 432.
doi: 10.1126/science.abj6005 |
(b) Rentería-Gómez A.; Lee W.; Yin S.; Davis M.; Gogoi A. R.; Gutierrez O. ACS Catal. 2022, 12, 11547.
doi: 10.1021/acscatal.2c03498 |
|
[48] |
Ellefsen J. D.; Miller S. J. J. Org. Chem. 2022, 87, 10250.
doi: 10.1021/acs.joc.2c01231 |
[49] |
Choi K.; Mormino M. G.; Kalkman E. D.; Park J.; Hartwig J. F. Angew. Chem., Int. Ed. 2022, 61, e202208204.
|
[1] | Yingke Feng, He Wang, Mengxing Cui, Ran Sun, Xin Wang, Yang Chen, Lei Li. Visible-Light-Induced Difluoroalkylated Cyclization of Novel Functionalized Aromatic Isocyanides [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2913-2925. |
[2] | Jinxiao Zhao, Tonghui Wei, Sen Ke, Yi Li. Visible Light-Catalyzed Synthesis of Difluoroalkylated Polycyclic Indoles [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1102-1114. |
[3] | Hua Huang, Xin Li, Jianke Su, Qiuling Song. Difluorocarbene-Enabled Synthesis of 3-Substituted-2-oxoindoles from o-Vinylanilines [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1146-1156. |
[4] | Xiang Chen, Wen-Tao Ouyang, Xiao Li, Wei-Min He. Visible-Light Induced Organophotocatalysis for the Synthesis of Difluoroethylated Benzoxazines [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4213-4219. |
[5] | Qi Sun, Zeying Sun, Ze Yu, Guangwei Wang. Nickel-Catalyzed Stereoselective Aryl-Difluoroalkylation of Alkynes [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2515-2520. |
[6] | Mengmeng Guo, Zilun Yu, Yulan Chen, Danhua Ge, Mengtao Ma, Zhiliang Shen, Xueqiang Chu. Difluorinated Silyl Enol Ethers as Fluorine-Containing Building Blocks for the Synthesis of Organofluorine Compounds [J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3562-3587. |
[7] | Wenqing Zhu, Tingyi Xu, Wenyong Han. Recent Progress in the Application of Difluoromethyl Diazomethane as Fluorine-Containing Building Block [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1275-1287. |
[8] | Jun Pan, Jingjing Wu, Fanhong Wu. Progress in Fluoroalkylation of Multicomponent [J]. Chinese Journal of Organic Chemistry, 2021, 41(3): 983-1001. |
[9] | Qin Wenbing, Chen Jiayi, Xiong Wei, Liu Guokai. Recent Advance in Development and Application of Electrophilic Difluoromethylating Reagents [J]. Chinese Journal of Organic Chemistry, 2020, 40(10): 3177-3195. |
[10] | Gao Xing, He Xu, Zhang Xingang. Nickel-Catalyzed Difluoromethylation of (Hetero)aryl Bromides with BrCF2H [J]. Chin. J. Org. Chem., 2019, 39(1): 215-222. |
[11] | Wang Weiqiang, Yu Qinwei, Zhang Qian, Li Jiangwei, Hui Feng, Yang Jianming, Lü Jian. Recent Progress on Difluoromethylation Methods [J]. Chin. J. Org. Chem., 2018, 38(7): 1569-1585. |
[12] | Zhang Ji, Jin Chuanfei, Zhang Yingjun. Recent Advances in Research and Development of Fluorinated Drugs and New Methods for Fluorination, Mono-, Di-and Tri-fluoromethylation [J]. Chin. J. Org. Chem., 2014, 34(4): 662-680. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||