Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (10): 3470-3490.DOI: 10.6023/cjoc202307017 Previous Articles Next Articles
Special Issue: 有机硅化学专辑-2023
收稿日期:
2023-07-16
修回日期:
2023-08-22
发布日期:
2023-08-30
基金资助:
Qiyang Li, Haiyan Zhang, Wenbo Liu()
Received:
2023-07-16
Revised:
2023-08-22
Published:
2023-08-30
Contact:
*E-mail: Supported by:
Share
Qiyang Li, Haiyan Zhang, Wenbo Liu. Research Progress in Transition-Metal-Free C—Si Bond Formation[J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3470-3490.
[1] |
Brook M. A. Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley, New York, 2000.
|
[2] |
Franz A. K.; Wilson S. O. J. Med. Chem. 2013, 56, 388.
doi: 10.1021/jm3010114 |
[3] |
(a) Feng S.-Y.; Qu Z.-R.; Zhou Z.-K.; Chen J.-Y.; Gai L.-Z.; Lu H.; Chem. Commun. 2021, 57, 11689.
doi: 10.1039/D1CC04687J |
(b) Salgues B.; Sarkar R.; Fajri M. L.; Avalos-Quiroz Y. A.; Manick A.; Giorgi M.; Vanthuyne N.; Carissan Y.; Videlot- Ackermann C.; Ackermann J.; Canard G.; Parrain J.; Guennic B. L.; Jacquemin D.; Amatore M.; Commeiras L.; Zaborova E.; Fages F. J. Org. Chem. 2022, 87, 3276.
doi: 10.1021/acs.joc.1c02942 |
|
[4] |
(a) Poole C. F. J. Chromatogr. A 2013, 1296, 2.
doi: 10.1016/j.chroma.2013.01.097 |
(b) Hsieh C.-Z.; Chung W.-H.; Ding W.-H. RSC Adv. 2021, 11, 23607.
doi: 10.1039/D1RA04195A |
|
[5] |
(a) Metsänen T. T.; Gallego D.; Szilvási T.; Driess M.; Oestreich M. Chem. Sci. 2015, 6, 7143.
doi: 10.1039/c5sc02855h pmid: 27136183 |
(b) Bleith T.; Gade L. H. J. Am. Chem. Soc. 2016, 138, 6074.
doi: 10.1021/jacs.6b03576 pmid: 27136183 |
|
(c) Park S.; Chang S. Angew. Chem., Int. Ed. 2017, 56, 7720.
doi: 10.1002/anie.v56.27 pmid: 27136183 |
|
[6] |
Muramatsu W.; Yamamoto H. J. Am. Chem. Soc. 2021, 143, 6792.
doi: 10.1021/jacs.1c02600 |
[7] |
Bellan A. B.; Knochel P. Angew. Chem., Int. Ed. 2019, 58, 1838.
doi: 10.1002/anie.v58.6 |
[8] |
McWilliams S. F.; Broere D. L. J.; Halliday C. J. V.; Bhutto S. M.; Mercado B. Q.; Holland P. L. Nature 2020, 584, 221.
doi: 10.1038/s41586-020-2565-5 |
[9] |
(a) Verma V.; Koperniku A.; Edwards P. M.; Schafer L. L. Chem. Commun. 2022, 58, 9174.
doi: 10.1039/D2CC02915D pmid: 33356223 |
(b) Kuci'nski K.; Stachowiak H.; Lewandowski D.; Gruszczy'nski M.; Lampasiak P.; Hreczycho G. J. Organomet. Chem. 2022, 961, 122127.
doi: 10.1016/j.jorganchem.2021.122127 pmid: 33356223 |
|
(c) Matsuoka K.; Komami N.; Kojima M.; Mita T.; Suzuki K.; Maeda S.; Yoshino T.; Matsunaga S. J. Am. Chem. Soc. 2021, 143, 103.
doi: 10.1021/jacs.0c11645 pmid: 33356223 |
|
[10] |
(a) Langkopf E.; Schinzer D. Chem. Rev. 1995, 95, 1375.
doi: 10.1021/cr00037a011 pmid: 29938502 |
(b) Chatgilialoglu C.; Ferreri C.; Landais Y.; Timokhin V. I. Chem. Rev. 2018, 118, 6516.
doi: 10.1021/acs.chemrev.8b00109 pmid: 29938502 |
|
[11] |
Littleson M. M.; Campbell A. D.; Clarke A.; Dow M.; Ensor G.; Evans M. C.; Herring A.; Jackson B. A.; Jackson L. V.; Karlsson S.; Klauber D. J.; Legg D. H.; Leslie K. W.; Moravčík Š.; Parsons C. D.; Ronson T. O.; Meadows R. E. Org. Process Res. Dev. 2019, 23, 1407.
doi: 10.1021/acs.oprd.9b00171 |
[12] |
Komiyama T.; Minami Y.; Hiyama T. ACS Catal. 2017, 7, 631.
doi: 10.1021/acscatal.6b02374 |
[13] |
(a) Yang Y.-H.; Wang C.-Y. Sci. China Chem. 2015, 58, 1266.
doi: 10.1007/s11426-015-5375-0 |
(b) Lipke M. C.; Liberman-Martin A. L.; Tilley T. D. Angew. Chem., Int. Ed. 2017, 56, 2260.
doi: 10.1002/anie.v56.9 |
|
[14] |
Schuman D. P.; Liu W.-B.; Nesnas N.; Stoltz B. M. Organosilicon Chemistry: Novel Approaches and Reactions, Eds.: Hiyama, T.; Oestreich, M., Wiley-VCH Verlag GmbH & Co. KGaA, New York, 2019.
|
[15] |
Tyagi A.; Yadav N.; Khan J.; Singh S.; Hazra C. K. Asian J. Org. Chem. 2021, 10, 334.
doi: 10.1002/ajoc.v10.2 |
[16] |
Bähr S.; Oestreich M. Angew. Chem., Int. Ed. 2017, 56, 52.
doi: 10.1002/anie.v56.1 |
[17] |
Gandhamsetty N.; Joung S.; Park S.-W.; Park S.; Chang S. J. Am. Chem. Soc. 2014, 136, 16780.
doi: 10.1021/ja510674u pmid: 25412033 |
[18] |
Gandhamsetty N.; Park S.; Chang S. J. Am. Chem. Soc. 2015, 137, 15176.
doi: 10.1021/jacs.5b09209 pmid: 26580152 |
[19] |
Hazra C. K.; Gandhamsetty N.; Park S.; Chang S. Nat. Commun. 2016, 7, 13431.
doi: 10.1038/ncomms13431 |
[20] |
Gandhamsetty N. Park J.; Jeong J.; Park S.-W.; Park S.; Chang S. Angew. Chem., Int. Ed. 2015, 54, 6832.
doi: 10.1002/anie.v54.23 |
[21] |
Kim E.; Park S.; Chang S. Chem. Eur. J. 2018, 24, 5765.
doi: 10.1002/chem.v24.22 |
[22] |
Pérez M.; Hounjet L.; Caputo C.; Dobrovetsky R.; Stephan D. J. Am. Chem. Soc. 2013, 135, 18308.
doi: 10.1021/ja410379x |
[23] |
Andrews R.; Chitnis S.; Stephan D. Chem. Commun. 2019, 55, 5599
doi: 10.1039/C9CC02460C |
[24] |
Parks D.; Blackwell J.; Piers W. J. Org. Chem. 2000, 65, 3090
doi: 10.1021/jo991828a pmid: 10814201 |
[25] |
He T.; W, G.-Q.; Long P.-W.; Kemper S.; Irran E.; Klare H. F. T.; Oestreich M. Chem. Sci. 2021, 12, 569.
doi: 10.1039/D0SC05553K |
[26] |
Fang H.-Q.; Xie K.X.; Kemper S.; Oestreich M. Angew. Chem., Int. Ed. 2021, 60, 8542.
doi: 10.1002/anie.v60.15 |
[27] |
Ma Y.-H.; Wang B.-L.; Zhang L.; Hou Z.-M. J. Am. Chem. Soc. 2016, 138, 3663.
doi: 10.1021/jacs.6b01349 |
[28] |
Han Y.-X.; Zhang S.-T.; He J.-H.; Zhang Y.-T. J. Am. Chem. Soc. 2017, 139, 7399.
doi: 10.1021/jacs.7b03534 |
[29] |
Han Y.-X.; Zhang S.; He J.-H.; Zhang Y.-T. ACS Catal. 2018, 8, 8765.
doi: 10.1021/acscatal.8b01847 |
[30] |
Zhang J.-B.; Park S.; Chang S. J. Am. Chem. Soc. 2018, 140, 13209.
doi: 10.1021/jacs.8b08733 |
[31] |
Ma Y.-H.; Lou S.-J.; Luo G.; Luo Y.; Zhan G.; Nishiura M.; Luo Y.; Hou Z.-M. Angew. Chem., Int. Ed. 2018, 57, 15222.
doi: 10.1002/anie.v57.46 |
[32] |
Sasaki M.; Kondo Y. Org. Lett. 2015, 17, 848.
doi: 10.1021/ol503671b |
[33] |
Toutov A.; Liu W.-B.; Betz K. N.; Fedorov A.; Stoltz B. M.; Grubbs R. H. Nature 2015, 518, 80.
doi: 10.1038/nature14126 |
[34] |
Banerjee S.; Yang Y.-F.; Jenkins I. D.; Liang Y.; Toutov A. A.; Liu W.-B.; Schuman D. P.; Grubbs R. H.; Stoltz B. M.; Krenske E. H.; Houk K. N.; Zare R. N. J. Am. Chem. Soc. 2017, 139, 6880.
doi: 10.1021/jacs.6b13032 pmid: 28462580 |
[35] |
Liu W.-B.; Schuman D. P.; Yang Y.-F.; Toutov A. A.; Liang Y.; Klare H. F. T.; Nesnas N.; Oestreich M.; Blackmond D. G.; Virgil S. C.; Banerjee S.; Zare R. N.; Grubbs R. H.; Houk K. N.; Stoltz B. M. J. Am. Chem. Soc. 2017, 139, 6867.
doi: 10.1021/jacs.6b13031 |
[36] |
Gu Y.-T.; Shen Y.-Y.; Zarate C.; Martin R. J. Am. Chem. Soc. 2019, 141, 127.
doi: 10.1021/jacs.8b12063 |
[37] |
Toutov A. A.; Betz K. N.; Schuman D. P.; Liu W.-B.; Fedorov A.; Stoltz B. M.; Grubbs R. H. J. Am. Chem. Soc. 2017, 139, 1668.
doi: 10.1021/jacs.6b12114 pmid: 28026952 |
[38] |
Nozawa-Kumada K.; Inagi M.; Kondo Y. Asian J. Org. Chem. 2017, 6, 63.
doi: 10.1002/ajoc.v6.1 |
[39] |
Neil B.; Lucien F.; Fensterbank L.; Chauvier C. ACS Catal. 2021, 11, 13085.
doi: 10.1021/acscatal.1c03824 |
[40] |
Wang L.; Zhang T.; Sun W.; He Z.-Y.; Xia C.-G.; Lan Y.; Liu C. J. Am. Chem. Soc. 2017, 139, 5257.
doi: 10.1021/jacs.7b02518 pmid: 28306251 |
[41] |
Qi W.-Y.; Zhen J.-S.; Xu X.-H.; Du X.; Li Y.-H.; Yuan H.; Guan Y.-S.; We X.; Wang Z.-Y.; Liang G.-H.; Luo Y. Org. Lett. 2021, 23, 5988.
doi: 10.1021/acs.orglett.1c02066 |
[42] |
Liu X.-W.; Zarate C.; Martin R. Angew. Chem., Int. Ed. 2019, 58, 2064.
doi: 10.1002/anie.v58.7 |
[43] |
Mallick S.; Xu P.; Wgrthwein E.; Studer A. Angew. Chem., Int. Ed. 2019, 58, 283.
doi: 10.1002/anie.v58.1 |
[44] |
Oestreich M.; Hartmann E.; Mewald M. Chem. Rev. 2013, 113, 402.
doi: 10.1021/cr3003517 pmid: 23163551 |
[45] |
Ito H.; Horit Y.; Yamamoto E. Chem. Commun. 2012, 48, 8006.
doi: 10.1039/c2cc32778c |
[46] |
Morimasa Y.; Kabasawa K.; Ohmura T.; Suginome M. Asian J. Org. Chem. 2019, 8, 1092.
doi: 10.1002/ajoc.201900176 |
[47] |
Nagao K.; Ohmiya H.; Sawamura M. Org. Lett. 2015, 17, 1304.
doi: 10.1021/acs.orglett.5b00305 |
[48] |
Gu Y.-T.; Duan Y.-Y.; Shen Y.-Y.; Martin R. Angew. Chem., Int. Ed. 2020, 59, 2061.
doi: 10.1002/anie.v59.5 |
[49] |
Jeong E.; Heo J.; Jin S.; Kim D.; Chang S. ACS Catal. 2022, 12, 4898.
doi: 10.1021/acscatal.2c01126 |
[50] |
Huo Y.-W.; Shen P.-P.; Duan W.-Z.; Zhen C.; Song C.; Ma Y.-D. Chin. Chem. Lett. 2018, 29, 1359.
doi: 10.1016/j.cclet.2017.12.005 |
[51] |
Li T.-T.; Wu Y.-Z.; Duan W.-Z.; Ma Y.-D. RSC Adv. 2021, 11, 17860.
doi: 10.1039/D1RA03193G |
[52] |
Xu P.; Würthwein E.; Daniliuc C.; Studer A. Angew. Chem., Int. Ed. 2017, 56, 13872.
doi: 10.1002/anie.v56.44 |
[53] |
Wang X.; Yu Z.-X.; Liu W.-B. Org. Lett. 2022, 24, 8735.
doi: 10.1021/acs.orglett.2c03170 |
[54] |
Shang X.-J.; Liu Z.-Q. Org. Biomol. Chem. 2016, 14, 7829.
doi: 10.1039/C6OB00797J |
[55] |
Chatgilialoglu C.; Ferreri C.; Landais Y.; Timokhin V. I. Chem. Rev. 2018, 118, 6516.
doi: 10.1021/acs.chemrev.8b00109 pmid: 29938502 |
[56] |
Zhang X.-P.; Fang J.-K.; Cai C.; Lu G.-P. Chin. Chem. Lett. 2021, 32, 1280.
doi: 10.1016/j.cclet.2020.09.058 |
[57] |
Li J.-S.; Wu J. ChemPhotoChem 2018, 2, 839.
doi: 10.1002/cptc.v2.10 |
[58] |
Ren L.-Q.; Li N.; Ke J.; He C. Org. Chem. Front. 2022, 9, 6400.
doi: 10.1039/D2QO01387H |
[59] |
Sakamoto R.; Nguyen B.; Maruoka K. Asian J. Org. Chem. 2018, 7, 1085.
doi: 10.1002/ajoc.v7.6 |
[60] |
Chang X.-H.; Wang Z.-L.; Zhao M.; Yang C.; Li J.-J.; Ma W.-W.; Xu Y.-H. Org. Lett. 2020, 22, 1326.
doi: 10.1021/acs.orglett.9b04645 |
[61] |
Leifert D.; Studer A. Org. Lett. 2015, 17, 386.
doi: 10.1021/ol503574k pmid: 25536028 |
[62] |
Studer A.; Curran D. P. Nat. Chem. 2014, 6, 765.
doi: 10.1038/nchem.2031 |
[63] |
Lin Y.-M.; Lu G.-P.; Wang R.-K.; Yi W.-B. Org. Lett. 2017, 19, 1100.
doi: 10.1021/acs.orglett.7b00126 |
[64] |
Yang Y.; Song R.-J.; Li Y.; Ouyang X.-H.; Li J.-H.; He D.-L. Chem. Commun. 2018, 54, 1441.
doi: 10.1039/C7CC08964C |
[65] |
Zhang C.; Pi J.-X.; Wang L.; Liu P.; Sun P.-P. Org. Biomol. Chem. 2018, 16, 9223.
doi: 10.1039/c8ob02670j pmid: 30475364 |
[66] |
Zhang T.-Y.; Zheng S.-H.; Kobayashi T.; Maekawa H. Org. Lett. 2021, 23, 7129.
doi: 10.1021/acs.orglett.1c02532 |
[67] |
Asgari P.; Hua Y.-D.; Bokka A.; Thiamsiri C.; Prasitwatcharakorn W.; Karedath A.; Chen X.; Sardar S.; Yum K.; Leem G.; Pierce B. S.; Nam K.; Gao J.-L.; Jeon J. Nat. Catal. 2019, 2, 164.
doi: 10.1038/s41929-018-0217-z |
[68] |
Buch F.; Brettar J.; Harder S. Angew. Chem., Int. Ed. 2006, 45, 2741.
doi: 10.1002/anie.v45:17 |
[69] |
Leich V.; Spaniol T.; Maron L.; Okuda J. Chem. Commun. 2014, 50, 2311
doi: 10.1039/c3cc49308c |
[70] |
Schuhknecht D.; Spaniol T.; Maron L.; Okuda J. Angew. Chem., Int. Ed. 2020, 59, 310.
doi: 10.1002/anie.v59.1 |
[71] |
Liu Z.-Z.; Shi X.-H.; Cheng J.-H. Dalton Trans. 2020, 49, 8340.
doi: 10.1039/D0DT01158D |
[72] |
Zhao L.-X.; Shi X.-H.; Cheng J.-H. ACS Catal. 2021, 11, 2041.
doi: 10.1021/acscatal.0c05440 |
[73] |
Gong X.; Deng P.; Cheng J.-H. ChemCatChem 2022, 14, e202200060.
|
[74] |
Li T.; McCabe K. N.; Maron L.; Leng X.-B.; Chen Y.-F. ACS Catal. 2021, 11, 6348.
doi: 10.1021/acscatal.1c00463 |
[75] |
Liu R.-X.; Liu X.-J.; Cheng T.-Y.; Chen Y.-F. Eur. J. Org. Chem. 2022, 1, e202101218.
|
[76] |
Li T.; Liu R.-X.; Liu X.-J.; Chen Y.-F. Org. Lett. 2023, 25, 761
doi: 10.1021/acs.orglett.2c04230 |
[77] |
Wang L.-L.; Li Y.-H.; Li Z.-F.; Kira M. Coord. Chem. Rev. 2022, 457, 214413.
doi: 10.1016/j.ccr.2022.214413 |
[1] | Jianghu Dong, Liangming Xuan, Chi Wang, Chenxi Zhao, Haifeng Wang, Qiongjiao Yan, Wei Wang, Fen'er Chen. Recent Advances in Visible-Light-Induced C(3)—H Functionalization of Quinoxalinones under Transition-Metal-Free or Photocatalyst-Free [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 111-136. |
[2] | Yijun Shi, Xinyue Sun, Han Cao, Fusheng Bie, Jie Ma, Zhe Liu, Xingshun Cong. Thioesterification of Esters with Primary Aliphatic Thiols at Room Temperature [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2499-2505. |
[3] | Rui Wang, Lang Gao, Cen Zhou, Xiao Zhang. Haloperfluoroalkylation of Unactivated Terminal Alkenes over Phenylphenothiazine-Based Porous Organic Polymers [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1136-1145. |
[4] | Huicheng Cheng, Penghu Guo, Bing Chen, Jiawei Yao, Jiaoli Ma, Weijie Hu, Hongbing Ji. Recent Advances in the Synthesis of Dibenzothiophenes [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 94-104. |
[5] | Zhenguo Zhang, Xiaoxiao Liu, Xinlong Zong, Yalin Yuan, Shuanglei Liu, Ting Zhang, Zishang Wu, Jingying Yang, Zhenhua Jia. Recent Advance on the Synthesis of 3,3'-Bisindolylmethane Derivatives under Transition-Metal-Free Catalytic Conditions [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 52-64. |
[6] | Zhang Huimiao, Li Lingzhi, Shen Fangqi, Cai Tao, Shen Runpu. Recent Advance in the Transition-Metal-Catalyzed Carbene Insertion Reactionsof Si—H Bond [J]. Chinese Journal of Organic Chemistry, 2020, 40(4): 873-885. |
[7] | Wu Yan, Chen Jinyang, Li Qiang, Wei Wenting. Progress in C—N Bond Formation Involving C(sp2)—H Bond through Transition-Metal-Free Radical Reactions [J]. Chinese Journal of Organic Chemistry, 2020, 40(3): 589-597. |
[8] | Xie Jianwei, Shen Li, Zhang Jie, Gong Shaofeng. Transition-Metal-Free Decarboxylative Amidation of Aryl α-Keto Acids with Diphenylphosphoryl Azide: New Avenue for the Preparation of Primary Aryl Amides [J]. Chinese Journal of Organic Chemistry, 2020, 40(12): 4284-4289. |
[9] | Ren Linjing, Ran Maogang, He Jiaxin, Qian Yan, Yao Qiuli. Recent Advance in the Transition-Metal Free Coupling Reactions for the Construction of C-X Bonds Induced by Light [J]. Chin. J. Org. Chem., 2019, 39(6): 1583-1595. |
[10] | Xu Fangning, Han Wei. Research Progress in Transition-Metal-Free Carbonylation Reactions [J]. Chin. J. Org. Chem., 2018, 38(10): 2519-2533. |
[11] | Lin Songbo, He Xingrui, Meng Jinpeng, Gu Haining, Zhang Peizhi, Wu Jun. Transition-Metal-Free Synthesis of o-Halodiarylamines from o-Halophenols [J]. Chin. J. Org. Chem., 2017, 37(7): 1864-1869. |
[12] | Yu Jingyang, Peng Jinsong, Yue Yixia, Zhao Yuzhuo, Chen Chunxia. Transition-Metal-Free Alkynylation of Imidazoles with Alkynyl Bromides [J]. Chin. J. Org. Chem., 2014, 34(7): 1352-1357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||