Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (1): 251-258.DOI: 10.6023/cjoc202305018 Previous Articles Next Articles
ARTICLES
收稿日期:
2023-05-16
修回日期:
2023-08-19
发布日期:
2023-09-08
基金资助:
Huakun Wang, Xiaolong Ren, Yining Xuan()
Received:
2023-05-16
Revised:
2023-08-19
Published:
2023-09-08
Contact:
*E-mail: Supported by:
Share
Huakun Wang, Xiaolong Ren, Yining Xuan. Study of the Halide Salt Catalyzed [3+2] Cycloaddition of α,β-Epoxy Carboxylate with Isocyanate[J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 251-258.
Entry | Cat. (x/equiv.) | Solvent | Temp./℃ | Time/h | Total yieldb/% |
---|---|---|---|---|---|
1 | NaI (0.5) | THF | 25 | 8 | 29 |
2 | KI (0.5) | THF | 25 | 8 | 4 |
3 | CuI (0.5) | THF | 25 | 8 | Trace |
4 | TBAB (0.5) | THF | 25 | 8 | 6 |
5 | CuBr (0.5) | THF | 25 | 8 | 25 |
6 | CaBr2 (0.5) | THF | 25 | 8 | 3 |
7 | AlBr3 (0.5) | THF | 25 | 8 | 5 |
8 | LiBr (0.5) | THF | 25 | 8 | 42 |
9 | NaBr (0.5) | THF | 25 | 8 | Trace |
10 | KBr (0.5) | THF | 25 | 8 | Trace |
11 | MgBr2 (0.5) | THF | 25 | 8 | 54 |
12 | MgI2 (0.5) | THF | 25 | 8 | 32 |
13 | MgBr2 (0.2) | THF | 25 | 8 | 77 |
14 | MgBr2 (0.2) | CH2Cl2 | 25 | 8 | 55 |
15 | MgBr2 (0.2) | CH2ClCH2Cl | 25 | 8 | 63 |
16 | MgBr2 (0.2) | CH3CN | 25 | 8 | 70 |
17 | MgBr2 (0.2) | Et2O | 25 | 8 | 30 |
18 | MgBr2 (0.2) | Toluene | 25 | 8 | 60 |
19 | MgBr2 (0.2) | DMF | 25 | 8 | 72 |
20 | MgBr2 (0.2) | THF | 80 | 4 | 86 |
21 | MgBr2 (0.1) | THF | 80 | 4 | 48 |
22 | MgI2 (0.5) | THF | 80 | 4 | 52 |
23 | MgI2 (0.2) | THF | 80 | 4 | 61 |
24 | LiBr (0.2) | THF | 25 | 8 | 2 |
25 | 3-羟基-N-辛基吡啶 鎓碘化物c (0.1) | THF | 80 | 10 | 9 |
26 | TBAI (0.2) 抗坏血酸(0.1) | THF | 80 | 8 | 16 |
Entry | Cat. (x/equiv.) | Solvent | Temp./℃ | Time/h | Total yieldb/% |
---|---|---|---|---|---|
1 | NaI (0.5) | THF | 25 | 8 | 29 |
2 | KI (0.5) | THF | 25 | 8 | 4 |
3 | CuI (0.5) | THF | 25 | 8 | Trace |
4 | TBAB (0.5) | THF | 25 | 8 | 6 |
5 | CuBr (0.5) | THF | 25 | 8 | 25 |
6 | CaBr2 (0.5) | THF | 25 | 8 | 3 |
7 | AlBr3 (0.5) | THF | 25 | 8 | 5 |
8 | LiBr (0.5) | THF | 25 | 8 | 42 |
9 | NaBr (0.5) | THF | 25 | 8 | Trace |
10 | KBr (0.5) | THF | 25 | 8 | Trace |
11 | MgBr2 (0.5) | THF | 25 | 8 | 54 |
12 | MgI2 (0.5) | THF | 25 | 8 | 32 |
13 | MgBr2 (0.2) | THF | 25 | 8 | 77 |
14 | MgBr2 (0.2) | CH2Cl2 | 25 | 8 | 55 |
15 | MgBr2 (0.2) | CH2ClCH2Cl | 25 | 8 | 63 |
16 | MgBr2 (0.2) | CH3CN | 25 | 8 | 70 |
17 | MgBr2 (0.2) | Et2O | 25 | 8 | 30 |
18 | MgBr2 (0.2) | Toluene | 25 | 8 | 60 |
19 | MgBr2 (0.2) | DMF | 25 | 8 | 72 |
20 | MgBr2 (0.2) | THF | 80 | 4 | 86 |
21 | MgBr2 (0.1) | THF | 80 | 4 | 48 |
22 | MgI2 (0.5) | THF | 80 | 4 | 52 |
23 | MgI2 (0.2) | THF | 80 | 4 | 61 |
24 | LiBr (0.2) | THF | 25 | 8 | 2 |
25 | 3-羟基-N-辛基吡啶 鎓碘化物c (0.1) | THF | 80 | 10 | 9 |
26 | TBAI (0.2) 抗坏血酸(0.1) | THF | 80 | 8 | 16 |
Entry | R1 | eeb/% | R2 (3) | Main product | Total yieldc/% | 4∶5d | eee/% |
---|---|---|---|---|---|---|---|
1 | C6H5 (2a) | 98 | C6H5CO (3a) | 4a | 86 | 92∶8 | 97 |
2 | 2-ClC6H4 (2b) | 97 | C6H5CO (3a) | 4b | 65 | 82∶18 | 93 |
3 | 3-ClC6H4 (2c) | 95 | C6H5CO (3a) | 4c | 90 | 80∶20 | 93 |
4 | 4-ClC6H4 (2d) | 99 | C6H5CO (3a) | 4d | 94 | 87∶13 | 93 |
5 | 4-BrC6H4 (2e) | 96 | C6H5CO (3a) | 4e | 94 | 91∶9 | 95 |
6 | 4-NCC6H4 (2f) | 98 | C6H5CO (3a) | 4f | 69 | 79∶21 | 97 |
7 | 4-O2NC6H4 (2g) | 98 | C6H5CO (3a) | 4g | 70 | 80∶20 | 98 |
8 | 4-CF3C6H4 (2h) | 98 | C6H5CO (3a) | 4h | 80 | 78∶22 | 97 |
9 | 4-CH3C6H4 (2i) | 97 | C6H5CO (3a) | 4i | 70 | 95∶5 | 97 |
10f | 4-CH3OC6H4 (2j) | — | C6H5CO (3a) | 4j | 72 | 87∶13 | — |
11f | 2-Pyridyl (2k) | — | C6H5CO (3a) | 4k | 38 | >20∶1 | — |
12 | C6H5 (2a) | 98 | 4-CH3OC6H4CO (3b) | 4l | 71 | 91∶9 | 97 |
13 | C6H5 (2a) | 98 | 4-F3CC6H4CO (3c) | 4m | 80 | 94∶6 | 98 |
14 | C6H5 (2a) | 98 | C6H5 (3d) | 4n | 45 | 83∶17 | 97 |
Entry | R1 | eeb/% | R2 (3) | Main product | Total yieldc/% | 4∶5d | eee/% |
---|---|---|---|---|---|---|---|
1 | C6H5 (2a) | 98 | C6H5CO (3a) | 4a | 86 | 92∶8 | 97 |
2 | 2-ClC6H4 (2b) | 97 | C6H5CO (3a) | 4b | 65 | 82∶18 | 93 |
3 | 3-ClC6H4 (2c) | 95 | C6H5CO (3a) | 4c | 90 | 80∶20 | 93 |
4 | 4-ClC6H4 (2d) | 99 | C6H5CO (3a) | 4d | 94 | 87∶13 | 93 |
5 | 4-BrC6H4 (2e) | 96 | C6H5CO (3a) | 4e | 94 | 91∶9 | 95 |
6 | 4-NCC6H4 (2f) | 98 | C6H5CO (3a) | 4f | 69 | 79∶21 | 97 |
7 | 4-O2NC6H4 (2g) | 98 | C6H5CO (3a) | 4g | 70 | 80∶20 | 98 |
8 | 4-CF3C6H4 (2h) | 98 | C6H5CO (3a) | 4h | 80 | 78∶22 | 97 |
9 | 4-CH3C6H4 (2i) | 97 | C6H5CO (3a) | 4i | 70 | 95∶5 | 97 |
10f | 4-CH3OC6H4 (2j) | — | C6H5CO (3a) | 4j | 72 | 87∶13 | — |
11f | 2-Pyridyl (2k) | — | C6H5CO (3a) | 4k | 38 | >20∶1 | — |
12 | C6H5 (2a) | 98 | 4-CH3OC6H4CO (3b) | 4l | 71 | 91∶9 | 97 |
13 | C6H5 (2a) | 98 | 4-F3CC6H4CO (3c) | 4m | 80 | 94∶6 | 98 |
14 | C6H5 (2a) | 98 | C6H5 (3d) | 4n | 45 | 83∶17 | 97 |
[1] |
(a) Diekema, D. J.; Jones, R. N. Drugs 2000, 59, 7.
doi: 10.2165/00003495-200059010-00002 |
(b) Bassetti, M.; Baguneid, M.; Bouza, E.; Dryden, M.; Nathwani, D.; Wilcox, M. Clin. Microbiol. Infect. 2014, 20, 3.
doi: 10.1111/1469-0691.12463 |
|
[2] |
(a) Wang, B. S.; Elageed, E. H. M.; Zhang, D. W.; Yang, S. J..; Wu, S.; Zhang, G. R.; Gao, G. H. ChemCatChem 2014, 6, 278.
doi: 10.1002/cctc.v6.1 |
(b) Wang, B. S.; Luo, Z. J.; Elageed, E. H. M.; Wu, S.; Zhang, Y. Y.; Wu, X. P.; Xia, F.; Zhang, G. R.; Gao, G. H. ChemCatChem 2016, 8, 830.
doi: 10.1002/cctc.v8.4 |
|
(c) Xu, B.; Wang, P.; Lv, M.; Yuan, D.; Yao, Y. M. ChemCatChem 2016, 8, 2466.
doi: 10.1002/cctc.v8.15 |
|
(d) Chen, F.; Li, M.; Wang, J. J.; Dai, B.; Liu, N. J. CO2 Util. 2018, 28, 181.
|
|
(e) Seo, U. R.; Chung, Y. K. Green Chem. 2017, 19, 803.
doi: 10.1039/C6GC02934E |
|
(f) Zhou, M. X.; Zheng, X. Z.; Wang, Y. R.; Yuan, D.; Yao, Y. M. ChemCatChem 2019, 11, 5783.
doi: 10.1002/cctc.v11.23 |
|
[3] |
Roush, W. R.; James, R. A. Aust. J. Chem. 2002, 55, 141.
doi: 10.1071/CH01199 |
[4] |
Shibata, I.; Baba, A.; Iwasaki, H.; Matsuda, H. J. Org. Chem. 1986, 51, 2177.
doi: 10.1021/jo00362a005 |
[5] |
Baba, A.; Seki, K.; Matsuda, H. J. Heterocycl. Chem. 1990, 27, 1925.
doi: 10.1002/jhet.v27:7 |
[6] |
Fujiwara, M.; Baba, A.; Tomohisa, Y.; Matsuda, H. Chem. Lett. 1986, 15, 1963.
doi: 10.1246/cl.1986.1963 |
[7] |
Paddock, R. L.; Adhikari, D.; Lord, R. L.; Baik, M.; Nguyen, S. T. Chem. Commun. 2014, 50, 15187.
doi: 10.1039/C4CC07421A |
[8] |
Speranza, G. P.; Peppel, W. J. J. Org. Chem. 1958, 23, 1922.
doi: 10.1021/jo01106a027 |
[9] |
Qian, C. T.; Zhu, D. M. Synlett 1994, 129.
|
[10] |
Zhang, X. X.; Chen, W. Chem. Lett. 2010, 39, 527.
doi: 10.1246/cl.2010.527 |
[11] |
Yingcharoen, P.; Natongchai, W.; Poater, A.; D' Elia, V. Catal. Sci. Technol. 2020, 10, 5544.
doi: 10.1039/D0CY00987C |
[12] |
Rostami, A.; Ebrahimi, A.; Sakhaee, N.; Golmohammadi, F.; Al-Harrasi, A. J. Org. Chem. 2022, 87, 40.
doi: 10.1021/acs.joc.1c01686 |
[13] |
Xuan, Y. N.; Lin, H. S.; Yan, M. Org. Biomol. Chem. 2013, 11, 1815.
doi: 10.1039/c3ob00056g |
[14] |
Righi, G.; Rumboldt, G.; Bonini, C. Tetrahedron 1995, 51, 13401.
doi: 10.1016/0040-4020(95)00873-7 |
[15] |
For the datils of the mechanism research, see supporting information.
|
[16] |
(a) Schiff, P. B.; Fant, J.; Horwitz, S. B. Nature 1979, 277, 665.
doi: 10.1038/277665a0 |
(b) Wani, M. C.; Horwitz, S. B. Anti-Cancer Drugs 2014, 25, 482.
doi: 10.1097/CAD.0000000000000063 |
|
(c) Baloglu, E.; Kingston, D. G. I. J. Nat. Prod. 1999, 62, 1068.
doi: 10.1021/np990040k |
|
[17] |
Afońkin, A. A.; Kostrikin, L. M.; Shumeiko, A. E.; Popov, A. F.; Matveev, A. A.; Matvienko, V. N.; Zabudkin, A. F. Russ. Chem. Bull. 2012, 61, 2149.
doi: 10.1007/s11172-012-0302-4 |
[18] |
Mamedov, V. A.; Mamedova, V. L.; Syakaev, V. V.; Voronina, J. K.; Mahrous, E. M.; Korshin, D. E.; Latypov, S. K.; Sinyashin, O. G. Tetrahedron 2020, 76, 131478.
doi: 10.1016/j.tet.2020.131478 |
[19] |
Agarwal, K. C.; Knaus, E. E. J. Heterocycl. Chem. 1985, 22, 65.
doi: 10.1002/jhet.v22:1 |
[20] |
McGrew, L. A.; Sweeny, W.; Campbell, T. W.; Foldi, V. S. J. Org. Chem. 1964, 29, 3002.
doi: 10.1021/jo01033a050 |
[21] |
Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325.
doi: 10.1021/ja00738a045 |
[1] | Shihang Yu, Jiawei Liu, Biyu An, Qinghua Bian, Min Wang, Jiangchun Zhong. Asymmetric Synthesis of the Contact Sex Pheromone of Neoclytus acuminatus acuminatus (Fabricius) [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 301-308. |
[2] | Yuchao Wang, Jinbiao Liu, Zhitao He. Palladium-Catalyzed Asymmetric Hydrofunctionalizations of Conjugated Dienes [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2614-2627. |
[3] | Tingyu Song, Ran Li, Lihua Huang, Shikun Jia, Guangjian Mei. Catalytic Asymmetric Synthesis of N—N Atropisomers [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1977-1990. |
[4] | Cheng Luo, Yanli Yin, Zhiyong Jiang. Recent Advances in Asymmetric Synthesis of P-Chiral Phosphine Oxides [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1963-1976. |
[5] | Ling Meng, Jun Wang. Research Progress on Synthesis of Thioflavonoids [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 873-891. |
[6] | Huaiyuan Zhang, Nuo Xu, Rongping Tang, Xingli Shi. Recent Advances in Asymmetric Dearomatization Reactions Induced by Chiral Hypervalent Iodine Reagents [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3784-3805. |
[7] | Liu-Yang Pu, Zhiyue Li, Limin Li, Yucui Ma, Min Ma, Shengquan Hu, Zhengzhi Wu. Asymmetric Synthesis of (–)-Colchicine and Its Natural Analog (–)-N-Acetylcolchicine Methyl Ether [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 313-319. |
[8] | Yuanhao Mao, Yanfeng Gao, Zhiwei Miao. Research Progress on the Asymmetric Cyclization Synthesis of Seven-Membered Rings via Transition Metal Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 1904-1924. |
[9] | Ting Yao, Jiayan Li, Jiaming Wang, Changgui Zhao. Recent Advances for the Construction of Seven-Membered Ring Catalyzed by N-Heterocyclic Carbenes [J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 925-944. |
[10] | Lihua Wang, Xushun Gong, Ting Lei, Shizhi Jiang. Research Progress on Asymmetric Synthesis of Flavanones [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 758-769. |
[11] | Xiuliang Cheng, Dong Li, Boxuan Yang, Yumei Lin, Lei Gong. Recent Advances in Visible-Light Photocatalytic Asymmetric Synthesis Enabled by Chiral Lewis Acids [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3335-3350. |
[12] | Yiwen Su, Youquan Zou, Wenjing Xiao. Recent Advances in Photocatalytic Deracemization [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3201-3212. |
[13] | Xudong Hu, Xinliang Zhang, Wenbo Liu. Advances of Chiral Spiro Skeleton-Based Bisnitrogen Ligands in Transition-Metal Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3102-3117. |
[14] | Haimeng Zhu, Chao Wang, Lili Zong. Progress on Biological Activity Study and Enantioselective Synthesis of Sulfoxides [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3431-3447. |
[15] | Nana Wang, Jingcheng Xu, Haibo Mei, Hiroki Moriwaki, Kunisuke Izawa, Vadim A. Soloshonok, Jianlin Han. Electrochemical Approaches for Preparation of Tailor-Made Amino Acids [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3034-3049. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||