Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (10): 3388-3413.DOI: 10.6023/cjoc202306027 Previous Articles Next Articles
Special Issue: 有机硅化学专辑-2023
收稿日期:
2023-06-30
修回日期:
2023-09-17
发布日期:
2023-09-21
Received:
2023-06-30
Revised:
2023-09-17
Published:
2023-09-21
Contact:
*E-mail: Share
Yan Zeng, Fei Ye. Research Progress on New Catalytic Reaction Systems for Asymmetric Synthesis of Silicon-Stereogenic Center Containing Compounds[J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3388-3413.
[1] |
(a) Tacke R.; Kornek T.; Heinrich T.; Burschka C.; Penka M.; Pglm M.; Keim C.; Mutschler E.; Lambrecht G. J. Organomet. Chem. 2001, 640, 140.
doi: 10.1016/S0022-328X(01)01179-2 |
(b) Franz A. K.; Wilson S. O. J. Med. Chem. 2013, 56, 388.
doi: 10.1021/jm3010114 |
|
(c) Hirai M.; Tanaka N.; Sakai M.; Yamaguchi S. Chem. Rev. 2019, 119, 8291.
doi: 10.1021/acs.chemrev.8b00637 |
|
(d) Kan S. B. J.; Lewis R. D.; Chen K.; Arnold F. H. Science 2016, 354, 1048.
doi: 10.1126/science.aah6219 |
|
(e) Elbing M.; Bazan G. C. Angew. Chem., Int. Ed. 2008, 47, 834.
doi: 10.1002/anie.v47:5 |
|
[2] |
(a) Xu L. W.; Li L.; Lai G. Q.; Jiang J. X. Chem. Soc. Rev. 2011, 40, 1777.
doi: 10.1039/c0cs00037j pmid: 21088772 |
(b) Shintani R. Asian J. Org. Chem. 2015, 4, 510.
doi: 10.1002/ajoc.v4.6 pmid: 21088772 |
|
(c) Zhang M.; Gao S.; Tang J.; Chen. L.; Liu A.; Sheng S.; Zhang A.-Q. Chem. Commun. 2021, 57, 8250.
doi: 10.1039/D1CC02839A pmid: 21088772 |
|
(d) Wu. Y.; Wang, P. Angew. Chem., Int. Ed. 2022, 61, e202205382.
pmid: 21088772 |
|
(e) Gao J.; He C. Chem.-Eur. J. 2022, 29, e202203475.
pmid: 21088772 |
|
[3] |
(a) Oestreich M.; Schmid U. K.; Auer G.; Keller M. Synthesis 2003, 2725.
|
(b) Rendler S.; Auer G.; Keller M.; Oestreich M. Adv. Synth. Catal. 2006, 348, 1171.
doi: 10.1002/adsc.v348:10/11 |
|
(c) Trzoss M.; Shao J.; Bienz S. Tetrahedron: Asymmetry 2004, 15, 1501.
|
|
[4] |
Bai X.-F.; Zou J.-F.; Chen M.-Y.; Xu Z.; Li L.; Cui Y.-M.; Zheng Z.-J.; Xu L.-W. Chem. Asian J. 2017, 12, 1730.
doi: 10.1002/asia.v12.14 |
[5] |
Corriu R. J. P.; Moreau J. J. E. J. Organomet. Chem. 1976, 120, 337.
doi: 10.1016/S0022-328X(00)98043-4 |
[6] |
Xu J.-X.; Chen M.-Y. Zheng Z.-J.; Cao J.; Xu Z.; Cui Y.-M.; Xu L.-W. ChemCatChem 2017, 9, 3111.
doi: 10.1002/cctc.v9.16 |
[7] |
Long P.-W.; Bai X.-F. Ye F.; Li L.; Xu Z.; Yang K.-F.; Cui Y.-M.; Zheng Z.-J.; Xu L.-W. Adv. Synth. Catal. 2018, 360, 2825.
doi: 10.1002/adsc.v360.15 |
[8] |
Zhu J.; Chen S.; He C. J. Am. Chem. Soc. 2021, 143, 5301.
doi: 10.1021/jacs.1c01106 |
[9] |
Yuan W.; Zhu X.; Xu Y.; He C. Angew. Chem., Int. Ed. 2022, 61, e202204912.
|
[10] |
Yang W.; Liu L.; Guo J.; Wang S.-G.; Zhang J.-Y.; Fan L.-W.; Tian Y.; Wang L.-L.; Luan C.; Li Z.-L.; He C.; Wang X.; Gu Q.-S.; Liu X.-Y. Angew. Chem., Int. Ed. 2022, 61, e202205743.
|
[11] |
Liu M.-M.; Xu Y.; He C. J. Am. Chem. Soc. 2023, 145, 11727.
doi: 10.1021/jacs.3c02263 |
[12] |
Huang X.; Zhu J.; He C. Chin. Chem. Lett. 2023, DOI: 10.1016/j.cclet.2023.108783.
|
[13] |
Tamao K.; Nakamura K.; Ishii H.; Yamaguchi S.; Shiro M. J. Am. Chem. Soc. 1996, 118, 12469.
doi: 10.1021/ja962754c |
[14] |
Naganawa Y.; Namba T.; Kawagishi M.; Nishiyama H. Chem. Eur. J. 2015, 21, 9319.
doi: 10.1002/chem.v21.26 |
[15] |
Chang X.; Ma P.-L.; Chen H.-C.; Li C.-Y.; Wang P. Angew. Chem., Int. Ed. 2020, 59, 8937.
doi: 10.1002/anie.v59.23 |
[16] |
Huang Y.-H.; Wu Y.; Zhu Z.; Zheng S.; Ye Z.; Peng Q.; Wang P. Angew. Chem., Int. Ed. 2022, 61, e202113052.
|
[17] |
Zhan G.; Teng H.-L.; Luo Y.; Nishiura M. Hou Z. Angew. Chem., Int. Ed. 2018, 130, 12522.
doi: 10.1002/ange.v130.38 |
[18] |
He T.; Liu L.-C.; Ma W.-P.; Li B.; Zhang Q.-W.; He W. Chem.- Eur. J. 2020, 26, 17011.
doi: 10.1002/chem.v26.71 |
[19] |
Wang L.; Lu W.; Zhang J.; Chong Q.; Meng F. Angew. Chem., Int. Ed. 2022, 61, e202205624
|
[20] |
Zhao Z.-Y.; Nie Y.-X.; Tang R.-H.; Yin G.-W. Cao J.; Xu Z.; Cui Y.-M.; Zheng Z.-J.; Xu L.-W. ACS Catal. 2019, 9, 9110.
doi: 10.1021/acscatal.9b02623 |
[21] |
Igawa K.; Yoshihiro D.; Ichikawa N.; Kolan N.; Tamooka K. Angew. Chem., Int. Ed. 2012, 51, 12745.
doi: 10.1002/anie.v51.51 |
[22] |
Wen H.; Wan X.; Huang Z. Angew. Chem., Int. Ed. 2018, 57, 6319.
doi: 10.1002/anie.v57.21 |
[23] |
Xie J.-L.; Xu Z.; Zhou H.-Q.; Nie Y.-X.; Cao J.; Yin G.-W.; Bouillon J.-P.; Xu L.-W. Sci. China Chem. 2021, 64, 761.
doi: 10.1007/s11426-020-9939-1 |
[24] |
Ling F.-Y.; Ye F.; Fang X.-J.; Zhou X.-H.; Huang W.-S.; Xu Z.; Xu L.-W. Chem. Sci. 2023, 14, 1123.
doi: 10.1039/d2sc06181c pmid: 36756338 |
[25] |
Lu W.; Zhao Y.; Meng F. J. Am. Chem. Soc. 2022, 144, 5233.
doi: 10.1021/jacs.2c00288 |
[26] |
Jin C.; He X.; Chen S.; Guo Z.; Lan Y.; Shen X. Chem 2023, 9, DOI: 10.1016/j.chempr.2023.06.014.
|
[27] |
Tang R.-H.; Xu Z.; Nie Y.-X.; Xiao X.-Q.; Yang K.-F.; Xie J.-L.; Guo B.; Yin G.-W.; Yang X.-M.; Xu L.-W. iScience 2020, 23, 101268.
doi: 10.1016/j.isci.2020.101268 |
[28] |
Zeng Y.; Fang X.-J.; Tang R.-H.; Xie J.-Y.; Zhang F.-J.; Xu Z.; Nie Y.-X.; Xu L.-W. Angew. Chem., Int. Ed. 2022, 61, e202214147.
|
[29] |
(a) Landais Y.; Parra-Rapado L.; Planchenault D.; Weber V. Tetrahedron Lett. 1997, 38, 229.
doi: 10.1016/S0040-4039(96)02285-X |
(b) Gu H.; Han Z.; Xie H.; Lin X. Org. Lett. 2018, 20, 6544.
doi: 10.1021/acs.orglett.8b02868 |
|
(c) Yang L.-L.; Ouyang J.; Zou H.-N. Zhu S.-F. Zhou Q.-L. J. Am. Chem. Soc. 2021, 143, 6401.
doi: 10.1021/jacs.1c03435 |
|
[30] |
Yasutomi Y.; Suematsu H.; Katsuki T. J. Am. Chem. Soc. 2010, 132, 4510.
doi: 10.1021/ja100833h pmid: 20232868 |
[31] |
Nakagawa Y.; Chanthamath S.; Fujisawa I.; Shibatomi K.; Iwasa S. Chem. Commun. 2017, 53, 3753.
doi: 10.1039/C7CC01070B |
[32] |
Jagannathan J. R.; Fettinger J. C.; Shaw J. T.; Franz A. K. J. Am. Chem. Soc. 2020, 142, 11674.
doi: 10.1021/jacs.0c04533 pmid: 32539370 |
[33] |
Kuninobu Y.; Yamauchi K.; Tamura N.; Seiki T.; Takai K. Angew. Chem., Int. Ed. 2013, 52, 1520.
doi: 10.1002/anie.v52.5 |
[34] |
Murai M.; Takeuchi Y.; Yamauchi K.; Kuninobu Y.; Takai K. Chem.-Eur. J. 2016, 22, 6048.
doi: 10.1002/chem.v22.17 |
[35] |
Murai M.; Takeshima H.; Morita H.; Kuninobu Y.; Takai K. J. Org. Chem. 2015, 80, 5407.
doi: 10.1021/acs.joc.5b00920 |
[36] |
Zhang Q.-W.; An K.; Liu L.-C.; Zhang Q.; Guo H.; He W. Angew. Chem., Int. Ed. 2017, 56, 1125.
doi: 10.1002/anie.v56.4 |
[37] |
Mu D.; Yuan W.; Chen S.; Wang N.; Yang B.; You L.; Zu B.; Yu P.; He C. J. Am. Chem. Soc. 2020, 142, 13459.
doi: 10.1021/jacs.0c04863 |
[38] |
Ma W.; Liu L.-C.; An K.; He T.; He W. Angew. Chem., Int. Ed. 2021, 60, 4245.
doi: 10.1002/anie.v60.8 |
[39] |
Chen S.; Mu D.; Mai P.-L.; Ke J.; Li Y.; He C. Nat. Commun. 2021, 12,1249.
|
[40] |
Yuan W.; You L.; Lin W.; Ke J.; Li Y.; He C. Org. Lett. 2021, 23, 1367.
doi: 10.1021/acs.orglett.1c00029 pmid: 33524255 |
[41] |
Yang B.; Yang W.; Guo Y.; You L.; He C. Angew. Chem., Int. Ed. 2020, 59, 22217.
doi: 10.1002/anie.v59.49 |
[42] |
Guo Y.; Liu M.-M.; Zhu X.; Zhu L.; He C. Angew. Chem., Int. Ed. 2021, 60, 13887.
doi: 10.1002/anie.v60.25 |
[43] |
Zhang H.; Zhao D. ACS Catal. 2021, 11, 10748.
doi: 10.1021/acscatal.1c03112 |
[44] |
Chen S.; Zhu J.; Ke J.; Li Y.; He C. Angew. Chem., Int. Ed. 2022, 61, e202117820.
|
[45] |
Mu D.; Pan S.; Wang X.; Liao X.; Huang Y.; Chen J. Chem. Commun. 2022, 58, 7388.
doi: 10.1039/D2CC02307E |
[46] |
Kurihara Y.; Nishikawa M.; Yamanoi Y.; Nishihara H. Chem. Commun. 2012, 48, 11564.
doi: 10.1039/c2cc36238d |
[47] |
Chen L.; Huang J.-B.; Xu Z.; Zheng Z.-J.; Yang K.-F.; Cui Y.-M.; Cao J.; Xu L.-W. RSC Adv. 2016, 6, 67113.
doi: 10.1039/C6RA12873D |
[48] |
Yang J.-J.; Xu Z.; Nie Y.-X.; Lu S.-Q.; Zhang J.; Xu L.-W. J. Org. Chem. 2020, 85, 14360.
doi: 10.1021/acs.joc.0c00202 |
[49] |
Zhou X.-H.; Fang X.-J.; Ling. F.-Y.; Xu Z.; Hong L.-Q.; Ye F.; Xu L.-W. Org. Chem. Front. 2022, 9, 5891.
doi: 10.1039/D2QO01253G |
[50] |
Shintani R.; Moriya K.; Hayashi T. ; J. Am. Chem. Soc. 2011, 133, 16440.
doi: 10.1021/ja208621x pmid: 21936508 |
[51] |
Shintani R.; Moriya K.; Hayashi T. Org. Lett. 2012, 14, 2902.
doi: 10.1021/ol301191u pmid: 22612531 |
[52] |
Chen H.; Chen Y.; Tang X.; Liu S.; Wang R.; Hu T.; Gao L.; Song Z. Angew. Chem., Int. Ed. 2019, 58, 4695.
doi: 10.1002/anie.v58.14 |
[53] |
Liu S.; Zhang T.; Zhu L.; Liu F.; Bai R.; Lan Y. Org. Lett. 2020, 22, 2124.
doi: 10.1021/acs.orglett.9b04636 |
[54] |
Luo G.; Chen L.; Li Y.; Fan Y.; Wang D.; Yang Y.; Gao L.; Jiang R.; Song Z. Org. Chem. Front. 2021, 8, 5941.
doi: 10.1039/D1QO00682G |
[55] |
Chen H.; Peng J.; Pang Q.; Du H.; Huang L.; Gao L.; Lan Y.; Yang C.; Song Z. Angew. Chem., Int. Ed. 2022, 61, e202212889.
|
[56] |
Chen H.; Zhang H. ; Du H.; Kuang Y.; Pang Q.; Gao L.; Wang W.; Yang C.; Song Z. Org. Lett. 2023, 25, 1558.
doi: 10.1021/acs.orglett.3c00346 |
[57] |
Tang X.; Zhang Y.; Tang Y.; Li Y.; Zhou J.; Wang D.; Gao L.; Su Z.; Song Z. ACS Catal. 2022, 12, 5185.
doi: 10.1021/acscatal.1c05831 |
[58] |
Wang X.; Huang S.-S.; Zhang F.-J.; Xie J.-L.; Li Z.; Xu Z.; Xu L.-W. Org. Chem. Front. 2021, 8, 6577.
doi: 10.1039/D1QO01386F |
[59] |
Zhang J.; Yan N.; Ju C.-W.; Zhao D. Angew. Chem., Int. Ed. 2021, 60, 25723.
doi: 10.1002/anie.v60.49 |
[60] |
Wang X.-C.; Li B.; Ju C.-W.; Zhao D. Nat. Commun. 2022, 13, 3392.
doi: 10.1038/s41467-022-31006-y |
[61] |
An K.; Ma W.; Liu L.-C.; He T.; Guan G.; Zhang Q.-W.; He W. Nat. Commun. 2022, 13, 847.
doi: 10.1038/s41467-022-28439-w |
[62] |
Shintani R.; Maciver E. E.; Tamakuni F.; Hayashi T. J. Am. Chem. Soc. 2012, 134, 16955.
doi: 10.1021/ja3076555 pmid: 22998336 |
[63] |
Onoe M.; Baba K.; Kim Y.; Kita Y.; Tobisu M.; Chatani N. J. Am. Chem. Soc. 2012, 134, 19477.
doi: 10.1021/ja3096174 |
[64] |
Kumar R.; Hoshimoto Y.; Yabuki H.; Ohashi M.; Ogoshi S. J. Am. Chem. Soc. 2015, 137, 11838.
doi: 10.1021/jacs.5b07827 |
[65] |
Shintani R.; Kurata H.; Nozaki K. Chem. Commun. 2015, 51, 11378.
doi: 10.1039/C5CC04172D |
[66] |
Bi X.; Feng J.; Xue X.; Gu Z. Org. Lett. 2021, 23, 3201.
doi: 10.1021/acs.orglett.1c00935 |
[67] |
Shintani R.; Otomo H.; Ota K.; Hayashi T. J. Am. Chem. Soc. 2012, 134, 7305.
doi: 10.1021/ja302278s pmid: 22506681 |
[68] |
Sato Y.; Takagi C.; Shintani R.; Nozaki K. Angew. Chem., Int. Ed. 2017, 56, 9211.
doi: 10.1002/anie.v56.31 |
[69] |
Lin Y.; Ma W.-Y.; Xu Z.; Zheng Z.-J.; Cao J.; Yang K.-F.; Cui Y.-M.; Xu L.-W. Chem. Asian J. 2019, 14, 2082.
doi: 10.1002/asia.v14.12 |
[70] |
Shintani R.; Takagi C.; Ito T.; Naito M.; Nozaki K. Angew. Chem., Int. Ed. 2015, 54, 1616.
doi: 10.1002/anie.v54.5 |
[71] |
Shintani R.; Takano R.; Nozaki K. Chem. Sci. 2016, 7, 1205.
doi: 10.1039/c5sc03767k pmid: 29910876 |
[72] |
Shintani R.; Misawa N.; Takano R.; Nozaki K. Chem. Eur. J. 2017, 23, 2660.
doi: 10.1002/chem.v23.11 |
[73] |
Long P.-W.; Xie J.-L.; Yang J.-J.; Lu S.-Q.; Xu Z.; Ye F.; Xu L.-W. Chem. Commun. 2020, 56, 4188.
doi: 10.1039/D0CC00844C |
[74] |
Wang Q.; Ye F.; Cao J.; Xu Z.; Zheng Z.-J.; Xu L.-W. Catal. Commun. 2020, 138, 105950.
doi: 10.1016/j.catcom.2020.105950 |
[75] |
Gao J.; Mai P.-L.; Ge Y.; Yuan W.; Li Y.; He C. ACS Catal. 2022, 12, 8476.
doi: 10.1021/acscatal.2c02482 |
[76] |
Zhang G.; Li Y.; Wang Y.; Zhang Q.; Tao X.; Zhang Q. Angew. Chem., Int. Ed. 2020, 59, 11927.
doi: 10.1002/anie.v59.29 |
[77] |
Yin K.-L.; Zhao S.; Qin Y.; Chen S.-H.; Li B.; Zhao D. ACS Catal. 2022, 12, 13999.
doi: 10.1021/acscatal.2c04441 |
[78] |
Li S.-S.; Sun S.; Wang J. Angew. Chem., Int. Ed. 2022, 61, e202115098.
|
[79] |
Qi L.; Pan Q.-Q.; Wei X.-X.; Pang X.; Liu Z.; Shu X.-Z. J. Am. Chem. Soc. 2023, 145, 13008.
doi: 10.1021/jacs.3c04209 |
[80] |
Murata R.; Matsumoto A.; Asano K.; Matsubara S. Chem. Commun. 2020, 56, 12335.
doi: 10.1039/D0CC05509C |
[81] |
Zhou H.; Han J. T.; Nöthling N.; Lindner M. M.; Jennicher J.; Kühn C.; Tsuji N.; Zhang L.; List B. J. Am. Chem. Soc. 2022, 144, 10156.
doi: 10.1021/jacs.2c04261 pmid: 35649270 |
[82] |
Zhou H.; Properzi R.; Leutzsch M.; Belanzoni P.; Bistoni G.; Tsuji N.; Zhang L.; Han J. T.; Zhun C. List B. J. Am. Chem. Soc. 2023, 145, 4994.
doi: 10.1021/jacs.3c00858 |
[83] |
Zhou M.; Liu J.; Deng R.; Wang Q.; Wu S.; Zheng P. ACS Catal. 2022, 12, 7781.
doi: 10.1021/acscatal.2c01082 |
[84] |
Liu H.; Zhou H.-W.; Chen X.-K.; Xu J.-F. J. Org. Chem. 2022, 87, 16127.
doi: 10.1021/acs.joc.2c02184 |
[85] |
Liu H.; He P.-Y.; Liao X.-L.; Zhou Y.-P.; Chen X.-K.; Ou W.-P.; Wu Z.-H.; Luo C.; Yang L.-M.; Xu J.-F. ACS Catal. 2022, 12, 9864.
doi: 10.1021/acscatal.2c02805 |
[86] |
Liao X.-L.; Zhou H.-W.; Chen X.-K.; Xu J.-F. Org. Lett. 2023, 25, 3099.
doi: 10.1021/acs.orglett.3c00946 |
[87] |
Zhang D.-K; Shao Y.-B.; Xie W.-S.; Chen Y.-R.; Liu W.; Bao H.-Y.; He F.-Q.; Xue X.-S.; Yang X.-Y. ACS Catal. 2022, 12, 14609.
doi: 10.1021/acscatal.2c04975 |
[88] |
Zhang X.-X.; Gao Y.; Zhang Y.-X.; Zhou J.; Yu J.-S. Angew. Chem., Int. Ed. 2023, 62, e202217724.
|
[89] |
Zhu M.; Oestreich M. ACS Catal. 2023, 13, 10244.
doi: 10.1021/acscatal.3c02682 |
[90] |
Guo W.; Li Q.; Liu Y.; Li C. Sci. China Chem. 2023, DOI: 10.1007/s11426-023-1643-7.
|
[1] | Shuang Yang, Xinqiang Fang. Kinetic Resolutions Enabled by N-Heterocyclic Carbene Catalysis: An Update [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 448-480. |
[2] | Wanting Chen, Xiongwei Zhong, Jiale Xing, Changshu Wu, Yang Gao. Progress in Asymmetric Catalytic Synthesis of C—N Axis Chiral Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 349-377. |
[3] | Quanbin Jiang. Progress in Synthesis of Axially Chiral Compounds through aza-Vinylidene o-Quinone Methide Intermediates [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 159-172. |
[4] | Chun-Xia Cheng, Lu-Ping Wu, Feng Sha, Xin-Yan Wu. Enantioselective Vinylogous Allylic Alkylation of Coumarins with Morita-Baylis-Hillman Carbonates Catalyzed by Chiral Phosphine-Amide [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3188-3195. |
[5] | Xiaona Yang, Hongyu Guo, Rong Zhou. Progress in Visible-Light Promoted Transformations of Organosilicon Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2720-2742. |
[6] | Cheng Luo, Yanli Yin, Zhiyong Jiang. Recent Advances in Asymmetric Synthesis of P-Chiral Phosphine Oxides [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1963-1976. |
[7] | Haiqing Wang, Shuang Yang, Yuchen Zhang, Feng Shi. Advances in Catalytic Asymmetric Reactions Involving o-Hydroxybenzyl Alcohols [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 974-999. |
[8] | Weidi Cao, Xiaohua Liu. Recent Advances on Catalytic Enantioselective Protonation for Construction of α-Tertiary Carbonyl Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 961-973. |
[9] | Siqiang Fang, Zanjiao Liu, Tianli Wang. Recent Advances of the Atherton-Todd Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1069-1083. |
[10] | Ling Meng, Jun Wang. Research Progress on Synthesis of Thioflavonoids [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 873-891. |
[11] | Jiayi Zhao, Yicong Ge, Chuan He. Construction of Silicon-Stereogenic Center via Catalytic Asymmetric Si—H/X—H Dehydrogenative Coupling [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3352-3366. |
[12] | Xin Kuang, Changhua Ding, Yichen Wu, Peng Wang. Catalytic Enantioselective Preparation of Chiral Allylsilanes [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3367-3387. |
[13] | Zengjin Dai, Xumu Zhang, Qin Yin. Advances on Asymmetric Reductive Amination with Ammonium Salts as Amine Sources [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2261-2274. |
[14] | Jinyu Zhang, Tianfen Liu, Le Wang, Xiaoming Wang. Recent Process in the in situ Generated Metal Nanocluster Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2331-2341. |
[15] | Hui Li, Liang Yin. Research Progress of Copper-Catalyzed Direct Vinylogous Reactions [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1573-1585. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||